
An architecture for context-aware reactive systems based on
run-time semantic models
Ester Giallonardo 1 , Francesco Poggi Corresp., 2 , Davide Rossi 2 , Eugenio Zimeo 1

1 Department of Engineering, University of Sannio, Benevento, Italy
2 Computer Science and Engineering (DISI), University of Bologna, Bologna, Italy

Corresponding Author: Francesco Poggi
Email address: fpoggi@cs.unibo.it

In recent years, new classes of highly dynamic, complex systems are gaining momentum. These systems
are characterized by the need to express behaviors driven by external and/or internal changes, i.e. they
are reactive and context-aware. These classes include, but are not limited to IoT, smart cities, cyber-
physical systems and sensor networks.

An important design feature of these systems should be the ability of adapting their behavior to
environment changes. This requires handling a runtime representation of the context enriched with
variation points that relate different behaviors to possible changes of the representation.

In this paper, we present a reference architecture for reactive, context-aware systems able to handle
contextual knowledge (that defines what the system perceives) by means of virtual sensors and able to
react to environment changes by means of virtual actuators, both represented in a declarative manner
through semantic web technologies. To improve the ability to react with a proper behavior to context
changes (e.g. faults) that may influence the ability of the system to observe the environment, we allow
the definition of logical sensors and actuators through an extension of the SSN ontology (a W3C
standard). In our reference architecture a knowledge base of sensors and actuators (hosted by an RDF
triple store) is bound to real world by grounding semantic elements to physical devices via REST APIs.

The proposed architecture along with the defined ontology try to address the main problems of
dynamically reconfigurable systems by exploiting a declarative, queryable approach to enable runtime
reconfiguration with the help of (a) semantics to support discovery in heterogeneous environment, (b)
composition logic to define alternative behaviors for variation points, (c) bi-causal connection life-cycle to
avoid dangling links with the external environment. The proposal is validated in a case study aimed at
designing an edge node for smart buildings dedicated to cultural heritage preservation.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

An architecture for context-aware reactive1

systems based on run-time semantic2

models3

Ester Giallonardo1, Francesco Poggi2, Davide Rossi2, and Eugenio4

Zimeo1
5

1Department of Engineering, University of Sannio, Italy6

2Department of Computer Science and Engineering (DISI), University of Bologna, Italy7

Corresponding author:8

Francesco Poggi19

Email address: francesco.poggi5@unibo.it10

ABSTRACT11

In recent years, new classes of highly dynamic, complex systems are gaining momentum. These systems

are characterized by the need to express behaviors driven by external and/or internal changes, i.e.

they are reactive and context-aware. These classes include, but are not limited to IoT, smart cities,

cyber-physical systems and sensor networks.

12

13

14

15

An important design feature of these systems should be the ability of adapting their behavior to environ-

ment changes. This requires handling a runtime representation of the context enriched with variation

points that relate different behaviors to possible changes of the representation.

16

17

18

In this paper, we present a reference architecture for reactive, context-aware systems able to handle

contextual knowledge (that defines what the system perceives) by means of virtual sensors and able to

react to environment changes by means of virtual actuators, both represented in a declarative manner

through semantic web technologies. To improve the ability to react with a proper behavior to context

changes (e.g. faults) that may influence the ability of the system to observe the environment, we allow the

definition of logical sensors and actuators through an extension of the SSN ontology (a W3C standard).

In our reference architecture a knowledge base of sensors and actuators (hosted by an RDF triple store)

is bound to real world by grounding semantic elements to physical devices via REST APIs.

19

20

21

22

23

24

25

26

The proposed architecture along with the defined ontology try to address the main problems of dynamically

reconfigurable systems by exploiting a declarative, queryable approach to enable runtime reconfiguration

with the help of (a) semantics to support discovery in heterogeneous environment, (b) composition logic

to define alternative behaviors for variation points, (c) bi-causal connection life-cycle to avoid dangling

links with the external environment. The proposal is validated in a case study aimed at designing an edge

node for smart buildings dedicated to cultural heritage preservation.

27

28

29

30

31

32

INTRODUCTION33

Reactive systems bonds actuating (what is performed by the system) and sensing (what is perceived by34

the system) with a reactive behavior that represents the logic driving the application. Examples of such35

systems can be very diverse and present a large variation in complexity. They span from simple open loop36

systems, such as a domotics one in which when a light sensor reports a reading below a given threshold a37

light switch actuator is fired, to very complex systems such as a production line support one in which38

when an AI-based analyzer feeded by a time series of observations produced by IoT activity sensors39

predicts that a machine in a line is going to need maintenance shortly, a bypass actuator is fired to activate40

a backup production line and allow to perform maintenance on the main line.41

What these systems are able to sense (or to act on) constitutes their context, and since their behavior42

depends on it we also call them context-aware. In fact, according to (Furno and Zimeo, 2014), context is43

the state (variable and corresponding values) that a system is able to access to or modify. This state is the44

set of variables that are possibly shared with other systems: they can be read or modified by users, devices45

or applications other than the one the state is referred to. While context represents the state that influences46

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

an entity, sensing is the process needed to capture the environmental information that contributes to define47

the context.48

Depending on the relationship between context and application, we are presented with a spectrum49

ranging from simple reactive systems (the application logic is immutable but is able to change the context)50

to self-adaptive ones (the application logic can change according to the context) (Cheng et al., 2009;51

De Lemos et al., 2013). All these applications share the need to reason upon context at runtime, and can52

benefit from a flexible, expressive and queryable representation of context. The structure of this model53

can be very simple (e.g. a collection of variables representing the latest observations reported by sensors)54

or very articulated (e.g. a megamodel, as the model of models proposed for self-adaptive systems in55

(Vogel and Giese, 2014)). When dealing with different representations of runtime models, we end up56

with systems whose behavioral elements are bound to these diverse encodings and strongly depend on57

them leading to unwanted brittleness that is particularly exposed when these models evolve to react to58

unplanned events of the context.59

To avoid this problem, we propose a uniform representation of contextual models based on Semantic60

Web languages. This choice not only improves interoperability but also promotes the adoption of61

declarative approaches for context-aware behaviors definition. This approach plays nicely with the62

aforementioned self-adaptation property since it allows to change the system’s behavior during the63

execution, allowing (potentially unplanned) adaptations by operating at the model level. Therefore, our64

first contribution is a base vocabulary to model the fundamental items constituting a reactive context65

aware system: sensing, actuating and reactive behavior. This vocabulary, named LSA (detailed later), is66

expressed in the form of an OWL ontology. Notice that we do not propose to use this ontology to represent67

all elements in the runtime model: different contextual domains can refer to very diverse concepts and68

specific ontologies should be used to represent them. LSA is designed to embody the basic reactive69

aspects while cooperating with other domain ontologies to fully describe contextual information.70

The second contribution is a reference architecture for context-aware reactive systems that makes use71

of a semantic knowledge base to keep a live, queryable and updatable representation of the runtime model72

in which the reactive elements are encoded using the aforementioned ontology. The model represents73

the physical world the system interacts with and is enriched and modified with the data coming from the74

sensors, assuring consistency with the physical elements it represents. The knowledge base is extended75

with the machinery needed to interact with physical sensors and actuators and activate reactive behaviors76

so that not only basic reactive mechanisms can be implemented but it is also possible to ensure that model77

is bi-causally connected (Hölzl and Gabor, 2015). When this happens modifications of the model causes78

the enactment of actuators to materialize these modifications in the physical world.79

The specific problems that we address can be solved with existing solutions, since self-adaptive and80

self-healing systems using rich runtime models already exist and the same can be said for refined systems81

support bi-causally connected models. However, our aim is to propose a reference architecture, able to82

meet the aforementioned requirements, based on standard languages and tools of the Semantic Web that83

supports declarative approaches to behavior definition, is well-focused, consistent and, possibly, elegant.84

