## A peer-reviewed version of this preprint was published in PeerJ on 6 August 2019.

<u>View the peer-reviewed version</u> (peerj.com/articles/7309), which is the preferred citable publication unless you specifically need to cite this preprint.

Liu H, Peng Y, Lee H. 2019. miRDRN—miRNA disease regulatory network: a tool for exploring disease and tissue-specific microRNA regulatory networks. PeerJ 7:e7309 <u>https://doi.org/10.7717/peerj.7309</u>

## miRDRN - miRNA Disease Regulatory Network: A tool for exploring disease and tissue-specific microRNA regulatory networks

Hsueh-Chuan Liu<sup>1</sup>, Yi-Shian Peng<sup>1</sup>, Hoong-Chien Lee<sup>Corresp. 1</sup>

<sup>1</sup> Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan

Corresponding Author: Hoong-Chien Lee Email address: hclee12345@gmail.com

**Background.** MiRNA regulates cellular processes through acting on specific target genes. Hundreds of miRNAs and their target genes have been identified, as are many miRNAdisease associations. Cellular processes, including those related to disease, proceed through multiple interactions, are often organized into pathways among genes and gene products. Large databases on protein-protein interactions (PPIs) are available. Here, we have integrated the information mentioned above to build a web service platform, miRNA Disease Regulatory Network, or miRDRN, for users to construct disease and tissue-specific miRNA-protein regulatory networks. Methods. Data on human protein interaction, disease-associated miRNA, tumor-associated gene, miRNA targeted gene, molecular interaction and reaction network or pathway, gene ontology, gene annotation and gene product information, and gene expression were collected from publicly available databases and integrated. A complete set of regulatory sub-pathways (RSPs) having the form (M, T, T) $G_1$ ,  $G_2$ ) were built from the integrated data and stored in the database part of miRDRN, where M is a disease-associated miRNA, T is its regulatory target gene,  $G_1$  ( $G_2$ ) is a gene/protein interacting with T ( $G_1$ ). Each sequence (T,  $G_1$ ,  $G_2$ ) was assigned a p-value weighted by the participation of the three genes in molecular interactions and reaction pathways. **Results.** A web service platform, miRDRN (<u>http://mirdrn.ncu.edu.tw/mirdrn/</u>), was built to allow users to retrieve a disease and tissue-specific subset of RSPs, from which a miRNA regulatory network is constructed. miRDRN is a database that currently contains 6,973,875 p-valued sub-pathways associated with 119 diseases in 78 tissue types built from 207 diseases-associated miRNA regulating 389 genes, and a web tool that facilitates the construction and visualization of disease and tissue-specific miRNA-protein regulatory networks, for exploring single diseases, or for exploring the comorbidity of disease-pairs. As demonstrations, miRDRN was applied: to explore the single disease colorectal cancer (CRC), in which 26 novel potential CRC target genes were identified; to study the

comorbidity of the disease-pair Alzheimer's disease-Type 2 diabetes (AD-T2D), in which 18 novel potential comorbid genes were identified; and, to explore possible causes that may shed light on recent failures of late-phase trials of anti-AD, *BACE1* inhibitor drugs, in which genes downstream to *BACE1* whose suppression may affect signal transduction were identified.

## 1 miRDRN – miRNA Disease Regulatory Network: A tool for

## 2 exploring disease and tissue-specific microRNA regulatory

### 3 networks

- 4
- 5 Hsueh-Chuan Liu<sup>1</sup>, Yi-Shian Peng<sup>1</sup> and Hoong-Chien Lee.<sup>1,2</sup>
- 6
- 7 <sup>1</sup>Department of Biomedical Sciences and Engineering, National Central University, Zhongli
- 8 District, Taoyuan City, 32001, Taiwan
- 9 <sup>2</sup>Department of Physics, Chung Yuan Christian University, Zhongli District, Taoyuan City,
- 10 32023, Taiwan
- 11
- 12 Corresponding Author:
- 13 Hoong-Chien Lee
- 14 300 Zhongda Road, Zhongli District Taoyuan City, 32001, Taiwan
- 15 Email address: <u>hclee12345@gmail.com</u>
- 16
- 17

### 18 Abstract

- **Background.** MiRNA regulates cellular processes through acting on specific target genes.
- 20 Hundreds of miRNAs and their target genes have been identified, as are many miRNA-disease
- 21 associations. Cellular processes, including those related to disease, proceed through multiple
- 22 interactions, are often organized into pathways among genes and gene products. Large databases
- 23 on protein-protein interactions (PPIs) are available. Here, we have integrated the information
- 24 mentioned above to build a web service platform, miRNA Disease Regulatory Network, or
- 25 miRDRN, for users to construct disease and tissue-specific miRNA-protein regulatory networks.
- 26 Methods. Data on human protein interaction, disease-associated miRNA, tumor-associated gene,
- 27 miRNA targeted gene, molecular interaction and reaction network or pathway, gene ontology,
- 28 gene annotation and gene product information, and gene expression were collected from publicly
- 29 available databases and integrated. A complete set of regulatory sub-pathways (RSPs) having the
- 30 form  $(M, T, G_1, G_2)$  were built from the integrated data and stored in the database part of
- 31 miRDRN, where M is a disease-associated miRNA, T is its regulatory target gene,  $G_1(G_2)$  is a
- 32 gene/protein interacting with  $T(G_1)$ . Each sequence  $(T, G_1, G_2)$  was assigned a *p*-value weighted
- 33 by the participation of the three genes in molecular interactions and reaction pathways.
- 34 Results. A web service platform, miRDRN (http://mirdrn.ncu.edu.tw/mirdrn/), was built to allow
- users to retrieve a disease and tissue-specific subset of RSPs, from which a miRNA regulatory
- 36 network is constructed. miRDRN is a database that currently contains 6,973,875 *p*-valued sub-
- 37 pathways associated with 119 diseases in 78 tissue types built from 207 diseases-associated
- 38 miRNA regulating 389 genes, and a web tool that facilitates the construction and visualization of
- 39 disease and tissue-specific miRNA-protein regulatory networks, for exploring single diseases, or
- 40 for exploring the comorbidity of disease-pairs. As demonstrations, miRDRN was applied: to
- 41 explore the single disease colorectal cancer (CRC), in which 26 novel potential CRC target genes
- 42 were identified; to study the comorbidity of the disease-pair Alzheimer's disease-Type 2 diabetes
- 43 (AD-T2D), in which 18 novel potential comorbid genes were identified; and, to explore possible
- 44 causes that may shed light on recent failures of late-phase trials of anti-AD, *BACE1* inhibitor
- 45 drugs, in which genes downstream to *BACE1* whose suppression may affect signal transduction
- 46 were identified.
- 47
- 48 Keywords: Diseases, database, service tool, disease-associate miRNA, disease and tissue-
- 49 specific miRNA-protein regulatory pathway, disease target gene, comorbidity gene, colorectal
- 50 cancer, Alzheimer's disease, Type 2 diabetes, anti-AD BACE1 inhibitor drug
- 51

