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Background. During steady walking, gait parameters ûuctuate from one stride to another
with complex fractal patterns and long-range statistical persistence. When a metronome is
used to pace the gait (sensorimotor synchronization), long-range persistence is replaced
by stochastic oscillations (anti-persistence). Fractal patterns present in gait ûuctuations
are most often analyzed using detrended ûuctuation analysis (DFA). This method requires
the use of a discrete times series, such as intervals between consecutive heel strikes, as
an input. Recently, a new nonlinear method, the attractor complexity index (ACI), has been
shown to respond to complexity changes like DFA. But in contrast to DFA, ACI can be
applied to continuous signals, such as body accelerations. The aim of this study was to
further compare DFA and ACI in a treadmill experiment that induced complexity changes
through sensorimotor synchronization. Methods. Thirty-six healthy adults walked 30
minutes on an instrumented treadmill under three conditions: no cueing, auditory cueing
(metronome walking), and visual cueing (stepping stones). The center-of-pressure
trajectory was discretized into time series of gait parameters, after which a complexity
index (scaling exponent alpha) was computed via DFA. Continuous pressure position
signals were used to compute the ACI. Correlations between ACI and DFA were then
analyzed. The predictive ability of DFA and ACI to diûerentiate between cueing and no-
cueing conditions was assessed using regularized logistic regressions and areas under the
receiver operating characteristic curves (AUROC). Results. DFA and ACI were both
signiûcantly diûerent among the cueing conditions. DFA and ACI were correlated
(Pearson9s r = 0.78). Logistic regressions showed that DFA and ACI could diûerentiate
between cueing/no cueing conditions with a high degree of conûdence (AUROC = 1.0 and
0.96, respectively). Conclusion. Both DFA and ACI responded similarly to changes in
cueing conditions and had comparable predictive power. This support the assumption that
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ACI could be used instead of DFA to assess the long-range complexity of continuous gait
signals.
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20 Abstract

21 Background. During steady walking, gait parameters fluctuate from one stride to 

22 another with complex fractal patterns and long-range statistical persistence. When a 

23 metronome is used to pace the gait (sensorimotor synchronization), long-range 

24 persistence is replaced by stochastic oscillations (anti-persistence). Fractal patterns 

25 present in gait fluctuations are most often analyzed using detrended fluctuation analysis 

26 (DFA). This method requires the use of a discrete times series, such as intervals 

27 between consecutive heel strikes, as an input. Recently, a new nonlinear method, the 

28 attractor complexity index (ACI), has been shown to respond to complexity changes like 

29 DFA. But in contrast to DFA, ACI can be applied to continuous signals, such as body 

30 accelerations. The aim of this study was to further compare DFA and ACI in a treadmill 

31 experiment that induced complexity changes through sensorimotor synchronization.  

32 Methods. Thirty-six healthy adults walked 30 minutes on an instrumented treadmill 

33 under three conditions: no cueing, auditory cueing (metronome walking), and visual 

34 cueing (stepping stones). The center-of-pressure trajectory was discretized into time 

35 series of gait parameters, after which a complexity index (scaling exponent alpha) was 

36 computed via DFA. Continuous pressure position signals were used to compute the 

37 ACI. Correlations between ACI and DFA were then analyzed. The predictive ability of 

38 DFA and ACI to differentiate between cueing and no-cueing conditions was assessed 

39 using regularized logistic regressions and areas under the receiver operating 

40 characteristic curves (AUROC). 

41 Results. DFA and ACI were both significantly different among the cueing conditions. 

42 DFA and ACI were correlated (Pearson9s r = 0.78). Logistic regressions showed that 

43 DFA and ACI could differentiate between cueing/no cueing conditions with a high 

44 degree of confidence (AUROC = 1.0 and 0.96, respectively).

45 Conclusion. Both DFA and ACI responded similarly to changes in cueing conditions 

46 and had comparable predictive power. This support the assumption that ACI could be 

47 used instead of DFA to assess the long-range complexity of continuous gait signals. 

48

49 Introduction

50 Gait is a stereotyped sequence of movements that enable human beings to move through their 

51 environment. A fluid and stable gait requires the complex coordination of dozens of muscles 

52 controlling multiple joints. Biomechanical and energy constraints limit the range of gait 

53 movements to a narrow window (Holt et al., 1995); for example, at a preferred walking speed, 

54 step length and step time vary by only a few percent (Terrier, Turner & Schutz, 2005). It was 

55 previously thought that these small variations were random noise introduced by residual 

56 neuromuscular inaccuracies; however, after studying the structure of gait variability among 

57 hundreds of consecutive strides, it was observed that stride-to-stride fluctuations were not totally 

58 random but instead exhibited a fractal pattern (Hausdorff et al., 1995). Fractal fluctuations in 

59 time series produced by living beings have been deemed to be a signature of their complex 
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60 internal organization and of the feedback loops needed to adapt behaviors to environmental 

61 changes (Goldberger et al., 2002; West, 2013). Accordingly, physiological time series most often 

62 exhibit scaling properties and statistical persistence. Regarding human walking, the complex 

63 fluctuations in stride intervals, stride speeds, and stride lengths exhibit fractal patterns with 

64 inverse power-law memory (Hausdorff et al., 1995; Terrier, Turner & Schutz, 2005); that is, a 

65 change occurring at a given gait cycle can potentially influence another cycle dozens of steps 

66 later. 