The proposed reference architecture can be declined in different ways to better meet specific needs. For85

example a system dealing with a large number of IoT devices producing a continuous flow of readings86

needs to address problems such as the ability to efficiently operate on large streams of semantic data (e.g.87

by adopting languages and tools for semantic stream processing as in the autonomic approach proposed88

in Dautov et al. (2014)) whereas a smart domotic system could introduce elements of reasoning operating89

on historical semantic data sets.90

To explain our approach, the overall architecture and the proposed ontology, we present a detailed91

scenario related to a case study in the domain of smart buildings hosting cultural heritage. In this92

context we propose one possible instantiation of the architecture based on Jena, OWL, and SPARQL,93

for the knowledge base, and RESTful services, for the interaction with the physical world. We show94

that by the LSA ontology, a high-level external property that enables software adaptation can be easily95

handled through the definition of a related logical sensor built atop other logical sensors or simple virtual96

representations of physical sensors.97

To summarize, our proposal consists of:98

• a reference architecture for context-aware reactive systems based on a semantic knowledge base99

extended with the machinery to support bi-causal models connection defined with a declarative100

behavioral notation that exploits the queryability of the runtime model. These behavioral elements101

2/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

are included in the runtime model themselves and can be subject to modification after the initial102

deployment of the system;103

• a kernel ontology to represent the basic concepts at the roots of context-aware reactive systems:104

sensors, actuators and reactive behavior. The reference architecture makes use of this kernel105

ontology for the reactive elements of the runtime model, including the aforementioned behavioral106

aspects.107

The remainder of this paper is organized as follows. Section “Related Work” presents the related work108

from both research and standardization points of view. Section “Semantic Context Model and Logical109

Entities” introduces the SSN ontology, identifies its limitations with reference to the definition of complex110

and runnable sensors/actuators behaviors and presents the LSA ontology. Section “Reference Architecture”111

describes the reference architecture proposed with this paper for implementing infrastructures for context-112

aware applications. Section “Case Study: A Resilient Smart Building” shows the LSA ontology in action113

to implement an edge node for smart buildings hosting chultural heritage. Section “Prototype” describes114

a possible instantiation of the reference architecture. Finally, Section “Conclusions and Future Work”115

concludes the paper and highlights future work.116

RELATED WORK117

Notable examples of context-aware systems include Internet of Things (IoT), smart cities and cyber-118

physical systems that propose several scenarios characterized by a high level of dynamism and hetero-119

geneity. In these scenarios, software adaptation can be used to face dynamic changes (Abowd et al.,120

1999; Baresi and Sadeghi, 2018). Various recent research works take the idea of using models as central121

artifacts to cope with dynamic aspects of ever-changing software and its environment at runtime. For122

instance, ContQuest (Pötter and Sztajnberg, 2016) is an approach to dynamically integrate devices into123

a context-aware IoT environment, and DYNAMICO (Tamura et al., 2013) introduces an infrastructure124

for self-adaptive systems with context-awareness requirements. Szvetits et al. (Szvetits and Zdun, 2016)125

comprehensively survey these kind of approaches for adaptive context-aware systems highlighting the126

common idea of establishing semantic relationships between executed applications and runtime models127

based on monitoring events.128

Some recent works propose approaches for context-aware systems based on runtime models able129

of supporting behavior definition. Angelopoulos et al. (2015) propose a methodology based on three130

variability models: goal models (to represent system requirements), behavioral models (by modeling131

possible sequences for goal fulfillment and task execution), and system architecture models (defined in132

terms of connectors and components). The behavior of the system is represented through flow expressions133

(Shaw, 1978) describing the flow of system behaviors in terms of extended regular expressions able to134

define sequential, alternative or optional flows, and their cardinality. Behaviors are connected to system135

goals, and Behavioral Control Parameters (BCP) define multiple alternative behaviors for fulfilling a goal136

(i.e. the possible values are all the allowed sequences).137

More recently, the Tropos methodology (Bresciani et al., 2004) for requirement analysis and specifica-138

tion has been extended to develop context-aware reactive system, as discussed in Morandini et al. (2017).139

The proposed methodology, called Tropos4AS, combines goal-oriented concepts and high-variability140

design methods. Tropos4AS goal models formally defines the run-time behaviour for achieving a goal,141

but this formal definition of the behaviour has to be specified at the time of modelling. An environemental142

model makes explicit the dependencies between the agent’s goals, which determine the agent’s behaviour,143

and its environment. The reactive system uses these models to properly interpreting contextual infor-144

mation in order to decide about when to change its behaviour and which alternative behaviour to select.145

At run-time, a monitor-analyse-plan-execute loop realizes the adaptation by monitoring requirements146

satisfaction and making effective changes based on the knowledge modelled at requirements-time.147

Another notable approach is RELAX (Whittle et al., 2009), a declarative requirements language for148

self-adaptive systems which supports the explicit expression of environmental uncertainty in requirements.149

The main challenge faced by this work is the difficulty to anticipate all the explicit states in which an150

adaptive system will be during its lifetime. The distributed nature of such systems and their changing151

environmental factors require the ability to tolerate a range of environmental conditions and contexts.152

RELAX is based on fuzzy branching temporal logic and provides modal, temporal and ordinal operators153

to express uncertainty imposed by changing environmental conditions, such as sensor failures, noisy154

3/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

networks, malicious threats, unexpected (human) inputs, etc. Example operators are SHALL to define155

functionality the system must always provide (invariants) and MAY/OR to define alternatives.156

Most of the papers introduced before recognize the need for a run-time model of both system and157

context, enriched with a variability model for supporting adaptations. These two kinds of models should158

be semantically related since a change in the context model should be associated to a variability alternative159

to introduce into the current configuration of the system. According to these requirements, several efforts160

have tried to propose semantics to easily model and handle dynamic context-aware applications. The161

sensing level is considered in Frank (2001); Bettini et al. (2010) as level 0 of a possible semantic stack and162

contributes to create the context-awareness of an application or a computing system. At this level, context163

parameters are the ones directly measurable by sensors. They could regard: the physical environment,164

such as air temperature, humidity or pressure; the human body, such as blood pressure, heart frequency165

or body temperature; an entity, such as location, acceleration, direction; the execution environment of166

a computer system, such as number of available CPUs, available memory or disk space. Atop sensing,167

context models are defined by enriching the limited semantics of the measured physical parameters with168

additional knowledge that models the world (Pederson et al., 2008) or the specific situations that influence169

an application or a computing system. Therefore, context modeling requires specific languages that170

software engineers could use to improve the flexibility of software systems with the ability of adapting171

themselves to external changes.172

One of the first ontologies was SOUPA (Chen et al., 2004). It is expressed in OWL and includes173

modular component vocabularies to represent agents and related aspects. More recently, the authors in174

Perera et al. (2014) have discussed the requirements that context modelling and reasoning techniques175

should meet, including the modelling of a variety of context information types and their relationships.176

The recent diffusion of IoT also introduces the need to filter and reason about the data produced by the177

huge amount of deployed sensors and confirms the importance of context-awareness for many applications178

(Lefrançois, 2017). In this direction, the Web of Things (WoTs) is one of the major standardization effort.179

It aims at extending the concept of web service to devices, allowing a Web client to access the properties180

of local or remote devices, to request the execution of actions and to subscribe to events representing181

state changes (Kaebisch and Kamiya, 2017). The related ontology describes how to model physical or182

virtual environments, sensors and actuators, with the main objective of easing the binding among devices183

reachable through web protocols (REST, CoAP, etc.). In particular, each device can be modeled in terms184

of observable or actuable properties, interactions patterns enabling the correct communication, the type of185

messages exchanged (commands, observations, etc.). Therefore, WoT is more oriented to the interaction186

between physical and virtual environments rather than to behaviors modeling.187

A different objective is pursued by the Semantic Sensor Network (SSN) ontology (Haller et al.,188