### 52 Introduction

- 53 Protein-protein interactions (PPIs) are critical to almost all biological process, and a good
- 54 knowledge of the network of interacting proteins is crucial to understanding cellular mechanisms
- 55 [1]. Recent advances in biotechnology, such as high-throughput yeast two-hybrid screening, have
- allowed scientists to build maps of proteome-wide PPI, or interactome. Conventionally, a PPI
- 57 map is a static network, in which each node represents a protein and an edge connecting two
- 58 proteins indicates that there is experimental evidence showing that, under certain circumstances,
- 59 the two proteins would interact. In reality, a PPI network (PPIN) should be viewed as a dynamic
- 60 entity: it is an interaction network that is intrinsically controlled by regulatory mechanisms and
- 61 changes with time and space [2], as determined by the physiological condition of the cell in
- 62 which the proteins reside. If there is a PPIN that includes all possible PPIs, then, under a specific
- 63 physiological condition only a specific sub-network of the PPIN is realized.
- 64 MicroRNAs (miRNAs) are small (~22 nucleotides) noncoding regulatory RNA molecules in
- 65 plants, animals, and some viruses. In a process known as RNA interference (RNAi), a miRNA
- 66 regulates gene expression by destabilizing and/or disrupting the translation of fully or partially
- 67 sequenced mRNA [3, 4]. In this way a miRNA regulates the formation of all PPINs to which its
- target is connected, and by extension all biological processes with which those PPINs are
- 69 involved. As well as acting as a tumor suppressor gene, a miRNA may also act as an oncogene,
- say, by targeting a tumor suppressor gene [5]. The function of a specific biological process, or its
- 71 malfunction, such as associated with a disease, typically involves a complex composed of a set
- 72 of miRNA-regulated proteins, together with their interacting protein partners. The study of such
- 73 miRNA-protein complexes should be an integral part of understanding biological processes [6]
- 74 as well as diseases.
- 75 An understanding of the molecular and physio-pathological mechanisms of diseases is crucial for
- 76 the design of disease preventive and therapeutic strategies. The combination of experimental and
- computational methods has led to the discovery of disease-related genes [7, 8]. An example is
- the causal relation connecting the malfunction causing mutations in the enzyme phenylalanine
- 79 hydroxylase to the metabolic disorder Phenylketonuria [9]. Many human diseases cannot be
- 80 attributed to single-gene malfunctions but arise from complex interactions among multiple
- 81 genetic variants [10]. How a disease is caused and how it can be treated can be better studied on
- 82 the basis of a body of knowledge including all associated genes and biological pathways
- 83 involving those genes.
- 84 Diseases are usually defined by a set of phenotypes that are associated with various pathological
- 85 processes and their mutual interactions. Some relations between phenotypes of different diseases

- 86 may be understood on the basis of common underlying molecular processes [11], such as when
- 87 there are genes associated to both diseases. It has been shown that genes associated with the
- same disorder encode proteins that have a strong tendency to interact with each other [12]. More
- 89 specifically, one may consider two diseases to be related if their metabolic reactions within a cell
- share common enzymes [13]. Networks of PPIs have also been studied in the context of disease
- 91 interactions [14, 15].
- 92 Here, we report on a web service platform, miRNA Disease Regulatory Network (miRDRN).
- 93 The platform contains two parts, a database that, in its current form, contains 6,973,875 *p*-valued
- miRNA regulatory sub-pathways associated with 119 diseases in 78 tissue types built from 207
- diseases-associated miRNA regulating 389 genes; and a novel web-based tool that, using the
- 96 miRDRN database and public protein-protein database, facilitates the construction and
- 97 visualization of miRNA regulatory networks for user specified single diseases and, for
- 98 comorbidity studies, disease-pairs. We demonstrate three applications of miRDRN: to explore
- 99 the molecular and network properties of the single disease colorectal neoplasm; to study the
- 100 comorbidity of the disease-pair, Alzheimer's disease (AD) and Type 2 diabetes; and, by using
- 101 miRDRN to construct a miRNA regulatory sub-network centered on the gene BACE1, to look for
- 102 insights that may explain why several anti-AD, *BACE1* inhibiting drugs that failed recent late-
- 103 phase trials worsened conditions of treatment groups.
- 104

### 105 Materials and Methods

### 106 Data integration

- 107 Data on human protein interaction (BioGRID [16]), disease-associated miRNA (HMDD [17]),
- 108 tumor-associated gene (TAG [18]), miRNA targeted gene (HMDD, TarBase [19]), molecular
- 109 interaction and reaction network or pathway (KEGG [20]), gene ontology, gene annotation and
- 110 gene product information (GO), and gene expression (GeneBank) were collected from publicly
- 111 available data bases (Table 1) and integrated.
- 112

### 113 Construction of miRNA regulatory sub-pathways

- 114 We define a regulatory sub-pathway (RSP) as a linked sequence  $(M, T, G_1, G_2)$  (Figure 1), where
- 115 *M* is a miRNA, *T* is its regulatory target gene [18,19,20],  $G_1$  is a gene whose encoded protein  $(p_1)$
- 116 interacts (according to PPI data) with the protein  $(p_T)$  encoded by T, and  $G_2$  is a gene whose
- encoded protein  $(p_2)$  interacts with  $p_1$ . In what follows, when there is little risk of
- 118 misunderstanding, the same symbol will be used to represent a gene or the protein it encodes.
- 119 The idea of RSP construction is this: given a miRNA and a target gene *T*, we use PPI data [17] to

120 collect all RSPs by extending from *T* two levels of interaction. For a given disease, all such sub-

121 pathways emanating from every one of the known miRNAs associated with the disease [18] were

- 122 constructed.
- 123

### 124 Jaccard score of a regulatory sub-pathway

125 The Jaccard similarity coefficient base [23] were used to score the RSPs, based on the

126 assumption that there is a tendency for two directly interacting proteins to participate in the same

set of biological processes or share the same set of molecular functions. Given two sets *S*1 and

128 *S2* (in the current application, a set will be either a list of biological processes (BP) or a list of

molecular functions (MF), both according to GO [21]), the Jaccard coefficient (JC) of S1 and S2

130 is defined as,

131 
$$JC(S1, S2) = \frac{|S1 \cap S2|}{|S1 \cup S2|}$$

132 Where  $\cap$  is the union (of two sets),  $\cup$  is the intersection, and |Z| is the cardinality of Z. JC,

133 which ranges from 0 to 1, is a quantitative measure of the similarity between two sets. For

134 example, when  $SI = \{a, b, c\}$  and  $S2 = \{b, c, d\}$ , JC(SI, S2) = 2/4 = 0.5.

135 Let  $(M, T, G_1, G_2)$  be an RSP as defined in the previous section and denote by [G] the set of

136 biological processes (or pathways) [20,21] that involve the gene G. We define the Jaccard score,

137 or *JS*, of RSP as,

138 
$$JS_{X}(T, G_{1}, G_{2}) = \frac{1}{2}(JC([T]_{X}, [G_{1}]_{X}) + JC([G_{1}]_{X}, [G_{2}]_{X}))$$

139 Where X may be BP or MF. If the pair [T] and  $[G_1]$  do not share a common term, then the

140 corresponding *JC* has a zero value; similarly for the pair  $[G_1]$  and  $[G_2]$ . In either case the RSP,

141  $(M, T, G_1, G_2)$ , whatever M is, is considered to be not viable and discarded. Note that the JS of an

142 RSP depends only on the genes in the pathway, not on the miRNA. There could be multiple

143 RSPs emanating from a miRNA associated with a disease, and these RSPs may be ranked by

144 their JS's.

145

### 146 *P*-value of a sub-pathway

147 A *p*-value for an RSP  $(M, T, G_1, G_2)$ , independent of M, was assigned as follows. Let the total

- 148 number of BP (or MF, as the case may be) terms be N, and the number of terms in [T],  $[G_1]$ ,  $[G_2]$ ,
- 149  $[T] \cap [G_1], [G_1] \cap [G_2]$  be x, y, z,  $n_1$ , and  $n_2$ , respectively, then the p-values,  $P_1$  and  $P_2$ , for  $(T, G_1)$
- 150 and  $(G_1, G_2)$  are respectively

151

$$P_{1} = \frac{C_{n_{1}}^{N}C_{x-n_{1}}^{N-n_{1}}C_{y-n_{1}}^{N-x}}{C_{x}^{N}C_{y}^{N}}$$

153

152

154 and

155

$$P_{2} = \frac{C_{n_{2}}^{N}C_{y-n_{2}}^{N-n_{2}}C_{z-n_{2}}^{N-y}}{C_{y}^{N}C_{z}^{N}}$$

- 156 The *p*-value for the RSP was set to be the greater of  $P_1$  and  $P_2$ .
- 157

### 158 Construction of disease-associated miRNA regulatory network

A disease-associated miRNA regulatory network (RRN) is constructed as follows. Step 1. Select
a disease. Step 2. Collect all miRNAs (*M*'s) associated with the disease from HMDD [17]. Step 3.