67 The fractal pattern of gait fluctuations can be disrupted by sensorimotor synchronization. It is 

68 possible for humans to synchronize their stepping with external rhythmic cues, such as walking 

69 in time with a musical rhythm (auditory cueing). In such cases, stride-to-stride fluctuations 

70 become anti-persistent; that is, stride intervals tend to oscillate stochastically around the imposed 

71 pace (Terrier, Turner & Schutz, 2005; Delignières & Torre, 2009; Sejdi� et al., 2012; Choi et al., 

72 2017). In other words, a long stride interval has a higher probability of being followed by a short 

73 stride interval. Similarly, time series of stride speeds are anti-persistent in treadmill walking, in 

74 which a constant speed is imposed by the treadmill belt (Dingwell & Cusumano, 2010). The 

75 fractal pattern of stride speeds can be restored using self-paced treadmills, in which the belt 

76 speed is dynamically controlled by the walking subjects (Choi et al., 2017). In treadmill 

77 experiments, if an additional instruction of gait synchronization is superimposed on the task of 

78 walking at the belt speed, a generalized anti-persistent pattern is then observed (Terrier & Dériaz, 

79 2012; Roerdink et al., 2015; Choi et al., 2017). This phenomenon exists both when 

80 synchronizing stride intervals to a metronome (auditory cueing), and when aligning step lengths 

81 to visual cues projected onto the treadmill belt (visual cueing) (Terrier, 2016). 

82 In 2010, Dingwell and Cusumano hypothesized that the emergence of anti-persistence was 

83 linked to the degree of voluntary control dedicated to the gait. They suggested that, during a 

84 normal gait, deviations go uncorrected and can persist across consecutive strides (under-

85 correction). In contrast, in paced walking, deviations are followed by rapid corrections that lead 

86 to anti-persistence (over-correction). This <tight control= hypothesis has been supported by other 

87 studies (Roerdink et al., 2015; Bohnsack-McLagan, Cusumano & Dingwell, 2016). Earlier this 

88 year, Roerdink et al. further demonstrated that the degree of anti-persistence can be modulated 

89 by constraining the maneuverability range on a treadmill (Roerdink et al., 2019). In short, 

90 characterizing the noise structure of gait variability helps us to better understand gait control; 

91 among other things, it can provide information about whether a gait is highly controlled or more 

92 automated. In addition, cued walking has important applications for rehabilitation in gait 

93 disorders (Yoo & Kim, 2016; Pereira et al., 2019).

94 Detrended fluctuation analysis (DFA) is typically the preferred method to identify the 

95 fluctuation structure in a time series of gait parameters. Introduced in 1995 by Hausdorff et al., 

96 DFA identifies the modification of a signal9s variance at different time scales. DFA can unmask 

97 underlying fluctuation structures that may be otherwise obscured by time series trends (Peng et 

98 al., 1995). The presence of power-law scaling is determined through the scaling exponent alpha 

99 (³); if the exponent is small (³ < 0.5), the fluctuations are deemed to be anti-persistent. Statistical 
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100 persistence corresponds to ³ values higher than 0.5 and an ³ value equal to 0.5 indicates a 

101 random, uncorrelated noise (see Appendix B in Terrier & Dériaz [2013] for further information).

102 DFA requires a non-periodical, discrete time series as an input. Foot switches, i.e., pressure 

103 sensitive insoles, can be used to detect heel strikes on the ground and can thus collect time series 

104 of stride intervals (Hausdorff, Ladin & Wei, 1995; Sejdi� et al., 2012; Almurad et al., 2018). 

105 Several methods using the continuous measure of the positions of various body parts have also 

106 been proposed: 1) high-accuracy GPS (Terrier, Turner & Schutz, 2005); 2) 3-D video analysis 

107 (Dingwell & Cusumano, 2010); and 3) an instrumented treadmill that records the center-of-

108 pressure trajectory (Terrier & Dériaz, 2012; Terrier, 2016; Roerdink et al., 2019). These methods 

109 require a preliminary discretization of the position signals via minima/maxima detection 

110 algorithms (Terrier & Schutz, 2005; Roerdink et al., 2008; Dingwell & Cusumano, 2010). Other 

111 studies attempted to retrieve stride intervals from acceleration signals (Terrier & Dériaz, 2011), 

112 but the correct discrimination of strides can be challenging (González et al., 2010; Riva et al., 

113 2013; Terrier & Reynard, 2018).

114 The discrete gait time series that are analyzed through DFA are fundamentally the output of a 

115 continuous process. Indeed, gait control coordinates muscles and joints continuously during 

116 successive gait cycles; this process generates stride intervals, stride lengths, and stride speeds as 

117 outputs. It is questionable whether it is even possible to retrieve the fractal signature of long-

118 range stride fluctuations in a continuous signal that could capture both intra- and inter- stride gait 

119 dynamics. In 2013, I hypothesized that an attractor that reflects short-term gait dynamics could 

120 also contain information about long-term gait complexity (Terrier & Dériaz, 2013). In 2018, I 

121 explored this hypothesis further (Terrier & Reynard, 2018): I proposed the use of a new gait 

122 complexity index computed from continuous signals, which I named the attractor complexity 

123 index (ACI).

124 ACI is a new term for long-term local dynamic stability (LDS)4also referred to as 

125 divergence exponent or lambda (ü)4which was introduced by Dingwell et al. in 2000 (Dingwell 

126 et al., 2000; Dingwell & Cusumano, 2000). This algorithm, based on Lyapunov exponents used 

127 in chaos theory (Dingwell, 2006; Mochizuki & Aliberti, 2017), has been recommended to assess 

128 gait stability and fall risk (Bruijn et al., 2013). LDS requires the construction of an attractor in 

129 the phase space by means of time delay embedding of continuous signals, such as body 

130 accelerations (Takens, 1981; Rosenstein, Collins & De Luca, 1993; Terrier & Dériaz, 2013). 