2017), an Open Geospatial Consortium (OGC)/World Wide Web Consortium (W3C) standard. It is189

mainly focused on the SOSA (Sensor, Observation, Sample, Actuator) pattern (Janowicz et al., 2018)190

to model reactive systems. Therefore it aims at supporting the definition of simple reactive behaviors191

that link observations coming from modeled sensors with the related reactions performed by actuators.192

These behaviors are represented by RDF sub-graphs in a knowledge base and can be activated when193

observation facts are asserted. In order to link observations to physical or virtual properties, the SOSA194

pattern is extended with some system-oriented features. However, SSN does not directly support complex195

processing inside the knowledge base than asserting facts due to external sensing activities.196

The Semantic Smart Sensor Network (S3N) ontology (Sagar et al., 2018) is a research effort that197

tries to specialize SSN by introducing subclasses and restrictions in order to support the modeling of198

smart sensors. To this end a new class, s3n:SmartSensor, has been introduced as a specialization of199

ssn:System. A smart sensor is composed of embedded sensors, microcontrollers and communicating200

systems. It is reprogrammable, reconfigurable and supports different communication and computation201

profiles. The behavior is expressed by the execution of an algorithm (selected among the existing ones on202

context basis) by the microcontroller, which can be thought as a specialization of the ssn:Actuator,203

being able to change the state of the whole smart sensor. The main purpose of S3N is to support smart204

sensors modeling and not to close the logical gap between sensors and actuators with behaviors more205

complex than simple external reactions.206

Differently from the analyzed research contributions and standards, we propose a reference architecture207

for developing context-aware applications whose reactive behaviors can be defined by using an extension208

of a standard ontology (SSN), specifically designed to model device (sensors and actuators) behaviors.209

4/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

The proposal tries to address the main problems of dynamically reconfigurable systems by exploiting a210

declarative approach to enable runtime reconfiguration with the help of (a) semantics to support discovery211

in heterogeneous environment, (b) composition logic to define alternative behaviors for variation points,212

(c) bi-causal connection life cycle to avoid dangling links with the external environment.213

Our proposal is fully consistent with the Models@Run.time (Morin et al., 2009; Blair et al., 2009). A214

knowledge base is used to provide a runtime representation of the system and its environment which is215

bound to real world entities by grounding (mainly via web services) semantic elements to sensors and216

actuators. The behavior of the system can be specified by using sensing or actuating procedures tied to217

logical devices provided by the semantic model. These procedures can act upon the knowledge base by218

generating new facts or by redefining the structural parts of the model thanks to the declarative approach219

adopted.220

SEMANTIC CONTEXT MODEL AND LOGICAL ENTITIES221

In this section, we focus on semantic models to represent the context of reactive applications. As222

previously discussed, sensing represents the first layer of a semantic stack to create context-awareness223

of a computing system. A more complex perception of the external environment can be obtained by224

processing and aggregating different sensors observations. We perform this processing by introducing225

logical sensors and actuators as an extension of sensors and actuators provided by the SSN ontology.226

Therefore, we first describe SSN and then we present and discuss our proposal, the LSA ontology.227

Semantic Sensor Network ontology228

The SSN ontology was specifically designed for supporting interoperability between WoT entities taking229

into account performance and composition requirements. Web developers, in fact, have their concern230

about semantic approaches that do not assure near real time data processing. For this reason, its core231

module is constituted by the lightweight SOSA ontology that defines its concepts and properties through232

schema.org annotations desiderata from Linked Data engineers. The SSN main perspective is the system233

one.234

Systems of sensors and/or actuators can be deployed on platforms for particular purposes. Actuators235

determine changes of the state of the world through the execution of procedures triggered by observations236

of properties. SSN does not fix restrictions on the way to implement procedures, allowing to describe237

any information that is provided to a procedure for its use (ssn:Input), and any information that is238

reported from a procedure (ssn:Output). Finally, sensors detect stimuli that originated observations,239

i.e. events that assign results to observable properties. Stimuli can be proxies for observations of properties240

related to features of interest. For example, infrared sensors respond to thermal stimuli detected from the241

environment. The thermal stimulus is a proxy for a live presence in the sensor zone, which represents the242

observable property of interest. In turn, this property could refer to a feature of interest.243

The SSN ontology is very flexible. It identifies the main concepts that characterize systems. There244

is no distinction among specific instances of concepts and general instances representing classes of245

similar concepts. Consequently, it does not include a taxonomy of types for the identified concepts246

(i.e. Sensor, Actuator, Observation). For example, streams of observations can be stored defining247

ssn:Observation subtypes. Simple Knowledge Organization System (SKOS) (Miles and Bechhofer,248

2009) vocabularies can be mapped to the entities, allowing for re-use of available domain ontologies.249

SKOS, in fact, allows providing documentation notes to RDF/RDFS concepts or relationships, or to OWL250

Classes.251

Logical Sensors and Actuators ontology252

The LSA ontology introduces two main concepts: (software) logical sensors and logical actuators. A253

(software) logical sensor (resp. actuator) is a sensor (resp. actuator) that generates observations (resp.254

actuations) as result of software procedures executions that use other observations as inputs. These sensors,255

and in particular the properties they refer to, are more directly related to software/physical adaptation, and256

in many cases can be derived from this requirement.257

Both logical sensors and actuators are entities that live only in the virtual space (e.g. knowledge base)258

and are connected to the external world only through SSN simple sensors and actuators. For example,259

a (physical) light sensor represented by an SSN sensor could generate an observation (light = 90LUX)260

that should trigger an actuator for switching on a lamp. However, the decision logic (e.g. switch on261

5/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Figure 1. Core classes and properties of the Logical Sensors and Actuators (LSA) ontology.

if light < 100LUX) needed for closing the gap between the observation and the actuation can not be262

specified by simply using SSN, since neither the sensing procedure of the light sensor nor the actuation263

procedure can be programmed to decide to switch on the lamp or not. Moreover, SSN procedures are264

general concepts without any support for formalizing the execution steps that produce actual changes of265

the knowledge base. On the contrary, the composition logic of software procedures that we propose helps266

programmers (and reasoners) to semantically close the gap between observations and actuations, even267

with different implementations (useful, for example, for enabling reconfiguration).268

Fig. 1 shows a Graffoo (Falco et al., 2014) diagram of the core elements of the Logical Sen-269

sors and Actuators (LSA) ontology1. Logical sensors and actuators are modeled with the classes270

lsa:LogicalSensor and lsa:LogicalActuator, which are subclasses of sosa:Sensor271

and sosa:Actuator, respectively. The behaviors associated to sensors/actuators are represented by272

the lsa:SoftwareProcedure class, and the property ssn:implementedBy is used to connect273

software procedures to sensors/actuators.274

A lsa:SoftwareProcedure is a specific kind of sosa:Procedure with an actionable be-275

haviour, described by executable code (via the lsa:hasBehavior property). A sosa:Procedure276

is defined in SSN as “a workflow, protocol, plan, algorithm, or computational method specifying how277

sensors make observations, or actuators make changes to the state of the world”.278

It is important to note that the LSA ontology does not impose constraints on how such behaviors279

should be represented. Another key point of the LSA ontology is that it allows to discern between:280

• procedures specifications: the algorithm, workflow, protocol, etc. used by a sensor (actuator)281

to perform observations (actuations), along with a declaration of inputs and outputs. E.g. the282

algorithm used by a logical sensor that measures the perceived humidity (output) by aggregating a283

temperature and a humidity (input);284

• procedures executions: the description of a specific execution of a procedure made by a sensor285