161 Collect all target genes (*T*'s) of the collected miRNAs from HMDD [17] and TarBase [19]. Step

162 4. Construct all RSPs (having the from  $(M, T, G_1, G_2)$ ) using PPI data (BioGRID) [16] and

163 compute the Jaccard coefficients (JCs) of the two PPIs in each of the RSPs. If either one of the

164 JCs has zero value discard the RSP, otherwise the Jaccard score of the RSP is taken to be the

165 mean of the two JCs. Compute the *p*-values of the RSPs. Step 5. Construct an RRN from entire

166 set of generated RSPs by linking (pairs of) genes from different RSPs whenever the proteins

167 coded by the genes have interaction according to PPI data (Figure 2).

168

169

### 170 Results and Discussion

### 171 miRNA Disease Regulatory Network (miRDRN) – A web service platform

172 We built miRDRN (http://mirdrn.ncu.edu.tw/mirdrn/), a web-based service that allows the user

173 to construct a disease and tissue-specific, *p*-valued, miRNA regulatory gene network, or miRNA

174 regulatory network (RRN). The current version of miRDRN contains 6,973,875 *p*-valued RSPs

175 constructed through 389 miRNA-regulated genes from 207 diseases-associated miRNAs

associated with 119 diseases (Table 2).

177

178 User may use miRDRN to explore a single disease, or the comorbidity of a disease-pair. In the

179 course of either type of study, all relevant miRNAs, genes, and RSPs are made accessible to the

180 user in tabulated form, and RRNs in the form of interactive maps, both of which may be

181 downloaded by the user. Often a map is too large for practical visualization, and in such a case

- 182 the user may use options such as setting a *p*-value cut-off, or requiring a specific gene to be
- 183 present in the map, or both, to obtain a partial RRN.

184 The entrance interface of miRDRN (http://mirdrn.ncu.edu.tw/mirdrn/) asks the user to select "Single Search" to explore a single disease or "Comorbidity Search" to explore the comorbidity 185 186 of a disease-pair (Figure 3). Next the user is asked to specify the disease or disease-pair to be explored and tissue/tumor types, and *p*-value threshold for RSP evaluation, as well as several 187 optional inputs. The user may then click on "Query" to start the start the search engine (Figure 4). 188 Tabulated results of diseaseassociated miRNAs and their target genes (Figure 5), a multi-page 189 list of all RSPs (Figure 6) and, in the case of Comorbidity Search, a list of all comorbid genes 190 191 (Figure 7) will then automatically appear. After the first, automatic iteration, the user may reduce the size of the RSP-list by using the "Gene filter" and "Show top ... sub-pathways" options 192 (Figure 6). The next interface (Figure 8), in ready mode on first appearance, waits for the user to 193 194 select one of three network layouts: "Tree", "Circle", or "Radial". After "Go" is clicked on, the 195 platform displays an interactive map showing the RRN built from RSPs selected by user-196 specified options (Figure 8). When the mouse is placed on a node (a miRNA or a gene) on the map a small text window opens to show the name of the node and annotations from GO, OMIM, 197

198 199

### 200 Three applications of miRDRN

KEGG and GeneBank databases.

### 201 Case 1. A single disease study of colorectal neoplasm

Here we demonstrate a single disease application of miRDRN. After logging onto
miRDRN's main interface (Figure 3), click on "Single Search" to see a new window and
select a disease and other options as desired. For the present case "colorectal neoplasms" (or
colorectal cancer, CRC), tissue type "colorectal tumor", pathway ranking by "Jaccard index
(MF)", and p-value < "0.001" were selected. Then click on "Query" to start. The query</li>
yielded 33 associated-miRNAs, 37 miRNA regulated genes, and 45,565 RSPs involving
3,079 genes (Table 3).

209

By default, the interface "miRNA regulatory sub-pathways" (Figure 6) lists all the
constructed RSPs, namely all 45,565 of them in the present case and, if requested, would
present a drawing including all the RSPs which, however, would be difficult to visualize,
not to say interact with. On the same interface are two options for displaying/using a smaller
RSP set: "Gene filter", where the user can restrict the set to only those RSPs containing a
specified gene; and "Show top ... sub-pathways", where the user can ask for only the N-top

RSPs having the smallest *p*-values be listed and used for network construction. The
interface "Disease specific miRNA regulatory network" then allows the user to choose one
among the layouts "Tree", "Circle", and "Radial". Here a tree-map, with several
disconnected parts, built from the top-70 RSPs is shown (Figure 9).

221 In computer mode, when the mouse is placed on a node in the network, a small text window opens showing the name of the node/gene and its weight, or the number of other nodes it is 222 223 connected to in the 45,565-node network. Its largest connected 224 sub-RRN, or "Network-1" (Figure 10), is composed of six miRNAs targeting four genes connected to 52 other genes, (Table 4). Of the 56 genes in Network-1, 22 have known CRC 225 226 connections (CORECG database, http://lms.snu.edu.in/corecg) [24], and 26 other have 227 references linking them either directly or indirectly to CRC [25-52] (Table 5). Among these, 228 TNIK [31] and TNK2 [51] have been used as drug targets for CRC treatment. We consider 229 the remaining eight genes - PRKACA, MAP3K12, LRRK1, RIOK2, OXSR1, CDK17, 230 EIF2AK1, TSSK4 – to be potential, novel CRC-related genes. Noticeably, Network-1 has 231 two parts, one 28 nodes (five miRNAs targeting three genes) and the other 34 nodes (one 232 miRNA targeting one gene), connected by a single link, or PPI. The three types of genes, 233 known CRC-related, reference-supported, and potential CRC-related, are more or less 234 proportionately distributed in these two parts.

235

The "Gene filter" option (Figure 6) allows the user to focus on a specific gene in RRN
construction. As example, *TNK2*, a key drug target for the treatment of metastatic CRC [51],
was selected as the filter, together with the "Show top 70 RSPs" option. The result was a
nine-node sub-RRN: the target gene *AXL* regulated by three miRNAs – hsa-mir-199b, hsamir-34a, hsa-mir-199a – and linked (by PPI) to *TNK2*, itself linked to four other genes *AXL*(OCG), *MAGI3*, *HSP90AB2P*, *MERTK*(OCG), *KAT8* (Figure 11).

242

### 243 Case 2. A Comorbidity study of AD and T2D

244 Here we demonstrate a two-disease application of miRDRN. After logging onto miRDRN's main interface (Figure 3), click on "Comorbidity Search" to see a new window urging the 245 246 user to select two diseases; for "Disease 1", "Alzheimer Disease" (AD) and tissue type "brain" were selected and for "Disease 2", "Type 2", which stands for type 2 diabetes (T2D), 247 and tissue type "pancreas". Pathway ranking by "Jaccard index (MF)", and p-value < "0.005" 248 249 for both diseases were selected. Both AD and T2D are complex diseases and share aging for 250 a risk factor; accumulated evidence indicates a connection between these two diseases at the 251 molecular level [53]. For this case the program yielded, for AD (T2D), three (one)

- associated-miRNAs, three (one) targeted genes, 644 (3908) RSPs, involving 633 (2187)
  genes (Table 6).
- 254

255 Because the two did not have any common associated-miRNA target gene, they had distinct sets of RSPs. However, with 500 genes, call "comorbid" genes, in the two sets of RSPs 256 257 being common, the two sets of RSPs had only 2320 distinct genes (Table 6). Among the 258 comorbid genes, 8 - ALOX5, APP, BIN1, CHGB, VWF, NEFL, LETMD1, CELF1- were 259 identified as known AD target genes [56, 57, 58] and 14 - TCF7L2, APOA1, VWF, CDKN2B, CAT, ITGB2, ISL1, POLD3, APP, NFKBIB, GNA12, DEDD, LDLR, PRKAB1- as 260 known T2D target genes [59], APP and VWF are known targets of both diseases (Table 7). 261 262 With the exception of three - LEMD1, POLD3, GNA12, the comorbidity of all the others have literature support (Table 7). 263