131 LDS is defined as the divergence rate among attractor trajectories. The divergence rate can be 

132 evaluated at different intervals, either immediately after the initial separation between adjacent 

133 trajectories (short-term LDS) or several strides later (long-term LDS). In the years following 

134 Dingwell9s seminal articles, it became clear that long-term LDS was in fact not a good index for 

135 predicting fall risk and gait stability (Bruijn et al., 2013), but that short-term LDS had better 

136 properties for gait stability analysis, as shown in modeling studies (Su & Dingwell, 2007; Bruijn 

137 et al., 2012). 

138 Given that long-term LDS is not a gait stability index, renaming it as ACI seems appropriate. 

139 Indeed, as demonstrated through a modelling approach, ACI is highly sensitive to the noise 
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140 structure of stride intervals (Terrier & Reynard, 2018). More precisely, a low ACI is associated 

141 with statistical anti-persistence, and a high ACI is associated with persistence. Furthermore, it 

142 has been shown that when stride intervals are kept constant, divergence curves become flat after 

143 only two strides (see Fig. 2 in Terrier & Reynard [2018]). Although additional theoretical work 

144 is required to explore the causes of this sensitivity, it can be assumed that the complex gait 

145 dynamic is reflected by wider boundaries in the attractor, which allows further long-term 

146 divergence. In contrast, statistical anti-persistence signals a less complex gait dynamic, a more 

147 restricted attractor, and therefore a lower long-term divergence rate. The fact that no divergence 

148 is observed if stride intervals are kept constant further supports this hypothesis.

149 The objective of the present study was to confirm that ACI can be used to assess gait 

150 complexity from continuous signals without preliminary discretization. In my 2018 study 

151 (Terrier & Reynard, 2018), I hybridized acceleration signals with artificial signals to explore this 

152 assumption. Here, in order to apply ACI to real signals, I computed both ACI and scaling 

153 exponents (³s) from a center-of-pressure trajectory recorded in a treadmill experiment that 

154 submitted participants to either visual or auditory cueing. I then explored the responsiveness of 

155 ACI to the cueing conditions, as well as correlations between ACI and ³s. The ability of ACI and 

156 ³s to predict cueing conditions was also assessed. The study also had two secondary objectives: 

157 to test the appropriateness of different intervals for computing ACI, and to evaluate short-term 

158 LDS9s sensitivity to cueing. 

159

160 Materials & Methods

161 Data 

162 Data from a previous study were re-analyzed (Terrier, 2016). In summary, 36 individuals walked 

163 for 30 min on an instrumented treadmill at their preferred speed. They were exposed to three 

164 different conditions of 10 min duration each: 1) normal walking with no cueing (NC); 2) walking 

165 while synchronizing their gait cadence to an isochronous metronome (auditory cueing, AC); and 

166 3) walking while targeting visually projected shapes with their feet (visual cueing, VC). 

167 Ethics statement 

168 The present study is a re-analysis of an anonymized database and is not considered as a human 

169 research needing authorization from an ethic committee. Consent was obtained for 

170 anonymization and reuse. Please refer to the ethic statement in the original publication for further 

171 information (Terrier, 2016). 

172 Data availability 

173 Individual data are available in a supplementary file.

174 Data processing

175 For each condition, 1,000 steps (500 gait cycles) were recorded. The force platform embedded 

176 into the treadmill recorded the position (Cartesian coordinates, anteroposterior [AP] and 

177 mediolateral [ML] axes) of the center of pressure at a sampling rate of 500Hz. Based on the 

178 detection of heel strikes in the anteroposterior (AP) signal, time series of stride time (ST), stride 

179 length (SL) and stride speed (SS) were computed (Roerdink et al., 2008). Next, the noise 
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180 structure of stride-to-stride fluctuations were assessed with DFA (for in-depth descriptions of the 

181 DFA algorithm, see Terrier, Turner & Schutz [2005] and Terrier & Dériaz [2012, 2013]; DFA 

182 results4the scaling exponents ³4are shown in Terrier [2016]).

183 The 500Hz signal from the AP and ML signals were then low-pass filtered (18Hz 12th order 

184 Butterworth) and down-sampled to 100Hz. After the selection of 300 strides (from the 100th to 

185 the 400th strides), truncated signals were resampled at a constant number of 30,000 samples, i.e., 

186 100 points per stride.

187 Computations of nonlinear indexes of gait stability (LDS) and complexity (ACI) were 

188 implemented via the same methods as in previous studies that used Rosenstein9s algorithm 

189 (Terrier & Dériaz, 2013; Terrier & Reynard, 2015). High dimensional attractors were built 

190 according to the delay-embedding theorem. The average mutual information of each signal was 

191 used to assess the time delay. A common dimension of five was determined with a global false 

192 nearest neighbor analysis. Average divergence of the attractor was defined as avg(ln[dj(i)]), that 

193 is, the logarithm of the ith Euclidian distance d downstream of the jth pair of nearest neighbors in 

194 the attractor, averaged over all pairs. Time was normalized by ST. Resulting divergence curves 

195 are shown in Fig. 1. The exponential divergence rate, calculated as avg(ln[dj(i)]) / stride, was 

196 evaluated with linear fits across several spans as follows: 030.5 stride (LDS), 134 strides (ACI 1-

197 4), 437 strides (ACI 4-7), and 7310 strides (ACI 7-10). 

198 Statistics

199 Notched boxplots were used to depict the distribution of the individual results (Figs. 2 and 3). 

200 Descriptive statistics (means and standard deviations [SD]) were computed for the ACIs (Table 

201 1). LDS statistics can be found in the supplementary file. Fig. 4 shows the effect sizes (Hedges9 

202 g) of the differences between conditions (i.e., AC minus NC, and VC minus NC), as well as 

203 Bonferroni corrected 95 % confidence intervals. 

204 The correlations among the variables are illustrated in Fig. 5 through scatter plots and linear 

205 fits. Pearson9s correlation coefficients (r) and associated p-values (null hypothesis for a null 

206 correlation coefficient) were also assessed.