(actuator), which is carried out using a specific set of input values to produce a specific output. E.g.286

the perceived temperature X (output) of a room computed by using temperature Y and humidity Z287

as inputs.288

In our pattern (which we aim at aligning with the ontology proposed in Lefrançois (2017)), a procedure289

execution is modeled with the lsa:SoftwareProcedureExecution class, and is related via the290

lsa:usedProcedure property to a lsa:SoftwareProcedure. The software procedure specifies291

the actionable behaviour (e.g. algorithm, workflow, protocol, etc.) manifested by the execution, and292

is perfomed (via the lsa:madeBy property) by a a lsa:SoftwareProcedureExecutor - a293

software agent able to execute it.294

System states and life-cycle295

The LSA ontology has been defined with the main objective of supporting adaptations at different296

levels of a context-aware application. In particular, higher-level adaptations need higher-level contextual297

information, that we can infer from the directly sensed ones. To support adaptation, we recognize the298

1The Logical Sensor and Actuator ontology is available at https://sites.google.com/site/logicalsensorsactuators

6/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

need of handling each device according to the working state that characterizes the ability of a sensor to299

correctly sense the environment and transmit the related samples, or the ability of an actuator to correctly300

act on the environment, changing its state as programmed.301

Depending on the working state or on other applications-specific conditions, a system (sensor or302

actuator) can be detached from the physical counterpart to avoid the storage of altered observations in the303

knowledge base hosting the model. Therefore, LSA 1.1 version has been extended in order to observe the304

state of a ssn:System and to change it as a result of a meta-reaction.305

lsa:State represents a unique defined condition of ssn:System, in a limited contiguous ex-306

tent in time. The lsa:hasState property allows to associate a lsa:State to a ssn:System.307

A state has exactly one time-span. The lsa:Timespan includes temporal extents qualified by a be-308

ginning, an end or a duration. The lsa:hasTimespan property describes the temporal limitation309

of the temporal entity. The lsa:beginningIsQualifiedBy, lsa:endIsQualifiedBy and310

lsa:hasDuration datatype properties qualify respectively the beginning, the end and the duration of311

a time-span.312

lsa:State is specialized in two main subclasses: lsa:WorkingState and313

lsa:BindingState. The former is related to the working condition of a system (e.g. it is314

normally working or faulty); the latter is referred to the bi-causal connection between physical sensors315

and their representation in the knowledge base. We claim that this state is important in order to correctly316

handle the life cycle of a system from the knowledge base point of view since a representation might be317

only descriptive or even active.318

While lsa:WorkingState can be specialized in lsa:NormalState and319

lsa:FaultyState, lsa:BindingState can be lsa:Inactive, lsa:Attached or320

lsa:Detached. To express this specialization, we use lsa:Type to specify a hierarchy of terms,321

since we assume that each one of these specific state conditions can be described with the same properties322

and datatypes of lsa:State. A system is: inactive if we are interested only in its passive representation323

for registration purpose, attached when it is directly or indirectly bi-causally connected with a physical324

device, detached when it is temporally unconnected with a physical device.325

According to the LSA ontology, a change of the Binding State of a System can be performed by some326

logical actuator, executing actuations as reactions of specific observations. To this end, lsa:State is a327

sosa:ActuatableProperty.328

The described system life-cycle can be considered as an enabler of reconfiguration, especially when329

this implies to leave one or more devices. In that cases it is important to avoid dangling connections330

with devices that (a) could interfere with the ones used after the reconfiguration or (b) produce incorrect331

observations (errors) due to some fault. By combining WorkingState and BindingState, we332

enable self-healing, an important non-functional requirement that ensures system resilience (Delic, 2016),333

the capability to resist to external perturbations and internal failures, to recover and enter stable state(s),334

as we show in the next sections.335

REFERENCE ARCHITECTURE336

In this section we propose a reference architecture to implement reactive context-aware systems that make337

use of a semantic runtime model hosted in a knowledge base (an RDF triplestore). The sensing-behavior-338

activation elements of the runtime model are represented using the LSA ontology. To connect these339

elements of the model to the physical world, the knowledge base is continuously enriched and updated340

with the data coming from the sensors, assuring consistency with the physical elements it represents (that341

is, ensuring causal connection). A reactive mechanism is used to trigger virtual sensors and actuators,342

making it possible to also achieve bi-causal connections.343

To exemplify these concepts just think about a simple reactive system immersed in an environment344

composed of a room containing a light bulb, a bulb actuator and a light sensor, and in which all these345

elements are represented in a virtualized form within the system. In a causally connected system the346

change of the state of the real-world light bulb (turned on/turned off) is reflected in the model element that347

represents the bulb within the system. In a bi-causally connected system, in addition to the aforementioned348

relationship, also the modification of the state of the model element is reflected as a change of state of its349

real-world counterpart. Thus if we set the state of the model element representing the light bulb to off350

while the real-world light bulb is turned on, this triggers an actuator to turn off the bulb.351

7/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Environment

Semantic Engine

Sensor Actuator

API

API

Logical
actuator

Logical
sensor

Actionable Behavior

External APIs

Obs.

External APIs

Act.Obs.

Act.

Actionable
item

Actionable
item

Actionable
items

Service
Actionable

SPARQL
Actionable

Actionable Behavior

Actionable
item

Actionable
item

Actionable
items

Service
Actionable

SPARQL
Actionable

Figure 2. Architecture outline.

To achieve this behavior logical causal connections propagate updates throughout the knowledge base,352

and a binding mechanism mapping updates to actuators activation preserves the model alignment with353

real-world situations. Since this process expresses a form of application logic some kind of computational354

support is also needed.355

In our architecture causal connections are supported by what are essentially rules in the form of356

logical sensors and actuators. We consistently represent these rules in the knowledge base itself: the357

activation part is modeled as Software Procedures (implementing the aforementioned computational358

support) associated to semantic sensors and actuators whereas the triggering logic is implemented by359

monitoring changes to the properties that are declared as inputs for these semantic sensors and actuators.360

We consistently represent these rules in the knowledge base itself. The triggering logic is implemented361

by monitoring changes to the properties that are declared as inputs for these semantic sensors and actuators.362

The action part is modeled as Software Procedures (implementing the aforementioned computational363

support) associated to semantic sensors and actuators.364

The basic component of our architecture is a semantic engine (see Fig. 2) whose elements are:365

• a triplestore (and RDF database) hosting the semantic runtime model;366

• a service API used to receive observations from external sensors (upper left side in the figure);367

• a binding mechanism turning actuations facts/statements in the model (in the form of RDF state-368

ments) into actual invocation of remote actuators; this is realized by a component that monitors the369

triplestore for new actuations facts/statements and when they appear it invokes the corresponding370

actuators service endpoint (upper right side in the figure);371

• a machinery to trigger logic sensors/actuators and execute their Actionable Behavior. This is372

realized by a component that monitors the triplestore for new observations pertaining to properties373

that are declared as inputs for Software Procedures associated to sensors/actuators. When these374

observations appear the sensor/actuator is activated and its related Software Procedure is executed375

(as defined by its Actionable Behavior), producing new facts (observations or actuations).376

In this approach both the model of the external context and that of the system (in terms of logical377

sensors/actuators and their behaviors) is represented in a semantic format (e.g. by RDF triples). This378

allows to change the overall behavior of the system by manipulating the knowledge base: at runtime new379

logical sensors can be defined, the behavior of the existing ones can be modified, existing sensors/actuators380

can be deleted. A further advantage of this architecture is that self-adaptive behaviors can easily be381

implemented by simply allowing the software procedure of a sensor/actuator to work as described in382

Poggi et al. (2016); Rossi et al. (2018).383

8/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

As stated above logical sensors and actuators have Software Procedures that are associated to their384