264

#### 265 Case 3. A sub-RRN centered on the AD-associated gene BACE1

In recent years a number of anti-AD drugs designed on the basis of the amyloid-beta 266 267  $(A\beta)$  hypothesis of AD, which holds that A $\beta$  aggregate in the brain is the main causative 268 factor of AD, failed late-phase trials. These include the  $\gamma$ -secretase inhibitor Semagacestat 269 [89] and two BACE1 inhibitors, Verubecestat [90] and Atabecestat [91]. In all three cases 270 treatment groups scored worse than the control group on the ADCS-ADL (Alzheimer's 271 Disease Cooperative Study Activities of Daily Living Inventory) functional measure and 272 reported more anxiety, depression, and sleep problems than controls. In a "Single Search" 273 application on AD (tissue, brain; p-value threshold, 0.005), we had miRDRN construct a partial RRN (Gene filter, BACE1; Show top 70 sub-pathways; Network layout, Radial) 274 275 centered on *BACE1*, which is a regulatory target of hsa-mir-195. The result shows the genes 276 PSEN1, NCSTN, RANBP9, PLSCR1, MMP2, and FURIN to be immediately downstream to 277 BACE1 in the RRN (Figure 12). PSEN1 and NCSTN encode proteins that are, respectively, 278 catalytic and essential subunits of the  $\gamma$ -secretase complex; suppression of these genes are 279 presumably the purpose of *BACE1* inhibition. On the other hand, *RANBP9* encodes a protein that facilitates the progression of mitosis in developing neuroepithelial cells [92]: 280 PLSCR1 encodes a protein that acts in the control of intracellular calcium homeostasis and 281 282 has a central role in signal transduction [93]; MMP2 encodes a protein that promotes neural progenitor cell migration [94]. Suppression of these genes (by BACE1 inhibition) may 283 284 therefore adversely affect signal transduction and the nerve system, and could be part of the 285 reason why Semagacestat, Verubecestat, and Atabecestat worsened the ADCS-ADL 286 functional measure of treatment groups.

#### 287

### 288 Conclusion

289 This work describes a web service platform, miRDRN, composed of a new database and a web-

- 290 based tool, for constructing miRNA regulatory networks for the user to explore the molecular
- and regulatory network properties of single diseases as well as for pairs of diseases. As
- demonstration, miRDRN was applied to study the single disease CRC, where 34 potential target
- 293 genes were identified, 26 of which have literature support; to study the comorbidity of the
- disease-pair AD-T2D, where 20 potential novel AD-T2D comorbid genes were identified, 17 of
- 295 which have literature support; and to construct a partial miRNA regulatory sub-network centered
- on the AD-associated gene *BACE1*, which in turn suggests a possible explanation why, in late-
- 297 phase trials that ended in failure, several  $\gamma/\beta$ -secretase inhibiting anti-AD drugs worsened the
- functional measure of treatment groups. We believe miRDRN is a useful tool for exploring the
- 299 molecular and network properties of single diseases and those connecting pairs of diseases, and
- 300 for discovering new insights on the molecular properties, including potential side effects, of
- 301 disease treating drugs.
- 302

### 303 Abbreviations

- 304 AD: Alzheimer's Disease
- 305 CRG: Cancer related gene
- **306 GO**: Gene Ontology
- 307 KEGG: The Kyoto Encyclopedia of Genes and Genomes
- 308 miRDRN: The miRNA Disease Regulatory network web service platform
- 309 OCG: Oncogene
- 310 **PPI**: protein-protein interaction
- 311 **PPIN**: PPI network
- 312 **RSP**: Regulatory sub-network
- 313 **RRN**: Disease-associated miRNA regulatory network
- 314 T2D: Type 2 Diabetes
- 315 TSG: Tumor suppressor gene
- 316
- 317
- 318

### 319 **References**

- Rual JF, Venkatesan K, Hao T, Hirozane-Kishikawa T, Dricot A, Li N, Berriz G, Gibbons
   G, Dreze M, Ayivi-Guedehoussou N, et al. Towards a proteome-scale map of the human
   protein-protein interaction network. Nature. 2005; 437: 1173-1178.
- LIANG H, LI WH. MicroRNA regulation of human protein-protein interaction network.
   RNA. 2007; 13: 1402-1408.
- 325 3. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009; 136(2):
  215–233.
- Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A,
   Kamphorst AO, Landthaler M, et al. A mammalian microRNA expression atlas based on
   small RNA library sequencing. Cell. 2007; 129(7): 1401-14.
- 330 5. Zhang W, Dahlberg JE, Tam W. MicroRNAs in tumorigenesis: a primer. Am J Pathol. 2007;
  331 171(3): 728-38.
- Hsu CW, Juan HF, Huang HC. Characterization of microRNA-regulated protein-protein
  interaction network. Proteomics. 2008; 8(10): 1975-9.
- Botstein D, Risch N. Discovering genotypes underlying human phenotypes: past successes
  for mendelian disease, future approaches for complex disease. Nature Genetics. 2003; 33:
  228–237.
- 8. Kann MG. Advances in translational bioinformatics: computational approaches for the
  hunting of disease genes. Brief Bioinform. 2010; 11: 96–110.
- 339 9. Scriver CR, Waters PJ. Monogenic traits are not simple: lessons from phenylketonuria.
  340 Trends Genet. 1999; 15: 267–272.
- 341 10. Hirschhorn JN, Daly MJ. Genome-wide association studies for common diseases and
  342 complex traits. Nat Rev Genet. 2005; 6: 95–108.
- 343 11. Barabási AL, Gulbahce N, Loscalzo J. Network medicine: a network-based approach to
  human disease. Nat Rev. Genet. 201; 12(1): 56-68.
- 345 12. Goh KI, Cusick ME, Valle D, Childs B, Vidal M, Barabási AL. The human disease network.
  346 Proc Natl Acad Sci U S A. 2007; 104(21): 8685-90.
- 13. Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabási AL. The implications of
  human metabolic network topology for disease comorbidity. Proc Natl Acad Sci U S A.
  2008; 105(29): 9880-5.
- 14. Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008; 18(4): 644-52.
- 15. Lim J, Hao T, Shaw C, Patel AJ, Szabó G, Rual JF, Fisk CJ, Li N, Smolyar A, Hill DE, et al.
- A protein-protein interaction network for human inherited ataxias and disorders of Purkinje
  cell degeneration. Cell. 2006; 125(4): 801-14.