207 Least absolute shrinkage and selection operator LASSO (Tibshirani, 1996) and logistic 

208 regressions were used to assess the extents to which DFA, LDS and ACI could differentiate 

209 between the cueing (AC and VC) and NC conditions. The LASSO algorithm had the advantage 

210 of regularizing the fit for lower overfitting and of selecting the most important predictors. The 

211 dependent binary variable was coded as NC = 1 (36 observations), and AC and VC = 0 (72 

212 observations). Three models were fitted as follows: Model 1: the independent variables were 

213 LDS-AP and LDS-ML (2 predictors); Model 2: the independent variables were ACI 1-4, ACI 4-

214 7, and ACI 7-10 for both the ML and AP directions (6 predictors); and Model 3: the independent 

215 variables were ³-ST, ³-SL, and ³-SS (3 predictors). All ³ values were taken from Terrier (2016). 

216 The LASSO regularization factor was set via 10x cross-validation. Receiver operating 

217 characteristic (ROC) curves were used to illustrate the models9 diagnostic abilities. Areas under 

218 the curves (AUCs), along with bootstrapped confidence intervals, were computed as well (Fig. 

219 6). Sensitivity and specificity at p = 0.5 were also evaluated. Fig. 7 presents the standardized 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27711v1 | CC BY 4.0 Open Access | rec: 7 May 2019, publ: 7 May 2019



220 coefficients for the three logistic models, which indicate the relative importance of each 

221 predictor. 

222

223 Results 

224 Divergence curves (Fig. 1) revealed a clear difference between cueing and NC conditions, 

225 especially for the AP signal. In the NC condition (black curve), divergence increased steadily, 

226 with moderate dampening. In contrast, for both AC and VC, dampening occurred more rapidely 

227 after four strides. 

228 LDS and ACI are defined as slopes of the divergence curves measured at different intervals. 

229 Given the dampening, it was expected that ACI measured further from the initial separation 

230 would exhibit lower values. This was confirmed, as shown in the Fig. 3 boxplots: ACI 1-4 was 

231 higher and more variable than either ACI 4-7 or ACI 7-10.  Furthermore, the LDS, which was 

232 computed during the first step, was larger (Fig. 2). 

233 As shown by the effect size plots in Fig. 4, ACIs decreased strongly when individuals 

234 followed auditory or visual cues. The effect was most pronounced for the AP signal, for which 

235 both AC and VC had comparable effects. In contrast, a relevant difference existed between NC 

236 and VC for the ML signal.

237 Fig. 5 shows the correlations among the LDS, ACI, and scaling exponents. Of particular note 

238 is the high correlation found between ACI 4-7 measured by the ML direction and the scaling 

239 exponents (r = 0.78 with ³-ST, and r = 0.72 with ³-SL). Other ACI spans exhibited weaker 

240 correlations. ML-LDS was not correlated with other variables, while AP-LDS was weakly 

241 correlated with scaling exponents (r = 0.37 with ³-ST, and r = 0.29 with ³-SL).
242 Using the ACIs and scaling exponents, multivariable logistic models differentiated very well 

243 between the cueing and NC conditions. The AUCs were close to 1 (³ AUC = 0.996, ACI 

244 AUC=0.980; Fig. 6).  ACI model9s sensitivity was 92% and specificity was 86%. LDS was a 

245 rather poorer predictor (AUC = 0.82, sensitivity = 93%, specificity = 50%).

246 As shown in Fig. 7, The LASSO algorithm selected the most significant predictors, and no 

247 important ones were set to 0. The strongest predictors were ³-ST and ACIs measured in the AP 

248 direction over long-term spans (4-10). 

249

250 Discussion

251 The aim of this study was to further explore whether ACI could be used to assess gait complexity 

252 from continuous signals. The results strongly support the hypothesis that both DFA and ACI 

253 measure the same thing: their values were strongly correlated, they both differed strongly 

254 between the cueing and NC conditions, and they both predicted cueing conditions with high 

255 degrees of sensitivity and specificity. The results also show that ACI should be measured in the 

256 AP direction and between four to seven strides downstream from the initial separation. In 

257 addition, LDS measured in the ML direction seemed insensitive to cueing, further supporting its 

258 use as a pure gait stability index.
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259 A previous study assessed the effect of AC on stride-to-stride fluctuations in a treadmill 

260 experiment among 20 young adults (Terrier & Dériaz, 2012). Scaling exponents of SL and ST 

261 were strongly anti-persistent (³ < 0.5) under the AC condition. Based on the same data, another 

262 study investigated the effects of AC on LDS and ACI (Terrier & Dériaz, 2013). ACI (still 

263 referred to as ü-L at that time) was computed over a timescale between the 4th and 10th strides. 

264 The standardized effect size of the difference between the NC and AC conditions was -3.3 for 

265 both the AP and ML signals. In addition, a substantial correlation between the scaling exponents 

266 and ACI was found (canonical correlation: r = 0.83). Another research group also found similar 

267 results in a study that combined a foot-switch and an accelerometer to evaluate overground 

268 walking (Sejdi� et al., 2012); they found that both ACIs (ü-LT) and scaling exponents were 

269 substantially lower when the walk was paced with a metronome. The results of the present study 

270 confirm ACI9s sensitivity to an AC (effect size < -2; Fig. 4). Overall, ACI seems sensitive to 

271 changes of long-range fluctuation patterns induced by auditory sensorimotor synchronization.