Actionable Behavior, that is a computation producing an observation (or actuation) that is added to the385

knowledge base. This computation usually operates on information coming from the contextual model,386

so it should be able to query the model in order to retrieve relevant data, and to insert RDF triples in the387

triplestore (representing the produced observation/actuation). A straightforward technology to realize388

these tasks is the SPARQL query language, its use is also aligned with our requirement of using standard389

Semantic Web languages and technologies when possible. Consider, for example, a logical sensor that390

produces a new apparent temperature observation whenever an update is produced by the physical sensors391

for temperature or humidity. The semantic engine will observe that temperature and humidity obervations392

(for a given place) are declared as inputs for the actionable behavior of the logical sensor. Whenever a new393

observation pertaining these properties will be inserted in the triplestore, the logical sensor will be activated394

and its actional behavior executed. In this case a simple CONSTRUCT (or INSERT) SPARQL query can395

be used: the query retrieves the latest observations related to temperature and humidity, combines them396

with a simple formula, and produces an RDF graph representing a new apparent temperature observation.397

Not always, however, the computation required is a simple linear combination of existing data, so we398

cannot assume that SPARQL can be used to implement all Actionable Behaviors. For this reason, we399

generally expect that this behavior is a combination of various computations (actions) performed by local400

or remote software components. Among these actions one or more can use SPARQL to retrieve data from401

the triplestore and to produce the RDF graph for the observation (or the activation). To get back to the402

previous example: if we have a remote service implementing a ”very sophisticated AI-based algorithm” to403

calculate the apparent temperature, we can use a SPARQL query action to retrieve the input data needed by404

the remote service from the contextual model, followed by a remote service invocation action performing405

the required computation, followed by a SPARQL query to create an RDF observation with the value406

returned by the remote service. The specific way in which this combination of actions is described is407

outside the scope of the reference architecture. Specific instantiations can choose a representation that408

better suits their needs. As previously discussed examples of existing ontologies that can be used includes409

OWL-S (the processes part) and BPMN ontologies. The figure contains general references to actionable410

items suggesting that some can invoke external services and some can interact with the knowledge base411

using SPARQL.412

CASE STUDY: A RESILIENT SMART BUILDING413

We consider a running example, extracted from a more general context of cultural heritage preservation414

(Giallonardo et al., 2017). In particular, we suppose that in a museum a new temporary exhibition is415

arranged. In a room of this exhibition a multimedia content has to be played. A solution that is often416

adopted is to play the content cyclically, through monitors or projectors; one of the possible drawbacks417

of this approach is that, in the absence of an adequate organization of groups, visitors who arrive at any418

moment in time have to wait for a subsequent delivery of the contents. The organizers of the exhibition419

express the desire for a more refined behavior in which the content starts playing when visitors enter the420

room, and is stopped when the room is empty.421

We assume that the museum rooms are equipped with both specific physical sensors able to detect422

people presence, and surrogate ones based on a logical composition of other kinds of sensors. Specifically,423

these logical sensors can be opportunistically defined by exploiting InfraRed (IR) detectors close to the424

doors (used as part of the anti-theft system). The knowledge base of our edge node is populated with both425

specific presence sensors and the logical ones. All the equivalent sensors that are able to perceive people426

presence in a specific room are tied to the same observable property.427

To explain the ontology, we first analyze how LSA allows a designer to model logical sensors and428

actuators, assuming that in a room the working presence sensor is the one based on InfraRed detectors429

(see Fig. 3).430

Multimedia playback control based on a logical presence sensor431

We initially consider the following scenario:432

1. a tourist crosses the door of the museum, and the two physical infrared sensors on the two door433

sides produce two observations about the presence of a person in their detection areas;434

9/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Room 1 Room 2

M
O

N
IT

O
R

IR2

IR1

M1

Figure 3. Museum layout.

2. a logical sensor aggregating such observations produces another observation updating the number435

of persons present in the rooms (i.e. n-1 in the room left by the tourist, m+1 in the room the tourist436

entered);437

3. if the tourist enters an empty room an actuator starts to play a multimedia flow on the room monitor;438

if the tourist is the last person that leaves a room before the end of the playback, an actuator will439

stop the multimedia flow. In both cases, the information about the new actuation is inserted in the440

triple store.441

Before describing in detail the aforementioned steps, we show how we modeled behavioral information442

about sensors and actuators in the context of this case study.443

Fig. 4 depicts the actionable behavior (gmus:doorRoomEntrance/behavior/1/actionable,444

gmus:doorRoomEntrance/behavior/2/actionable) that has been defined445

for gmus:DoorRoomEntrance, the software procedure that logical infrared sensors446

(gmus:infraredPresenceSensor) implement.447

The gmus:doorRoomEntrace/behavior is composed of executable actions (i.e. individuals of448

the lsa:Actionable class) and of an objectively recognizable control structure based on a lsa:List449

(to define a sequence of actions), using the lsa:hasControlSpecification property.450

In the example there are two actions: gmus:doorRoomEntrance/behavior/1/actionable,451

which is a SPARQL query that is defined as executable by gmus:sparqlQueryEngine, a specific452

type of lsa:QueryEngine; and gmus:doorRoomEntrance/behavior/2/actionable,453

a REST action that is defined as executable by gmus:restRequestEngine, a454

specific type of lsa:RequestEngine. Both gmus:sparqlQueryEngine and455

gmus:restRequestEngine are specific types of lsa:SoftwareProcedureExecutor,456

and implement gmus:doorRoomEntrance/behavior (as defined by the process execution pattern457

defined in the LSA ontology).458

1. Observations made by physical sensors: Fig. 5 shows the RDF statements that are added to the459

triplestore by the semantic engine when a person crosses a door. Whenever this occurs, the infrared460

sensors placed on the two sides of the door detects the presence of a person and invoke the engine REST461

API in sequence (providing their ids and the instants of time when the observations occurred as request462

parameters).463

Two observations (i.e. gmus:observation/ir1/1 and gmus:observation/ir2/1) made464

by sensors gmus:ir1 and gmus:ir2 are produced, which relate to the same feature of interest465

(i.e. gmus:door1). Each observation concerns a distinct observable property (i.e. the presence466

in the detection area of the each sensor - gmus:presence/room1/ir1/zoneDoorInside and467

gmus:presence/room2/ir2/zoneDoorOutside), and keeps track of the time in which the468

observations were performed.469

It is important to note that in these examples we make use of punning2, an OWL metamodeling470

capability that allows to treat elements of the model as classes and individual as the same time.471

Elements with this double nature are represented as light blue squares in the diagram. This has been472

used in Fig. 5, for instance, to model the concept of infrared sensor (gmus:IRSensor), which is at473

2See https://www.w3.org/TR/owl2-new-features/#F12: Punning

10/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Figure 4. Logical sensor behaviour specification.

Figure 5. Observations made by two infrared sensors.