| 354 | 16. | Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J,      |
|-----|-----|---------------------------------------------------------------------------------------------|
| 355 |     | Ramage L, Kolas N, O'Donnell L, et al. The BioGRID interaction database: 2013 update.       |
| 356 |     | Nucleic Acids Res. 2013; 41(Database issue): D816-23.                                       |
| 357 | 17. | Li Y, Qiu C, Tu J, Geng B, Yang J, Jiang T, Cui Q. HMDD v2.0: a database for                |
| 358 |     | experimentally supported human microRNA and disease associations. Nucleic Acids Res.        |
| 359 |     | 2014; 42(Database issue): D1070-4.                                                          |
| 360 | 18. | Chen JS, Hung WS, Chan HH, Tsai SJ, Sun HS. In silico identification of oncogenic           |
| 361 |     | potential of fyn-related kinase in hepatocellular carcinoma. Bioinformatics. 2013; 29(4):   |
| 362 |     | 420-7.                                                                                      |
| 363 | 19. | Papadopoulos GL, Reczko M, Simossis VA, Sethupathy P, Hatzigeorgiou AG. The                 |
| 364 |     | database of experimentally supported targets: a functional update of TarBase. Nucleic Acids |
| 365 |     | Res. 2009; 37(Database issue): D155-8.                                                      |
| 366 | 20. | Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on           |
| 367 |     | genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017; 45(D1): D353-D361.          |
| 368 | 21. | Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K,      |
| 369 |     | Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC,   |
| 370 |     | Richardson JE, Ringwald M, Rubin GM, Sherlock G. Gene ontology: tool for the                |
| 371 |     | unification of biology. The Gene Ontology Consortium. Nat Genet. 2000 May;25(1):25-9.       |
| 372 | 22. | Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW.         |
| 373 |     | GenBank. Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42.                             |
| 374 | 23. | Ng KL, Liu HC, Lee SC. ncRNAppi-a tool for identifying disease-related miRNA and            |
| 375 |     | siRNA targeting pathways. Bioinformatics. 2009; 25(23): 3199-201.                           |
| 376 | 24. | Agarwal R, Kumar B, Jayadev M, Raghav D, Singh A. CoReCG: a comprehensive database          |
| 377 |     | of genes associated with colon-rectal cancer. Database (Oxford). 2016 Apr 25;2016.          |
| 378 | 25. | Kang MH, Moon SU, Sung JH, Kim JW, Lee KW, Lee HS, Lee JS, Kim JH. Antitumor                |
| 379 |     | Activity of HM781-36B, alone or in Combination with Chemotherapeutic Agents, in             |
| 380 |     | Colorectal Cancer Cells. Cancer Res Treat. 2016 Jan;48(1):355-64.                           |
| 381 | 26. | Sirvent A, Bénistant C, Pannequin J, Veracini L, Simon V, Bourgaux JF, Hollande F,          |
| 382 |     | Cruzalegui F, Roche S. Src family tyrosine kinases-driven colon cancer cell invasion is     |
| 383 |     | induced by Csk membrane delocalization. Oncogene. 2010 Mar 4;29(9):1303-15.                 |
| 384 | 27. | Jeong D, Kim H, Kim D, Ban S, Oh S, Ji S, Kang D, Lee H, Ahn TS, Kim HJ, Bae SB, Lee        |
| 385 |     | MS, Kim CJ, Kwon HY, Baek MJ. Protein kinase, membrane-associated tyrosine/threonine        |
| 386 |     | 1 is associated with the progression of colorectal cancer. Oncol Rep. 2018 Jun;39(6):2829-  |
| 387 |     | 2836.                                                                                       |
| 388 | 28. | Xie T, D' Ario G, Lamb JR, Martin E, Wang K, Tejpar S, Delorenzi M, Bosman FT, Roth         |
| 389 |     | AD, Yan P, Bougel S, Di Narzo AF, Popovici V, Budinská E, Mao M, Weinrich SL, Rejto         |

- PA, Hodgson JG. A comprehensive characterization of genome-wide copy number
  aberrations in colorectal cancer reveals novel oncogenes and patterns of alterations. PLoS
  One. 2012;7(7):e42001.
- Wu S, Wu F, Jiang Z. Identification of hub genes, key miRNAs and potential molecular
  mechanisms of colorectal cancer. Oncol Rep. 2017 Oct;38(4):2043-2050.
- 30. Xiang Z, Wang S, Xiang Y. Up-regulated microRNA499a by hepatitis B virus induced
   hepatocellular carcinogenesis via targeting MAPK6. PLoS One. 2014 Oct 23;9(10):e111410.
- 397 31. Masuda M, Yamada T. The emergence of TNIK as a therapeutic target for colorectal cancer.
  398 Expert Opin Ther Targets. 2017 Apr;21(4):353-355.
- 399 32. Ali RH, Marafie MJ, Bitar MS, Al-Dousari F, Ismael S, Bin Haider H, Al-Ali W, Jacob SP,
  400 Al-Mulla F. Gender-associated genomic differences in colorectal cancer: clinical insight
  401 from feminization of male cancer cells. Int J Mol Sci. 2014 Sep 29;15(10):17344-65.
- 402 33. Yun CW, Kim S, Lee JH, Lee SH. Melatonin Promotes Apoptosis of Colorectal Cancer
- 403 Cells via Superoxide-mediated ER Stress by Inhibiting Cellular Prion Protein Expression.
  404 Anticancer Res. 2018 Jul;38(7):3951-3960.
- 405 34. Vázquez-Cedeira M, Lazo PA. Human VRK2 (vaccinia-related kinase 2) modulates tumor
  406 cell invasion by hyperactivation of NFAT1 and expression of cyclooxygenase-2. J Biol
  407 Chem. 2012 Dec 14;287(51):42739-50.
- 35. Zhang YJ, Dai Q, Sun DF, Xiong H, Tian XQ, Gao FH, Xu MH, Chen GQ, Han ZG, Fang
  JY. mTOR signaling pathway is a target for the treatment of colorectal cancer. Send to Ann
  Surg Oncol. 2009 Sep;16(9):2617-28.
- 411 36. Csukasi F, Duran I, Barad M, Barta T, Gudernova I, Trantirek L, Martin JH, Kuo CY,
- Woods J, Lee H, Cohn DH, Krejci P, Krakow D. The PTH/PTHrP-SIK3 pathway affects
  skeletogenesis through altered mTOR signaling. Sci Transl Med. 2018 Sep 19;10(459). pii:
  eaat9356.
- 37. Rey C, Faustin B, Mahouche I, Ruggieri R, Brulard C, Ichas F, Soubeyran I, Lartigue L, De
  Giorgi F. The MAP3K ZAK, a novel modulator of ERK-dependent migration, is
  upregulated in colorectal cancer. Oncogene. 2016 Jun 16;35(24):3190-200.
- 418 38. Goyal P, Behring A, Kumar A, Siess W. Identifying and characterizing a novel protein
  419 kinase STK35L1 and deciphering its orthologs and close-homologs in vertebrates. PLoS
  420 One. 2009 Sep 16;4(9):e6981.
- 39. Sabir SR, Sahota NK, Jones GD, Fry AM. Loss of Nek11 Prevents G2/M Arrest and
  Promotes Cell Death in HCT116 Colorectal Cancer Cells Exposed to Therapeutic DNA
- 423 Damaging Agents. PLoS One. 2015 Oct 26;10(10):e0140975.
- 424 40. Bjerrum JT, Nielsen OH, Riis LB, Pittet V, Mueller C, Rogler G, Olsen J. Transcriptional
- 425 analysis of left-sided colitis, pancolitis, and ulcerative colitis-associated dysplasia. Inflamm

426 Bowel Dis. 2014 Dec;20(12):2340-52. 41. Hanna DL, Loupakis F, Yang D, Cremolini C, Schirripa M, Li M, Matsusaka S, Berger MD, 427 428 Miyamoto Y, Zhang W, Ning Y, Antoniotti C, Salvatore L, Moran M, Zeger G, Astrow SH, 429 Falcone A, Lenz HJ. Prognostic Value of ACVRL1 Expression in Metastatic Colorectal 430 Cancer Patients Receiving First-line Chemotherapy With Bevacizumab: Results From the 431 Triplet Plus Bevacizumab (TRIBE) Study. Clin Colorectal Cancer. 2018 Sep;17(3):e471-432 e488. 42. Record CJ, Chaikuad A, Rellos P, Das S, Pike AC, Fedorov O, Marsden BD, Knapp S, Lee 433 434 WH. Structural comparison of human mammalian ste20-like kinases. PLoS One. 2010 Aug 6;5(8):e11905. 435 43. Zhou JK, Zheng YZ, Liu XS, Gou Q, Ma R, Guo CL, Croce CM, Liu L, Peng Y. ROR1 436 437 expression as a biomarker for predicting prognosis in patients with colorectal cancer. 438 Oncotarget. 2017 May 16;8(20):32864-32872. 439 44. Gong H, Fang L, Li Y, Du J, Zhou B, Wang X, Zhou H, Gao L, Wang K, Zhang J. miR-873 inhibits colorectal cancer cell proliferation by targeting TRAF5 and TAB1. Oncol Rep. 440 2018 Mar;39(3):1090-1098. 441 442 45. Yuan WC, Pepe-Mooney B, Galli GG, Dill MT, Huang HT, Hao M, Wang Y, Liang H, 443 Calogero RA, Camargo FD. NUAK2 is a critical YAP target in liver cancer. Nat Commun. 444 2018 Nov 16;9(1):4834. 445 46. Kim ST, Ahn TJ, Lee E, Do IG, Lee SJ, Park SH, Park JO, Park YS, Lim HY, Kang WK, Kim SH, Lee J, Kim HC. Exploratory biomarker analysis for treatment response in KRAS 446 wild type metastatic colorectal cancer patients who received cetuximab plus irinotecan. 447 BMC Cancer. 2015 Oct 20;15:747. 448 449 47. Li BQ, Huang T, Zhang J, Zhang N, Huang GH, Liu L, Cai YD. An ensemble prognostic 450 model for colorectal cancer. Send to PLoS One. 2013 May 2;8(5):e63494. 48. Guo H, Hu X, Ge S, Qian G, Zhang J. Regulation of RAP1B by miR-139 suppresses human 451 colorectal carcinoma cell proliferation. Int J Biochem Cell Biol. 2012 Sep;44(9):1465-72. 452 453 49. Peng H, Luo J, Hao H, Hu J, Xie SK, Ren D, Rao B. MicroRNA-100 regulates SW620 454 colorectal cancer cell proliferation and invasion by targeting RAP1B. Oncol Rep. 2014 May;31(5):2055-62. 455 456 50. Alonso MH, Aussó S, Lopez-Doriga A, Cordero D, Guinó E, Solé X, Barenys M, de Oca J, Capella G, Salazar R, Sanz-Pamplona R, Moreno V. Comprehensive analysis of copy 457 number aberrations in microsatellite stable colon cancer in view of stromal component. Br J 458 459 Cancer. 2017 Jul 25;117(3):421-431. 460 51. Qi L, Ding Y. TNK2 as a key drug target for the treatment of metastatic colorectal cancer. Int J Biol Macromol. 2018 Nov;119:48-52. 461