272 The influence of VC on ACI had not been previously studied. The present results indicate that 

273 both VC and AC induced similar modifications to ACIs measured from the AP signal (Figs. 1 

274 and 4). Previous research has also demonstrated that VC and AC have similar effects on scaling 

275 exponents (Terrier, 2016), which are incidentally computed from the discretization of the AP 

276 signal. In contrast, the present study found that when using ML measures, VC had less of an 

277 effect than did AC (Fig. 4). It is worth noting that the VC procedure consisted of participants 

278 aiming their feet toward rectangular visual targets (stepping stones). As a result, the task required 

279 voluntary leg control in both the AP and ML directions. Further analyses are needed to 

280 specifically explore gait lateral control under such circumstances, for instance by analyzing time 

281 series of step widths, which would be computed from the discretization of the ML signal (see 

282 Terrier, 2012). 

283 LDS and ACI are rates of divergence (i.e., slopes) computed from an average logarithmic 

284 divergence curve (Fig. 1). Contrary to a real chaotic attractor, gait divergence curves do not 

285 exhibit a linear region, from which the slope should be computed according to the Rosenstein 

286 algorithm (Rosenstein, Collins & De Luca, 1993; Terrier & Dériaz, 2013). In fact, as illustrated 

287 in Fig. 1, the divergence rate diminishes continuously along the curve. The determination of 

288 range for computing ACI is therefore not straightforward. In their seminal researches, Dingwell 

289 et al. computed the slope between the 4th and 10th strides, but without a clear justification for this 

290 range (Dingwell et al., 2000; Dingwell & Cusumano, 2000). Subsequent studies followed 

291 identical spans. However, based on an examination of the divergence curves, it may be 

292 unnecessary to go that far from initial separation to estimate a meaningful long-term divergence, 

293 especially since this also increases computational cost.  For instance, it was recently shown that 

294 an ACI (LDS-L) computed between the 2nd and 6th strides could discriminate between healthy 

295 individuals and patients suffering chronic pain of lower limbs (Terrier et al., 2017). In addition, 

296 the recent modeling study that introduced ACI observed that the ACI measured between the 2nd  

297 and 4th strides was more responsive to the stride-to-stride noise structure than the ACI measured 

298 between the 4th and the 10th strides, i.e., the originally proposed range (Terrier & Reynard, 2018). 
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299 Here, the results show that ACI 4-7 was superior to the other ranges: it exhibited the highest 

300 correlation with the scaling exponents of ST and SL (r = 0.78 and 0.72; Fig. 5), it had the highest 

301 contrast with the NC condition (Fig. 4), and it was selected by the logistic model as the second 

302 highest predictor of cueing conditions (standardized coefficient = 0.89; Fig. 7). In short, it is very 

303 likely that it is not necessary to measure divergence after the 7th stride to assess ACI.

304 The results also indicate that LDS did not respond similarly in the ML and AP directions. 

305 Indeed, ML-LDS was not correlated with complexity measures (ACI and ³) and had no 

306 predictive power (Fig. 7). In contrast, AP-LDS was moderately, but significantly, correlated with 

307 complexity measures (r = .37 and .29, Fig. 5) and was solely responsible for the LDS model9s 

308 moderate capacity to differentiate between cueing conditions (AUC = .82; Fig. 7 and 8). ML-

309 LDS has been shown to be an index of gait instability (Reynard et al., 2014) and fall risk 

310 (Bizovska et al., 2018). This may be due to the importance of lateral stability for maintaining a 

311 steady and safe gait (Bauby & Kuo, 2000; Gafner et al., 2017). The results of the present study 

312 support the use of ML-LDS for stability assessments given its independence from complexity 

313 measures. In contrast, it can be assumed that interactions exist between the long-term noise 

314 structure of a gait and its short-term stability in the AP direction; this lack of independence may 

315 obscure the significance of the AP-LDS measure. However, it is unclear whether results obtained 

316 from center-of-pressure trajectory are comparable to those obtained with other methods, such as 

317 trunk accelerometry; incidentally, a large-scale accelerometry study found that AP-LDS could 

318 predict future falls (van Schooten et al., 2015). The assumption that ML-LDS is better suited for 

319 gait stability assessments thus requires further investigations. 

320 The biggest strength of the present study is in its substantial number of strides measured in a 

321 large sample of healthy adults (36), particularly when compared to other recent studies in the 

322 field (Sejdi� et al., 2012; Bohnsack-McLagan, Cusumano & Dingwell, 2016; Roerdink et al., 

323 2019). Evaluating gait complexity requires the analysis a large number of consecutive strides 

324 (Marmelat & Meidinger, 2019). Similarly, reliability results show that many consecutive strides 

325 are required to accurately assess ACI (Reynard & Terrier, 2014). Consequently, this study9s 

326 findings most likely offer good generalizability. The study9s primary limitation is that the 

327 analyses of the center-of-pressure trajectories are restricted to treadmill experiments with few 

328 potential applications. The center-of-pressure approach has the advantage of allowing an easy 

329 discretization to compare both discrete time series and continuous signals (Roerdink et al., 2008), 

330 but further investigations are required to explore ACI potential in real-life applications using 

331 inertial sensors such as accelerometers.

332

333 Conclusions

334 This study9s findings support the hypothesis that ACI can provide information about the stride-

335 to-stride fluctuation structure of an individual9s gait based on continuous signals. Accordingly, 

336 information about gait complexity can be obtained while measuring a gait with inertial sensors, 

337 such as accelerometers (Terrier et al., 2017; Terrier & Reynard, 2018). ACI could thus assess the 

338 degree of motor control applied by walkers on their gait (the <thigh control= hypothesis; see 
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339 Dingwell & Cusumano [2010] and Roerdink et al. [2019]). A high ACI would indicate an 

340 automated gait, while a lower ACI would be a sign of greater voluntary attention dedicated to 

341 gait control. For example, it has been previously suggested that a low ACI in patients with lower 

342 limb pain is due to enhanced gait control to avoid putting too much weight on a painful leg 

343 (Terrier et al., 2017). Older studies that inappropriately used ACI as a gait stability index should 

344 be reinterpreted with the <thigh control hypothesis= taken into account.  For example, Dingwell 

345 et al. found that patients suffering from peripheral neuropathy had lower ACIs, which was 

346 interpreted as a higher gait stability obtained by lowering walking speed (Dingwell et al., 2000). 