11/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Figure 6. Observations made by the logical presence sensor. Square brackets are used to specify

property cardinality restrictions.

the same time a class (i.e. a specific subclass of sensors representing infrared sensors) and an individual474

(since it is connected with gmus:ThermalStimulus by the ssn:detects property). In the same475

way, gmus:PresenceInSensorZoneProperty is a type of observable property (i.e. subclass476

of sosa:ObservableProperty) and an individual (connected to gmus:ThermalStimulus by477

the ssn:isProxyFor property). This approach is also useful to model logical sensors behaviors, as478

described in the rest of this section.479

2. Observations made by logical sensors: Whenever a modification occurs in the480

triplestore (e.g. the insertion of a new observation), the semantic engine checks if one481

or more procedures specifying the behaviors of logical components (i.e. logical sensors482

and actuators) should be executed. To do so, the engine checks if the properties re-483

lated to the new observations (e.g. gmus:presence/room1/ir1/zoneDoorInside and484

gmus:presence/room2/ir2/zoneDoorOutside in the previous example) are specified as in-485

puts of one or more software procedures. As depicted in Fig. 6, such properties are inputs of the486

gmus:entrance/door1/room1 procedure (as specified by ssn:hasInput), which is hence ex-487

ecuted by the semantic engine. Such procedure is implemented by the logical sensor gmus:ls1, a488

specific instance of gmus:infraredPresenceSensor (the class representing logical presence sen-489

sors) hosted by the triplestore (gmus:triplestore) and observing the presence in a specific room490

(gmus:people/room1).491

A general mechanism is adopted by the semantic engine to retrieve behavioral informa-492

tion (e.g. a sequence of activities to perform) pertaining logical sensors. Since behav-493

ioral information are shared by all logical sensors of a kind, the engine identifies the re-494

lated software procedure (gmus:DoorRoomEntrance in our case) and retrieves the behavioral495

specification (gmus:doorRoomEntrance/behavior) by navigation the lsa:hasBehavior496

property. Alternatively, such behavioral specification can be inferred by a reasoner, since497

gmus:DoorRoomEntrance has been defined as a subclass of lsa:SoftwareProcedure having498

gmus:doorRoomEntrance/behavior as behavior (through an OWL membership restriction on499

the lsa:hasBehavior property).500

Such behavioral specification in this case is composed of two actions, i.e. two SPARQL CONSTRUCT501

queries checking the entrance/exit in/from the room, respectively. Each of these queries retrieves the new502

observations made by the two infrared sensors, and if they have been performed in a short time interval -503

e.g. one second - produces:504

1. a new software procedure execution (gmus:entrance/door1/room1/exe/5), connected to505

the software procedure (gmus:entrance/door1/room1/) by the lsa:usedProcedure506

property, and to the observations used as input (those made by the two infrared sensors and those507

12/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Figure 7. States produced as results of actuations during systems lifecycles.

pertaining the number of persons in the rooms connected by the door3) and the software procedure508

executor (gmus:sparqlQueryEngine) by the ssn:hasInput and lsa:madeBy property,509

respectively;510

2. two new observations as output of the procedure execution3, represented using the ssn:hasOutput511

property. For instance, the number of people in the first room has been update from zero (in512

gmus:observation/ls1/1) to one (in gmus:observation/ls1/2) since a person en-513

tered the room.514

3. Actuations made by logical actuators: the newly added statements (i.e. those about the ob-515

servations produced by the logical sensor gmus:ls1 and the relative procedure executions) trigger516

another control performed by the semantic engine to check logical sensors/actuators interested to those517

observations.518

In our example, the logical actuators controlling the video playback on the monitor in the room519

is activated, and the related software procedures is retrieved and executed. In this case the behavioral520

specifications are composed of two actions: a REST action that invokes the physical actuator API (to start521

the video playback on the monitor since a person has entered an empty room) and SPARQL INSERT522

query adding information in the triplestore about the performed actuation.523

System reconfiguration524

Non functional requirements are particularly important for context-aware systems because they usually525

impact the overall architecture of the system, whereas functional requirements can often be met with526

behavioral extensions of existing components (something that can be addressed at real-time, for example,527

with a plugin architecture). In this section, we show how the declarative approach we have presented528

before is very useful for (a) dynamically re-configuring our context-aware system with virtual or logical529

sensors / actuators that can be not known at design time; (b) extending our system with additional logic.530

We still make use of our case study about smart buildings for cultural heritage preservation but in this531

case we assume that specific microwave occupancy sensors are deployed within the exhibition rooms and532

are used to drive the switching of the multimedia presentations. After the deployment, the administrators533

of the system realize that presence can also be obtained by combining the anti-theft infrared sensors at the534

doors of the rooms, especially in case of malfunctioning of the microwave sensor. So they decide that this535

workaround can be activated as a backup.536

Failure detection is not in the scope of this paper and, for simplicity, here we assume that presence537

sensors are battery operated and that they produce a specific observation about themselves when the battery538

is critically low before going offline. Implementing self-healing in this case is a two steps process: in the539

first step new virtual sensors are synthetized from existing physical sensors to report the presence in the540

rooms; in the second step a mechanism to replace failing sensors with available alternatives is put in place.541

As we will show this mechanism does not need to know in advance if and which replacement sensors are542

available, but can query the knowledge base to retrieve information about available alternatives.543

To avoid interference among equivalent sensors, we assume that backup sensors are initially in the544

inactive state. System reconfiguration can be performed by a specific virtual actuator that is activated545

whenever an observation about a failure of an operating sensor is reported: when this happens the actuator546

queries the knowledge base to obtain a list of available sensors able to observe the same observable547

property of the failing sensor. If all sensors in this list are not active one is chosen (on the basis of some548

kind of policy: preference-based, round-robin, random) and activated.549

Two actuations related to the activation of the new sensor and the deactivation of the failed one are then550

produced, as illustrated in Fig. 7. The figure shows that the lsa:State of the “m1” presence sensor551

3Because of space limitations in the diagram we depicted only the observations about a room (i.e. we omitted the observations

about the number of people in gmus:room2)

13/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Figure 8. Core LSA classes and properties exploited during the system reconfiguration.

gmus:m1 is “Inactive” at t=0. After the attaching/removing actuations performed by the reconfiguration552

system at t = tactuation1
, the “Attached” state of the gmus:m1 sensor terminates and a new “Detached”553

state instance comes into existence for it. A new “Attached” state is created for the gmus:m2 sensor.554

In our example, a virtual sensor combining the infrared ones is activated so it will begin producing555

observations allowing the system to be automatically kept operational also in presence of failures. The556

overall snapshot of the interested portion of knowledge base during reconfiguration is shown in Fig. 8,557

whereas the actionable code of the gmus:presence/reconfigurator/room1 reconfiguration558

meta-actuator is reported in Fig. 9. It reacts to whatever observation produced by a failure detector as the559

one reported in Fig. 10. The reconfiguration actuator accesses to the observable properties of a system to560

change the BindingState of the system.561

This example shows that within the proposed architecture the system can perform self-modifications562

in a reactive manner. Please notice that the strategy we propose here is not meant as a general solution563

to address self-healing for sensor-based systems, it is just a very specific solution aiming at showing564

the advantages of an architecture based on a queryable run-time model to perform non-trivial run-time565

modifications of relevant aspects of the system.566

PROTOTYPE567

For this case study we created a prototype instantiating the reference architecture described in Sect.568

‘Architecture’. The prototype4 is a Java application that makes use of Apache Jena triplestore and569

SPARQL engine, as depicted in Fig. 11.570

The API receiving sensors observations is a REST API written in JAX-RS; this API is state-aware,571

this means that only updates coming from sensors whose current state in the knowledge base is Attached572

are converted in their semantic counterparts.573

The reactive machinery is implemented in the form of a transaction listener attached to the triplestore574

(current Jena implementation of transactions is limited so we had to adopt a couple of workarounds not575

worth to be detailed here). This component monitors the knowledge base for observations in order to576

execute the Actionable Behavior of virtual sensors and actuators when needed.577

4https://github.com/cars-team/semanticengine

14/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Figure 9. SPARQL Actionable of the software procedure implemented by the Reconfigurator.

Figure 10. SPARQL Actionable of the software procedure implemented by a Fault Detector.