| 462        | 52. | Jin DH, Lee J, Kim KM, Kim S, Kim DH, Park J. Overexpression of MAPK15 in gastric         |
|------------|-----|-------------------------------------------------------------------------------------------|
| 463<br>464 |     | Oncotarget. 2015 Aug 21;6(24):20190-203.                                                  |
| 465        | 53. | Ahmed F, Ansari JA, Ansari ZE, Alam Q, Gan SH, Kamal MA, Ahmad E. A molecular             |
| 466        |     | bridge: connecting type 2 diabetes and Alzheimer's disease. CNS Neurol Disord Drug        |
| 467        |     | Targets. 2014; 13(2): 312-21.                                                             |
| 468        | 54. | Bertram L, McQueen MB, Mullin K, Blacker D, Tanzi RE. Systematic meta-analyses of         |
| 469        |     | Alzheimer disease genetic association studies: the AlzGene database. Nat Genet. 2007;     |
| 470        |     | 39(1): 17-23.                                                                             |
| 471        | 55. | Sun J, Feng X, Liang D, Duan Y, Lei H. Down-regulation of energy metabolism in            |
| 472        |     | Alzheimer's disease is a protective response of neurons to the microenvironment. J        |
| 473        |     | Alzheimers Dis. 2012; 28(2): 389-402.                                                     |
| 474        | 56. | Bai Z, Han G, Xie B, Wang J, Song F, Peng X, Lei H. AlzBase: an integrative database for  |
| 475        |     | gene dysregulation in Alzheimer's disease. Mol Neurobiol. 2016; 53(1):310-319.            |
| 476        | 57. | Dai HJ, Wu JC, Tsai RT, Pan WH, Hsu WL. T-HOD: a literature-based candidate gene          |
| 477        |     | database for hypertension, obesity and diabetes. Database (Oxford). 2013; 2013: bas061.   |
| 478        | 58. | Postula M, Janicki PK, Rosiak M, Eyileten C, Zaremba M, Kaplon-Cieslicka A, Sugino S,     |
| 479        |     | Kosior DA, Opolski G, Filipiak KJ, Mirowska-Guzel D. Targeted deep resequencing of        |
| 480        |     | ALOX5 and ALOX5AP in patients with diabetes and association of rare variants with         |
| 481        |     | leukotriene pathways. Exp Ther Med. 2016; 12(1): 415-421.                                 |
| 482        | 59. | Nejatian N, Penna-Martinez M, Steinhilber D, Badenhoop K. The association between         |
| 483        |     | vitamin D and the arachidonate 5-lipoxygenase (ALOX-5) gene polymorphism in type 2        |
| 484        |     | diabetes. Diabetologie und Stoffwechsel. 2015; 10-P205.                                   |
| 485        | 60. | Heemskerk MM, Giera M, Bouazzaoui FE, Lips MA, Pijl H, van Dijk KW, van Harmelen          |
| 486        |     | V. Increased PUFA Content and 5-Lipoxygenase Pathway Expression Are Associated with       |
| 487        |     | Subcutaneous Adipose Tissue Inflammation in Obese Women with Type 2 Diabetes.             |
| 488        |     | Nutrients. 2015 Sep 11;7(9):7676-90.                                                      |
| 489        | 61. | Greenbaum L, Ravona-Springer R, Lubitz I, Schmeidler J, Cooper I, Sano M, Silverman JM,   |
| 490        |     | Heymann A, Beeri MS. Potential contribution of the Alzheimer's disease risk locus BIN1 to |
| 491        |     | episodic memory performance in cognitively normal Type 2 diabetes elderly. Eur            |
| 492        |     | Neuropsychopharmacol. 2016; 26(4): 787-95.                                                |
| 493        | 62. | Horn S, Kirkegaard JS, Hoelper S, Seymour PA, Rescan C, Nielsen JH, Madsen OD, Jensen     |
| 494        |     | JN, Krüger M, Grønborg M, Ahnfelt-Rønne J. Research Resource: A Dual Proteomic            |
| 495        |     | Approach Identifies Regulated Islet Proteins During β-Cell Mass Expansion In Vivo. Mol    |
| 496        |     | Endocrinol. 2016; 30(1): 133-43.                                                          |
| 497        | 63. | Wu DA, Bu X, Warden CH, Shen DD, Jeng CY, Sheu WH, Fuh MM, Katsuya T, Dzau VJ,            |

| 498 |     | Reaven GM, Lusis AJ, Rotter JI, Chen YD. Quantitative trait locus mapping of human          |
|-----|-----|---------------------------------------------------------------------------------------------|
| 499 |     | blood pressure to a genetic region at or near the lipoprotein lipase gene locus on          |
| 500 |     | chromosome 8p22. J Clin Invest. 1996 May 1;97(9):2111-8.                                    |
| 501 | 64. | Celikbilek A, Tanik N, Sabah S, Borekci E, Akyol L, Ak H, Adam M, Suher M, Yilmaz N.        |
| 502 |     | Elevated neurofilament light chain (NFL) mRNA levels in prediabetic peripheral              |
| 503 |     | neuropathy. Mol Biol Rep. 2014 Jun;41(6):4017-22.                                           |
| 504 | 65. | Verma SK, Deshmukh V, Liu P, Nutter CA, Espejo R, Hung ML, Wang GS, Yeo GW,                 |
| 505 |     | Kuyumcu-Martinez MN. Reactivation of fetal splicing programs in diabetic hearts is          |
| 506 |     | mediated by protein kinase C signaling. J Biol Chem. 2013; 288(49): 35372-86.               |
| 507 | 66. | Belanger K, Nutter CA, Li J, Tasnim S, Liu P, Yu P, Kuyumcu-Martinez MN. CELF1              |
| 508 |     | contributes to aberrant alternative splicing patterns in the type 1 diabetic heart. Biochem |
| 509 |     | Biophys Res Commun. 2018 Sep 18;503(4):3205-3211.                                           |
| 510 | 67. | Blom ES, Wang Y, Skoglund L, Hansson AC, Ubaldi M, Lourdusamy A, Sommer WH,                 |
| 511 |     | Mielke M, Hyman BT, Heilig M, et al. Increased mRNA Levels of TCF7L2 and MYC of             |
| 512 |     | the Wnt Pathway in Tg-ArcSwe Mice and Alzheimer's Disease Brain. Int J Alzheimers Dis.      |
| 513 |     | 2010; 2011:936580.                                                                          |
| 514 | 68. | Včelák J, Vejražková D, Vaňková M, Lukášová P, Bradnová O, Hálková T, Bešťák J,             |
| 515 |     | Andělová K, Kvasničková H, Hoskovcová P, Vondra K, Vrbíková J, Bendlová B. T2D risk         |
| 516 |     | haplotypes of the TCF7L2 gene in the Czech population sample: the association with free     |
| 517 |     | fatty acids composition. Physiol Res. 2012;61(3):229-40.                                    |
| 518 | 69. | Arefin AS, Mathieson L, Johnstone D, Berretta R, Moscato P. Unveiling clusters of RNA       |
| 519 |     | transcript pairs associated with markers of Alzheimer's disease progression. PLoS One.      |
| 520 |     | 2012;7(9):e45535.                                                                           |
| 521 | 70. | Riise J, Plath N, Pakkenberg B, Parachikova A. Aberrant Wnt signaling pathway in medial     |
| 522 |     | temporal lobe structures of Alzheimer's disease. J Neural Transm (Vienna). 2015             |
| 523 |     | Sep;122(9):1303-18.                                                                         |
| 524 | 71. | Vollbach H, Heun R, Morris CM, Edwardson JA, McKeith IG, Jessen F, Schulz A, Maier          |
| 525 |     | W, Kölsch H. APOA1 polymorphism influences risk for early-onset nonfamiliar AD. Ann         |
| 526 |     | Neurol. 2005 Sep;58(3):436-41.                                                              |
| 527 | 72. | Raygani AV, Rahimi Z, Kharazi H, Tavilani H, Pourmotabbed T. Association between            |
| 528 |     | apolipoprotein E polymorphism and serum lipid and apolipoprotein levels with Alzheimer's    |
| 529 |     | disease. Neurosci Lett. 2006 Nov 6;408(1):68-72.                                            |
| 530 | 73. | Lin Q, Cao Y, Gao J. Decreased expression of the APOA1-APOC3-APOA4 gene cluster is          |
| 531 |     | associated with risk of Alzheimer's disease. Drug Des Devel Ther. 2015 Sep 29;9:5421-31.    |
| 532 | 74. | Pallàs M, Verdaguer E, Jordà EG, Jiménez A, Canudas AM, Camins A. Flavopiridol: an          |
| 533 |     | antitumor drug with potential application in the treatment of neurodegenerative diseases.   |
|     |     |                                                                                             |