347 An alternative explanation would be that diminished sensory feedback required more attention 

348 dedicated to gait control.

349 The use of LDS to characterize gait stability and assess fall risk has gained popularity over 

350 recent years (Mochizuki & Aliberti, 2017; Bizovska et al., 2018; Mehdizadeh, 2018). Computing 

351 ACI in addition to LDS is straightforward and using the measures together could be fruitful, as 

352 information about gait automaticity and cautiousness would complement information about gait 

353 stability. It is hoped that the results of this study will help convince future researchers to reinstate 

354 the use of ACI to further enrich their gait analysis studies.

355

356 Acknowledgments

357 None

358

359 References

360 Almurad ZMH, Roume C, Blain H, Delignières D. 2018. Complexity Matching: Restoring the 
361 Complexity of Locomotion in Older People Through Arm-in-Arm Walking. Frontiers in 
362 Physiology 9. DOI: 10.3389/fphys.2018.01766.
363 Bauby CE, Kuo AD. 2000. Active control of lateral balance in human walking. Journal of 
364 Biomechanics 33:143331440.
365 Bizovska L, Svoboda Z, Janura M, Bisi MC, Vuillerme N. 2018. Local dynamic stability during 
366 gait for predicting falls in elderly people: A one-year prospective study. PloS One 
367 13:e0197091. DOI: 10.1371/journal.pone.0197091.
368 Bohnsack-McLagan NK, Cusumano JP, Dingwell JB. 2016. Adaptability of stride-to-stride 
369 control of stepping movements in human walking. Journal of Biomechanics 49:2293237. 
370 DOI: 10.1016/j.jbiomech.2015.12.010.
371 Bruijn SM, Bregman DJJ, Meijer OG, Beek PJ, van Dieën JH. 2012. Maximum Lyapunov 
372 exponents as predictors of global gait stability: a modelling approach. Medical 
373 Engineering & Physics 34:4283436. DOI: 10.1016/j.medengphy.2011.07.024.
374 Bruijn SM, Meijer OG, Beek PJ, van Dieën JH. 2013. Assessing the stability of human 
375 locomotion: a review of current measures. Journal of the Royal Society, Interface 
376 10:20120999. DOI: 10.1098/rsif.2012.0999.
377 Choi J-S, Kang D-W, Seo J-W, Tack G-R. 2017. Fractal fluctuations in spatiotemporal variables 
378 when walking on a self-paced treadmill. Journal of Biomechanics 65:1543160. DOI: 
379 10.1016/j.jbiomech.2017.10.015.
380 Delignières D, Torre K. 2009. Fractal dynamics of human gait: a reassessment of the 1996 data 
381 of Hausdorff et al. Journal of Applied Physiology (Bethesda, Md.: 1985) 106:127231279. 
382 DOI: 10.1152/japplphysiol.90757.2008.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27711v1 | CC BY 4.0 Open Access | rec: 7 May 2019, publ: 7 May 2019



383 Dingwell JB. 2006. Lyapunov Exponents. Wiley Encyclopedia of Biomedical Engineering.
384 Dingwell JB, Cusumano JP. 2000. Nonlinear time series analysis of normal and pathological 
385 human walking. Chaos (Woodbury, N.Y.) 10:8483863. DOI: 10.1063/1.1324008.
386 Dingwell JB, Cusumano JP. 2010. Re-interpreting detrended fluctuation analyses of stride-to-
387 stride variability in human walking. Gait & Posture 32:3483353. DOI: 
388 10.1016/j.gaitpost.2010.06.004.
389 Dingwell JB, Cusumano JP, Sternad D, Cavanagh PR. 2000. Slower speeds in patients with 
390 diabetic neuropathy lead to improved local dynamic stability of continuous overground 
391 walking. Journal of Biomechanics 33:126931277.
392 Gafner S, Bastiaenen C, Ferrari S, Gold G, Terrier P, Hilfiker R, Allet L. 2017. Hip muscle and 
393 hand-grip strength to differentiate between older fallers and non-fallers: a cross-sectional 
394 validity study. Clinical interventions in aging 13:1.
395 Goldberger AL, Amaral LAN, Hausdorff JM, Ivanov PC, Peng C-K, Stanley HE. 2002. Fractal 
396 dynamics in physiology: alterations with disease and aging. Proceedings of the National 
397 Academy of Sciences of the United States of America 99 Suppl 1:246632472. DOI: 
398 10.1073/pnas.012579499.
399 González RC, López AM, Rodriguez-Uría J, Alvarez D, Alvarez JC. 2010. Real-time gait event 
400 detection for normal subjects from lower trunk accelerations. Gait & Posture 31:3223
401 325. DOI: 10.1016/j.gaitpost.2009.11.014.
402 Hausdorff JM, Ladin Z, Wei JY. 1995. Footswitch system for measurement of the temporal 
403 parameters of gait. Journal of Biomechanics 28:3473351.
404 Hausdorff JM, Peng CK, Ladin Z, Wei JY, Goldberger AL. 1995. Is walking a random walk? 
405 Evidence for long-range correlations in stride interval of human gait. Journal of Applied 
406 Physiology (Bethesda, Md.: 1985) 78:3493358. DOI: 10.1152/jappl.1995.78.1.349.
407 Holt KG, Jeng SF, Ratcliffe R, Hamill J. 1995. Energetic Cost and Stability during Human 
408 Walking at the Preferred Stride Frequency. Journal of Motor Behavior 27:1643178. DOI: 
409 10.1080/00222895.1995.9941708.
410 Marmelat V, Meidinger RL. 2019. Fractal analysis of gait in people with Parkinson9s disease: 
411 three minutes is not enough. Gait & Posture 70:2293234. DOI: 
412 10.1016/j.gaitpost.2019.02.023.
413 Mehdizadeh S. 2018. The largest Lyapunov exponent of gait in young and elderly individuals: A 
414 systematic review. Gait & Posture 60:2413250. DOI: 10.1016/j.gaitpost.2017.12.016.
415 Mochizuki L, Aliberti S. 2017. Gait Stability and Aging. In: Barbieri FA, Vitório R eds. Locomotion 
416 and Posture in Older Adults: The Role of Aging and Movement Disorders. Cham: 
417 Springer International Publishing, 45354. DOI: 10.1007/978-3-319-48980-3_4.
418 Peng CK, Buldyrev SV, Goldberger AL, Havlin S, Mantegna RN, Simons M, Stanley HE. 1995. 
419 Statistical properties of DNA sequences. Physica A 221:1803192.
420 Pereira APS, Marinho V, Gupta D, Magalhães F, Ayres C, Teixeira S. 2019. Music Therapy and 
421 Dance as Gait Rehabilitation in Patients With Parkinson Disease: A Review of Evidence. 
422 Journal of Geriatric Psychiatry and Neurology 32:49356. DOI: 
423 10.1177/0891988718819858.
424 Reynard F, Terrier P. 2014. Local dynamic stability of treadmill walking: intrasession and week-
425 to-week repeatability. Journal of Biomechanics 47:74380. DOI: 
426 10.1016/j.jbiomech.2013.10.011.
427 Reynard F, Vuadens P, Deriaz O, Terrier P. 2014. Could local dynamic stability serve as an 
428 early predictor of falls in patients with moderate neurological gait disorders? A reliability 
429 and comparison study in healthy individuals and in patients with paresis of the lower 
430 extremities. PLoS One 9:e100550.
431 Riva F, Toebes MJP, Pijnappels M, Stagni R, van Dieën JH. 2013. Estimating fall risk with 
432 inertial sensors using gait stability measures that do not require step detection. Gait & 
433 Posture 38:1703174. DOI: 10.1016/j.gaitpost.2013.05.002.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27711v1 | CC BY 4.0 Open Access | rec: 7 May 2019, publ: 7 May 2019