15/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Physical sensors and actuators to not dialogue directly with the semantic engine but through an578

intermediary: this is a bridge component implemented using Freedomotic5. The use of this bridge579

provides two main advantages. First: Freedomotic includes a large set of “devices plugins” able to dialog580

with several IoT devices using various (sometimes proprietary) protocols and exposes a REST API to581

interact with all these plugins. This essentially provides a REST adaptor to all sensors and actuators,582

allowing the engine to use a uniform technology for all devices. The second advantage of Freedomotic is583

that it also supports a virtual environment in which it is possible to simulate the movement of persons in a584

topographic space composed by areas and rooms, populated with simulated sensors and things (usually585

actuatable items); simulated sensors and things can be implemented within this virtual environment for586

simulation purposes.587

To describe the Actionable Behavior we adopted a simple control structure based on a sequence of588

two Actionable items of different type: SPARQL and REST actionable. SPARQL actions can retrieve data589

from the tripestore with SELECT queries and produce data with CONSTRUCT statements (whose results590

are transactionally added to the triplestore). REST actions simply specify the endpoint, the method and591

the payload for performing HTTP invocations (we assume APIs using JSON as content type). A simple592

mechanism based on a shared datamap is used to carry data from the output of one action to the input of593

the subsequent one. This map is populated with data produced by SPARQL SELECT actions and with594

JSON properties produced by the return messages of REST actions. The values in the map can be used595

by SPARQL actions in the form of pre-initialized variables and by REST actions as variable elements in596

JSON payload templates.597

To exemplify the use of the shared datamap we refer to the “advanced” apparent temperature example598

exposed in Sect. “Reference Architecture”: a logical sensor produces observations pertaining the apparent599

temperature whenever physical temperature or humidity sensors produce new observations; the algorithm600

used to calculate the apparent temperature is implemented by an external service. The Actionable Behavior601

of the logical sensor can be described as a sequence of three actions: a SPARQL SELECT action retrieving602

the latest values for humidity and temperature; a REST action invoking the external apparent temperature603

service by passing it the retrieved humidity and temperature values; a SPARQL CONSTRUCT query604

to create the RDF graph representing the new observation populated with the value returned by the605

external service. To share data using the datamap these three actions can cooperate in this way: the606

values produced by the initial SPARQL query (say humidity and temperature) are automatically607

stored in the map under their respective names. The REST action specifies a JSON request message608

template using ${humidity} and ${temperature} placeholders that are replaced with the values of609

the corresponding elements in the map before the actual invocation takes place. The REST return message610

is a JSON document with the property AppTemp set to the calculated value; this value is automatically611

stored in the map under its name. The SPARQL CONSTRUCT can create the observation referring to the612

AppTemp variable that is pre-set with the value returned by the external REST API.613

While this Actionable Behavior has limited expressive power, it turned out to be sufficient for all the614

needs related to our case study and is probably sufficient for most real world applications. When this is615

not the case, as previously discussed, more advanced notations can be adopted.616

In the prototype the binding mechanism to materialize semantic actuations into invocations of remote617

actuators endpoints has not been implemented: we assume that it is the duty of the Actionable Behavior618

of the logical actuator to define a REST action invoking the actuator (or the bridge) endpoint.619

Testing the prototype with Freedomotic620

As previously explained our prototype makes use of Freedomotic, an IoT framework that supports various621

standard and proprietary protocols to interact with a large array of sensors and actuators. The main role622

of Freedomotic is that of providing a REST bridge to several IoT protocols. But an interesting feature623

of this framework is that it also supports simulations. In Freedomotic, we created a virtual environment624

representing a museum composed by a central hall surrounded by four rooms, each of which contains a625

media player connected to a display. A Freedomotic plug-in has been developed simulating the roaming626

of a group of people across the rooms of the museum. We also developed plug-ins to simulate presence627

sensors for the rooms and infrared sensors to be placed on the inside and on the outside of each door: when628

a person enters the sensing zone, the virtual sensor invokes the engine API to produce an observation.629

These observations can trigger the cascading activation of logical sensors and logical actuators previously630

5http://freedomotic.com/

16/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Environment

Tripestore (Apache Jena)

Sensor Actuator

REST
API

Logical
actuator

Actionable Behavior

Logical
sensor

Actionable Behavior

External REST APIs

Obs. Act.

Obs.

Bridge (Freedomotic)
REST
API

Reactive machinery (transaction listeners)

REST
Action

SPARQL
Action

SPARQL
Action

REST
Action

Figure 11. Prototype architecture.

described, with the actuators behavior set to invoke a REST endpoint to turn on or off a media player.631

This is implemented by directly invoking Freedomotic’s APIs. The resulting animated simulation (see632

Fig. 12) shows the media players turning on when a person enters a room that was empty and turning off633

when the last person leaves a room.634

An interesting aspect of this implementation is that is possible to bind the virtual sensors and actuators635

with physical ones using the various Freedomotic gateways in order to turn the simulation into a running636

system acting on a real environment with minimal effort.637

CONCLUSIONS AND FUTURE WORK638

In this paper, we have presented a reference architecture for context-aware reactive systems aligned with a639

core ontology able to model logical sensors and actuators, and their behaviors. The ontology is mainly an640

extension of SSN. However, differently from SSN, we have introduced the concept of SoftwareProcedure641

to specify the actionable behavior of sensors and actuators that live only in the knowledge base (and642

consequently have not a direct link with physical devices). Moreover, we have enriched the ontology643

with the concept of State and in particular BindingState to address the double nature of device644

representation: descriptive and executable. Sensors or actuators descriptions that are not directly or645

indirectly bound to physical devices are used only for inventory purposes. Otherwise, devices are active646

and able to process events.647

We have discussed and validated the proposed ontology and the supporting architecture with the help648

of a case study in the domain of smart buildings for cultural heritage. The case study was used also for649

illustrating the potential of the proposed approach for reconfiguring the system to react to the fault of some650

physical device. The case study has motivated also a first instantiation of the architecture implemented651

using Jena, SPARQL and RESTful APIs for the interaction with the external environment, mediated by652

Freedomotic that also provides simulation support.653

The proposed core ontology and the related architecture represent the first step towards the definition654

of a more complex platform for developing context-aware applications. However, the achievement of this655

goal requires to address further aspects that we plan to tackle in the near future.656

Performance: the current implementation of the proposed architecture has not been optimized for657

performance; however, triplestores have still not reached the optimization level of more consolidated658

data storage solutions and this could limit the adoption of the approach for time-critical applications.659

Nevertheless, we think that triplestores performances will improve also to take into account the diffusion660

17/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Figure 12. Simulation with Freedomotic.

of languages and approaches to deal with large flows of RDF data, as is the case for stream reasoning661

(Della Valle et al., 2009).662

Data size: as with all storage-based architectures, care has to be taken when the amount of data663

increase. Most of the entities stored in the knowledge base are temporal data which means that mechanisms664

to clean up “old” entries can be put in place to limit the size of the “live” data. Old data can either be665

removed or moved to other storage solutions for offline processing.666

Scale and distribution: our solution as described in the paper appears centralized and based on a667

monolithic data store. While this is obviously the most straightforward way to instantiate our architecture668

we really designed it so that it can be used to create nodes of distributed hierarchical systems: single669

instances acting as edge nodes (as the one proposed in the case study of this paper) and operating on670

local runtime models can cooperate with higher level components by passing them only the (potentially671

pre-processed) information they need.672

Programming support: like other RDF-based approaches, we experimented with a high verbosity673

when implementing our prototype that can make complex and hard to follow relatively simple mechanisms.674

We are currently investigating options to ease these issues by adopting visual support tools and re-usable675

component libraries.676

Adaptation policies: It may not be simple to guarantee that the modified system meets the requirements677

it was designed for and also guarantee then it exhibits a stable behavior, avoiding a continuous cascade678

of modifications trying to correct new issues introduced by previous modifications. Guaranteeing the679

stability of feedback-loop controlled self-modifying systems is outside the scope of this work but it should680

be taken into consideration for a proper design of adaptive systems.681

ACKNOWLEDGMENTS682

This paper was supported by MIUR PRIN 2015 GAUSS Project and MIUR PON VASARI Project.683