| 534 |     | Med Hypotheses. 2005;64(1):120-3.                                                               |
|-----|-----|-------------------------------------------------------------------------------------------------|
| 535 | 75. | Gsell W, Conrad R, Hickethier M, Sofic E, Frölich L, Wichart I, Jellinger K, Moll G,            |
| 536 |     | Ransmayr G, Beckmann H, et al. Decreased catalase activity but unchanged superoxide             |
| 537 |     | dismutase activity in brains of patients with dementia of Alzheimer type. J Neurochem.          |
| 538 |     | 1995 Mar;64(3):1216-23.                                                                         |
| 539 | 76. | Lovell MA, Ehmann WD, Butler SM, Markesbery WR. Elevated thiobarbituric acid-                   |
| 540 |     | reactive substances and antioxidant enzyme activity in the brain in Alzheimer's disease.        |
| 541 |     | Neurology. 1995 Aug;45(8):1594-601.                                                             |
| 542 | 77. | Kim TH, Hong JM, Oh B, Cho YS, Lee JY, Kim HL, Shin ES, Lee JE, Park EK, Kim SY.                |
| 543 |     | Genetic association study of polymorphisms in the catalase gene with the risk of                |
| 544 |     | osteonecrosis of the femoral head in the Korean population. Osteoarthritis Cartilage. 2008      |
| 545 |     | Sep;16(9):1060-6.                                                                               |
| 546 | 78. | Mizwicki MT, Liu G, Fiala M, Magpantay L, Sayre J, Siani A, Mahanian M, Weitzman R,             |
| 547 |     | Hayden EY, Rosenthal MJ, et al. $1\alpha$ ,25-dihydroxyvitamin D3 and resolvin D1 retune the    |
| 548 |     | balance between amyloid- $\beta$ phagocytosis and inflammation in Alzheimer's disease patients. |
| 549 |     | J Alzheimers Dis. 2013; 34(1):155-70.                                                           |
| 550 | 79. | Cifuentes RA, Murillo-Rojas J. Alzheimer's disease and HLA-A2: linking                          |
| 551 |     | neurodegenerative to immune processes through an in silico approach. Biomed Res Int.            |
| 552 |     | 2014;2014:791238.                                                                               |
| 553 | 80. | Yang J, Li S, He XB, Cheng C, Le W. Induced pluripotent stem cells in Alzheimer's               |
| 554 |     | disease: applications for disease modeling and cell-replacement therapy. Mol Neurodegener.      |
| 555 |     | 2016 May 17;11(1):39.                                                                           |
| 556 | 81. | Xinzhong Li, Jintao Long, Taigang He, Robert Belshaw, and James Scott. Integrated               |
| 557 |     | genomic approaches identify major pathways and upstream regulators in late onset                |
| 558 |     | Alzheimer's disease. Sci Rep. 2015; 5: 12393.                                                   |
| 559 | 82. | Engidawork E, Gulesserian T, Yoo BC, Cairns N, Lubec G. Alteration of caspases and              |
| 560 |     | apoptosis-related proteins in brains of patients with Alzheimer's disease. Biochem Biophys      |
| 561 |     | Res Commun. 2001 Feb 16;281(1):84-93.                                                           |
| 562 | 83. | Reed JC. Mechanisms of apoptosis. Am J Pathol. 2000 Nov;157(5):1415-30.                         |
| 563 | 84. | Gopalraj RK, Zhu H, Kelly JF, Mendiondo M, Pulliam JF, Bennett DA, Estus S. Genetic             |
| 564 |     | association of low density lipoprotein receptor and Alzheimer's disease. Neurobiol Aging.       |
| 565 |     | 2005; 26(1): 1-7.                                                                               |
| 566 | 85. | Bowen RL, Isley JP, Atkinson RL. An association of elevated serum gonadotropin                  |
| 567 |     | concentrations and Alzheimer disease? J Neuroendocrinol. 2000 Apr;12(4):351-4.                  |
| 568 | 86. | Vingtdeux V, Davies P, Dickson DW, Marambaud P. AMPK is abnormally activated in                 |
| 569 |     | tangle- and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies. Acta       |
|     |     |                                                                                                 |

- 570 Neuropathol. 2011 Mar;121(3):337-49.
- 571 87. Greco SJ, Sarkar S, Johnston JM, Tezapsidis N. Leptin regulates tau phosphorylation and
  572 amyloid through AMPK in neuronal cells. Biochem Biophys Res Commun. 2009 Feb
  573 27;380(1):98-104.
- Salminen A, Kaarniranta K, Haapasalo A, Soininen H, Hiltunen M. AMP-activated protein
  kinase: a potential player in Alzheimer's disease. J Neurochem. 2011 Aug;118(4):460-74.
- 576 89. Semagacestat | Alzforum. Retrieved April 8, 2019, from
- 577 <u>https://www.alzforum.org/therapeutics/semagacestat.</u>
- 578 90. Verubecestat | Alzforum. Retrieved April 8, 2019, from
  579 https://www.alzforum.org/therapeutics/verubecestat.
- 580 91. Atabecestat | Alzforum. Retrieved April 8, 2019, from
- 581 <u>https://www.alzforum.org/therapeutics/atabecestat.</u>
- 582 92. Chang Y, Paramasivam M, Girgenti MJ, Walikonis RS, Bianchi E, LoTurco JJ. RanBPM
  583 regulates the progression of neuronal precursors through M-phase at the surface of the
  584 neocortical ventricular zone. Dev Neurobiol. 2010 Jan;70(1):1-15.
- 585 93. Tufail Y, Cook D, Fourgeaud L, Powers CJ, Merten K, Clark CL, Hoffman E, Ngo A,
  586 Sekiguchi KJ, O'Shea CC, Lemke G, Nimmerjahn A. Phosphatidylserine Exposure Controls
  587 Viral Innate Immune Responses by Microglia. Neuron. 2017 Feb 8;93(3):574-586.e8.
- 588 94. Rojiani MV, Alidina J, Esposito N, Rojiani AM. Expression of MMP-2 correlates with
- increased angiogenesis in CNS metastasis of lung carcinoma. Int J Clin Exp Pathol. 2010
  Oct 16;3(8):775-81.