434 Roerdink M, Coolen BH, Clairbois BHE, Lamoth CJC, Beek PJ. 2008. Online gait event 
435 detection using a large force platform embedded in a treadmill. Journal of Biomechanics 
436 41:262832632. DOI: 10.1016/j.jbiomech.2008.06.023.
437 Roerdink M, Daffertshofer A, Marmelat V, Beek PJ. 2015. How to Sync to the Beat of a 
438 Persistent Fractal Metronome without Falling Off the Treadmill? PloS One 10:e0134148. 
439 DOI: 10.1371/journal.pone.0134148.
440 Roerdink M, de Jonge CP, Smid LM, Daffertshofer A. 2019. Tightening Up the Control of 
441 Treadmill Walking: Effects of Maneuverability Range and Acoustic Pacing on Stride-to-
442 Stride Fluctuations. Frontiers in Physiology 10. DOI: 10.3389/fphys.2019.00257.
443 Rosenstein MT, Collins JJ, De Luca CJ. 1993. A practical method for calculating largest 
444 Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena 65:1173
445 134. DOI: 10.1016/0167-2789(93)90009-P.
446 van Schooten KS, Pijnappels M, Rispens SM, Elders PJM, Lips P, van Dieën JH. 2015. 
447 Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older 
448 adults. The Journals of Gerontology. Series A, Biological Sciences and Medical 
449 Sciences 70:6083615. DOI: 10.1093/gerona/glu225.
450 Sejdi� E, Fu Y, Pak A, Fairley JA, Chau T. 2012. The effects of rhythmic sensory cues on the 
451 temporal dynamics of human gait. PloS One 7:e43104. DOI: 
452 10.1371/journal.pone.0043104.
453 Su JL-S, Dingwell JB. 2007. Dynamic stability of passive dynamic walking on an irregular 
454 surface. Journal of Biomechanical Engineering 129:8023810. DOI: 10.1115/1.2800760.
455 Takens F. 1981. Detecting strange attractors in turbulence. In: Rand D, Young L-S eds. 
456 Dynamical Systems and Turbulence, Warwick 1980. Lecture Notes in Mathematics. 
457 Springer Berlin Heidelberg, 3663381.
458 Terrier P. 2012. Step-to-step variability in treadmill walking: influence of rhythmic auditory 
459 cueing. PloS One 7:e47171. DOI: 10.1371/journal.pone.0047171.
460 Terrier P. 2016. Fractal Fluctuations in Human Walking: Comparison Between Auditory and 
461 Visually Guided Stepping. Annals of Biomedical Engineering 44:278532793. DOI: 
462 10.1007/s10439-016-1573-y.
463 Terrier P, Carré JL, Connaissa M, Léger B, Luthi F. 2017. Monitoring of Gait Quality in Patients 
464 With Chronic Pain of Lower Limbs. IEEE Transactions on Neural Systems and 
465 Rehabilitation Engineering 25:184331852. DOI: 10.1109/TNSRE.2017.2688485.
466 Terrier P, Dériaz O. 2011. Kinematic variability, fractal dynamics and local dynamic stability of 
467 treadmill walking. Journal of NeuroEngineering and Rehabilitation 8:12.
468 Terrier P, Dériaz O. 2012. Persistent and anti-persistent pattern in stride-to-stride variability of 
469 treadmill walking: influence of rhythmic auditory cueing. Human movement science 
470 31:158531597.
471 Terrier P, Dériaz O. 2013. Non-linear dynamics of human locomotion: effects of rhythmic 
472 auditory cueing on local dynamic stability. Frontiers in physiology 4:230.
473 Terrier P, Reynard F. 2015. Effect of age on the variability and stability of gait: a cross-sectional 
474 treadmill study in healthy individuals between 20 and 69 years of age. Gait & posture 
475 41:1703174.
476 Terrier P, Reynard F. 2018. Maximum Lyapunov exponent revisited: Long-term attractor 
477 divergence of gait dynamics is highly sensitive to the noise structure of stride intervals. 
478 Gait & Posture 66:2363241. DOI: 10.1016/j.gaitpost.2018.08.010.
479 Terrier P, Schutz Y. 2005. How useful is satellite positioning system (GPS) to track gait 
480 parameters? A review. Journal of neuroengineering and rehabilitation 2:28.
481 Terrier P, Turner V, Schutz Y. 2005. GPS analysis of human locomotion: further evidence for 
482 long-range correlations in stride-to-stride fluctuations of gait parameters. Human 
483 movement science 24:973115.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27711v1 | CC BY 4.0 Open Access | rec: 7 May 2019, publ: 7 May 2019