REFERENCES684

Abowd, G. D., Dey, A. K., Brown, P. J., Davies, N., Smith, M., and Steggles, P. (1999). Towards a685

better understanding of context and context-awareness. In International symposium on handheld and686

ubiquitous computing, pages 304–307. Springer.687

Angelopoulos, K., Souza, V. E. S., and Mylopoulos, J. (2015). Capturing variability in adaptation688

spaces: A three-peaks approach. In International Conference on Conceptual Modeling, pages 384–398.689

Springer.690

Baresi, L. and Sadeghi, M. (2018). Fine-grained context-aware access control for smart devices. In 2018691

8th International Conference on Computer Science and Information Technology (CSIT), pages 55–61.692

IEEE.693

18/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Bettini, C., Brdiczka, O., Henricksen, K., Indulska, J., Nicklas, D., Ranganathan, A., and Riboni, D.694

(2010). A survey of context modelling and reasoning techniques. Pervasive and Mobile Computing,695

6(2):161–180.696

Blair, G., Bencomo, N., and France, R. B. (2009). Models@run.time. Computer, 42(10):22–27.697

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., and Mylopoulos, J. (2004). Tropos: An agent-698

oriented software development methodology. Autonomous Agents and Multi-Agent Systems, 8(3):203–699

236.700

Chen, H., Perich, F., Finin, T., and Joshi, A. (2004). Soupa: Standard ontology for ubiquitous and701

pervasive applications. In The First Annual International Conference on Mobile and Ubiquitous702

Systems: Networking and Services, 2004. MOBIQUITOUS 2004., pages 258–267. IEEE.703

Cheng, B., De Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Bencomo, N.,704

Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar, S., Finkelstein, A., Gacek, C., Geihs, K., Grassi,705

V., Karsai, G., Kienle, H., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H., Park, S., Shaw,706

M., Tichy, M., Tivoli, M., Weyns, D., and Whittle, J. (2009). Software engineering for self-adaptive707

systems: A research roadmap. Lecture Notes in Computer Science, 5525 LNCS:1–26.708

Dautov, R., Paraskakis, I., and Stannett, M. (2014). Utilising stream reasoning techniques to underpin an709

autonomous framework for cloud application platforms. Journal of Cloud Computing, 3(1):13.710

De Lemos, R., Giese, H., Müller, H. A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., Tamura, G.,711

Villegas, N. M., Vogel, T., et al. (2013). Software engineering for self-adaptive systems: A second712

research roadmap. In Software Engineering for Self-Adaptive Systems II, pages 1–32. Springer.713

Delic, K. A. (2016). On Resilience of IoT Systems: The Internet of Things (Ubiquity symposium).714

Ubiquity, 2016(February):1:1–1:7.715

Della Valle, E., Ceri, S., Van Harmelen, F., and Fensel, D. (2009). It’s a streaming world! reasoning upon716

rapidly changing information. IEEE Intelligent Systems, 24(6):83–89.717

Falco, R., Gangemi, A., Peroni, S., Shotton, D., and Vitali, F. (2014). Modelling OWL ontologies with718

Graffoo. In European Semantic Web Conference, pages 320–325. Springer.719

Frank, A. U. (2001). Tiers of ontology and consistency constraints in geographical information systems.720

International Journal of Geographical Information Science, 15(7):667–678.721

Furno, A. and Zimeo, E. (2014). Context-aware composition of semantic web services. Mobile Networks722

and Applications, 19(2):235–248.723

Giallonardo, E., Sorrentino, C., and Zimeo, E. (2017). Querying a complex web-based KB for cultural724

heritage preservation. In Knowledge Engineering and Applications (ICKEA), 2017 2nd International725

Conference on, pages 183–188. IEEE.726

Haller, A., Janowicz, K., Cox, S., Le Phuoc, D., Taylor, K., and Lefrançois, M. (2017). Semantic sensor727

network ontology. W3C Recommendation, W3C.728

Hölzl, M. and Gabor, T. (2015). Reasoning and learning for awareness and adaptation. In Software729

Engineering for Collective Autonomic Systems, pages 249–290. Springer.730

Janowicz, K., Haller, A., Cox, S. J., Le Phuoc, D., and Lefrançois, M. (2018). SOSA: A lightweight731

ontology for sensors, observations, samples, and actuators. Journal of Web Semantics.732

Kaebisch, S. and Kamiya, T. (2017). Web of things (WoT) thing description. First Public Working Draft,733

W3C.734

Lefrançois, M. (2017). Planned ETSI SAREF Extensions based on the W3C&OGC SOSA/SSN-735

compatible SEAS Ontology Paaerns. In Workshop on Semantic Interoperability and Standardization in736

the IoT, SIS-IoT, page 11p.737

Miles, A. and Bechhofer, S. (2009). SKOS simple knowledge organization system reference. W3C738

recommendation, 18:W3C.739

Morandini, M., Penserini, L., Perini, A., and Marchetto, A. (2017). Engineering requirements for adaptive740

systems. Requirements Engineering, 22(1):77–103.741

Morin, B., Barais, O., Jezequel, J., Fleurey, F., and Solberg, A. (2009). Models@ Run.time to Support742

Dynamic Adaptation. Computer, 42(10):44–51.743

Pederson, T., Ardito, C., Bottoni, P., and Costabile, M. F. (2008). A general-purpose context modeling744

architecture for adaptive mobile services. In International Conference on Conceptual Modeling, pages745

208–217. Springer.746

Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014). Context aware computing for the747

internet of things: A survey. IEEE communications surveys & tutorials, 16(1):414–454.748

19/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

Poggi, F., Rossi, D., Ciancarini, P., and Bompani, L. (2016). Semantic run-time models for self-749

adaptive systems: a case study. In Enabling Technologies: Infrastructure for Collaborative Enterprises750

(WETICE), 2016 IEEE 25th International Conference on, pages 50–55. IEEE.751

Pötter, H. B. and Sztajnberg, A. (2016). Adapting heterogeneous devices into an iot context-aware752

infrastructure. In Software Engineering for Adaptive and Self-Managing Systems (SEAMS), 2016753

IEEE/ACM 11th International Symposium on, pages 64–74. IEEE.754

Rossi, D., Poggi, F., and Ciancarini, P. (2018). Dynamic high-level requirements in self-adaptive systems.755

In Proceedings of the 33rd Annual ACM Symposium on Applied Computing, pages 128–137. ACM.756

Sagar, S., Lefrançois, M., Rebaı̈, I., Khemaja, M., Garlatti, S., Feki, J., and Médini, L. (2018). Modeling757

Smart Sensors on top of SOSA/SSN and WoT TD with the Semantic Smart Sensor Network (S3N)758

modular Ontology. In 9th International Semantic Sensor Networks Workshop.759

Shaw, A. C. (1978). Software descriptions with flow expressions. IEEE Transactions on Software760

Engineering, (3):242–254.761

Szvetits, M. and Zdun, U. (2016). Systematic literature review of the objectives, techniques, kinds, and762

architectures of models at runtime. Software & Systems Modeling, 15(1):31–69.763

Tamura, G., Villegas, N. M., Muller, H. A., Duchien, L., and Seinturier, L. (2013). Improving context-764

awareness in self-adaptation using the DYNAMICO reference model. In Software Engineering for765

Adaptive and Self-Managing Systems (SEAMS), 2013 ICSE Workshop on, pages 153–162. IEEE.766

Vogel, T. and Giese, H. (2014). Model-driven engineering of self-adaptive software with EUREMA. ACM767

Transactions on Autonomous and Adaptive Systems (TAAS), 8(4):18.768

Whittle, J., Sawyer, P., Bencomo, N., Cheng, B. H., and Bruel, J.-M. (2009). Relax: Incorporating uncer-769

tainty into the specification of self-adaptive systems. In 2009 17th IEEE International Requirements770

Engineering Conference, pages 79–88. IEEE.771

20/20PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27702v1 | CC BY 4.0 Open Access | rec: 4 May 2019, publ: 4 May 2019