484 Tibshirani R. 1996. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal 
485 Statistical Society: Series B (Methodological) 58:2673288. DOI: 10.1111/j.2517-
486 6161.1996.tb02080.x.
487 West BJ. 2013. Fractal physiology and chaos in medicine. New Jersey: World Scientific.
488 Yoo GE, Kim SJ. 2016. Rhythmic Auditory Cueing in Motor Rehabilitation for Stroke Patients: 
489 Systematic Review and Meta-Analysis. Journal of Music Therapy 53:1493177. DOI: 
490 10.1093/jmt/thw003.

491

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27711v1 | CC BY 4.0 Open Access | rec: 7 May 2019, publ: 7 May 2019



Table 1(on next page)

Table 1: Descriptive statistics of the attractor complexity index (ACI)

Means and standard deviations (SD) of ACI measured in the 36 subjects under the three
experimental conditions. AP: anteroposterior. ML: mediolateral.
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1 Table 1: Descriptive statistics of attractor complexity index (ACI) 

2

N=36 ACI 1-4 ACI 4-7 ACI 7-10

ACI x 1000 AP ML AP ML AP ML

 mean SD mean SD mean SD mean SD mean SD mean SD

No cueing 2.00 (0.31) 1.25 (0.33) 0.78 (0.12) 0.48 (0.17) 0.44 (0.13) 0.34 (0.12)

Auditory cueing 1.55 (0.36) 0.89 (0.21) 0.42 (0.17) 0.17 (0.12) 0.18 (0.16) 0.07 (0.11)

Visual cueing 1.29 (0.43) 1.01 (0.33) 0.34 (0.23) 0.31 (0.20) 0.14 (0.14) 0.15 (0.15)

3

4 Means and standard deviations (SD) of ACI measured in the 36 subjects under the three 

5 experimental conditions. AP: anteroposterior. ML: mediolateral.

6

7

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27711v1 | CC BY 4.0 Open Access | rec: 7 May 2019, publ: 7 May 2019



Figure 1
Figure 1: Divergence curves

Using time-delay embedding, 5-dimensional attractors were reconstructed from the
anteroposterior and mediolateral coordinates of a center-of-pressure trajectory. The
logarithmic divergence from neighbor trajectories (y-axis) was averaged across trajectories
and participants (N=36), and drawn against normalized time (strides, x-axis). Three curves
are shown, one for each experimental condition.
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Figure 2
Figure 2: Descriptive statistics of the local dynamic stability (LDS)

The notched boxplots summarize the distribution of individual results (N = 36) across the
three experimental conditions. The notch extremes correspond to the 95% conûdence
intervals of the medians. The red + symbols indicate outliers.
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Figure 3
Figure 3: Descriptive statistics of the attractor complexity index (ACI)

The notched boxplots summarize the distribution of individual results (N = 36) across the
three experimental conditions for the three diûerent ACI spans. The notch extremes
correspond to the 95% conûdence intervals of the medians. The red + symbols indicate
outliers.
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Figure 4
Figure 4: Eûect sizes of attractor complexity index (ACI)

Standardized eûect size (Hedges9 g) of the diûerence between cueing and no-cueing
conditions. Vertical lines are 95% conûdence intervals (Bonferroni corrected). AC: auditory
cueing; VC: visual cueing; NC: no-cueing.
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Figure 5
Figure 5: Correlations and scatter plots across local dynamic stability (LDS), attractor
complexity index (ACI), and scaling exponent (alpha) measures

Pearson9s correlation coeûcients (r) are shown on the lower left, along with the results for
the hypothesis test for r = 0. Bold values indicate signiûcant results. In the upper right,
scatter plots with the linear ûts are shown. AP: anteroposterior; ML: mediolateral; ST: stride
time; SL: stride length; SS: stride speed.
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Figure 6
Figure 6: Receiver operating characteristic (ROC) curves

ROC curves for the three multivariable logistic models predicting cueing/no-cueing
conditions: 1) local dynamic stability (LDS); 2) attractor complexity index (ACI); and 3)
scaling exponent (alpha). Areas under the curves (AUCs) are written with their conûdence
intervals.
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Figure 7
Figure 7: Standardized coeûcients of the multivariable logistic models

Three multivariable logistic models were ûtted: 1) local dynamic stability (LDS); 2) attractor
complexity index (ACI); and 3) scaling exponent (Alpha). A least absolute shrinkage and
selection operator (LASSO) was used to regularize ûtting. Bars show the value of the
standardized beta coeûcient of the regressions for each predictor. AP: anteroposterior; ML:
mediolateral; ST: stride time; SL: stride length; SS: stride speed.
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