## Table 1(on next page)

Main sources for data integration

### 1 2

| Database | Category                                                            | Website                              | Reference |
|----------|---------------------------------------------------------------------|--------------------------------------|-----------|
| BioGRID  | Protein-protein interaction database                                | https://thebiogrid.org/              | [16]      |
| HMDD     | Disease-associated<br>miRNAs,<br>miRNA-associated<br>targeted genes | http://www.cuilab.cn/hmdd            | [17]      |
| TAG      | Tumor-associated genes                                              | http://www.binfo.ncku.edu.tw/TAG     | [18]      |
| TarBase  | miRNA-associated targeted genes                                     | http://www.microrna.gr/tarbase       | [19]      |
| KEGG     | Biological pathways                                                 | http://www.genome.jp/kegg            | [20]      |
| GO       | Gene ontology, gene annotation and product                          | http://geneontology.org/             | [21]      |
| GeneBank | Gene expression data                                                | https://www.ncbi.nlm.nih.gov/genbank | [22]      |

3 4

## Table 2(on next page)

Data contained in current version miRDRN

| 1      |           |         |       |                      |           |
|--------|-----------|---------|-------|----------------------|-----------|
|        |           | Disease | miRNA | miRNA regulated gene | RSP       |
|        | Number of | 119     | 207   | 389                  | 6,973,875 |
| 2<br>3 |           |         |       |                      |           |

## Table 3(on next page)

Result for sample Single Search: disease, colorectal neoplasm; tissue type, colorectal

1

|                                 | Disease                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Disease Name                    | colorectal neoplasms                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Tissue Filter                   | colorectal tumor                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Associated miRNAs<br>(total:33) | hsa-mir-491, hsa-mir-185, hsa-mir-20a, hsa-mir-221, hsa-<br>mir-199a, hsa-mir-34a, hsa-mir-199b, hsa-mir-34c, hsa-<br>mir-34b, hsa-mir-148a, hsa-mir-342, hsa-mir-21, hsa-mir-<br>499a, hsa-let-7c, hsa-mir-148b, hsa-mir-1915, hsa-mir-17,<br>hsa-mir-320a, hsa-mir-200c, hsa-mir-143, hsa-mir-139,<br>hsa-mir-103a, hsa-mir-103b, hsa-mir-107, hsa-mir-497,<br>hsa-mir-106a, hsa-mir-429, hsa-mir-7, hsa-mir-362, hsa-<br>mir-330, hsa-mir-367, hsa-mir-339, hsa-mir-133a |
| Targeted genes<br>(total:37)    | BCL2L1, RHOA, CDC42, BNIP2, CDKN1C, AXL, MYC, BCL2,<br>DNMT1, RHOB, FOXO4, PDCD4, MMP11, PBX3, CCKBR,<br>CCL20, RND3, NRP1, ZEB1, CTNNB1, MACC1, IGF1R,<br>DAPK1, KLF4, RAP1B, TGFBR2, SOX2, YY1, RBL2, E2F1,<br>USF2, PTPN1, RYR3, PLRG1, RFFL, DNMT3A, KRAS                                                                                                                                                                                                               |
| No. of RSPs                     | 45565                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| No. of distinct genes           | 3079                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

2 3

### Table 4(on next page)

Statistics and gene information in the Network-1, the largest connected sub-network of the CRC-associated miRNA regulatory network

|          |                                            | Number | Item Set                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|--------------------------------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | miRNAs                                     | 6      | hsa-mir-199a, hsa-mir-34a, hsa-mir-199b, hsa<br>mir-139, hsa-mir-497, hsa-mir-106a                                                                                                                                                                                                                                                                                                                                   |
| <u> </u> | Target<br>genes                            | 4      | AXL, IGF1R, RAP1B, TGFBR2                                                                                                                                                                                                                                                                                                                                                                                            |
| Network  | Gene Set<br>(including<br>target<br>genes) | 56     | AXL, CSK, TNK2, LCK, PRKACA, FGR, MAPK15,<br>IGF1R, MERTK, ERBB2, PTK2, EGFR, JAK2,<br>JAK1, PRKCD, TEC, EPHB2, PHKG2, ROR1, FES<br>MAP3K12, RAP1B, MST4, PAK1, LRRK1,<br>MAP2K3, CDK11B, ACVR1, TGFBR2, RIOK2,<br>TGFBR1, MAP3K7, NEK8, NUAK2, OXSR1,<br>CDK1, ACVRL1, MKNK2, STK35, CDK17,<br>EIF2AK4, DAPK2, EIF2AK1, TSSK4, ZAK,<br>MAP2K6, SIK3, VRK2, PINK1, TAOK2, TNIK,<br>MAPK6, PRKACB, WNK1, PAK6, PKMYT1 |

2 3

### Table 5(on next page)

Known, literature supported, and potential novel CRC-related genes

|                |                                               | Number | Item Set                                                                                                                                                                                   |
|----------------|-----------------------------------------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| et (Network-1) | Known CRC<br>genes                            | 22     | AXL, LCK, FGR, IGF1R, MERTK, ERBB2, PTK2,<br>EGFR, JAK2, JAK1, EPHB2, FES, PAK1, MAP2K3<br>ACVR1, TGFBR2, TGFBR1, CDK1, EIF2AK4,<br>DAPK2, MAP2K6, PAK6                                    |
|                | Reference<br>supported<br>[25-52]             | 26     | CSK, TNK2*, MAPK15, PRKCD, TEC, PHKG2,<br>ROR1, RAP1B, MST4, CDK11B, MAP3K7, NEK8,<br>NUAK2, ACVRL1, MKNK2, STK35, ZAK, SIK3,<br>VRK2, PINK1, TAOK2, TNIK*, MAPK6, PRKACB,<br>PKMYT1, WNK1 |
| Gene S         | Potential<br>novel<br>cancer-<br>related gene | 8      | PRKACA, MAP3K12, LRRK1, RIOK2, OXSR1,<br>CDK17, EIF2AK1, TSSK4                                                                                                                             |

3

4

## Table 6(on next page)

Results for the AD-T2D comorbidity study

| 1 |  |
|---|--|
| Т |  |

|                             | Disease 1                                    | Disease 2   | Comorbidity                                                  |
|-----------------------------|----------------------------------------------|-------------|--------------------------------------------------------------|
| Disease Name                | AD                                           | T2D         | AD/T2D                                                       |
| Tissue Filter               | brain                                        | pancreas    | brain/pancreas                                               |
| Associated-miRNA            | hsa-mir-29a,<br>hsa-mir-195,<br>hsa-mir-146a | hsa-mir-144 | hsa-mir-29a,<br>hsa-mir-195,<br>hsa-mir-146a,<br>hsa-mir-144 |
| Targeted gene               | NAV3, BACE1, CFH                             | IRS1        | NAV3, BACE1, CFH, IRS1                                       |
| Regulatory sub-<br>pathways | 644                                          | 3908        | 4552                                                         |
| Total no. of genes          | 633                                          | 2187        | 2320                                                         |
| No. of common genes         | -                                            | -           | 500                                                          |

2 3

### Table 7(on next page)

Known, literature supported, and potential novel AD-T2D comorbid genes

The 210 known AD target genes were built by integrating gene lists from AlzGene (http://www.alzforum.org/genetics) [54], AlzBIG (http://alz.big.ac.cn/) [55] and AlzBase (http://alz.big.ac.cn/alzBase/home) [56]; the 497 known T2D targets contains 497 genes were from T-HOD (http://bws.iis.sinica.edu.tw/THOD/) [57]. \*Known AD and T2D target; #No literature support.

| 1 |         |                        |                                                       |                                                                                                                                                                                                           |
|---|---------|------------------------|-------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |         |                        | Number of targets<br>in comorbidity gene<br>set (500) | Comorbid Genes (references in square brackets)                                                                                                                                                            |
| - | data    | AD<br>target<br>(210)  | 8                                                     | ALOX5 [58-60], APP*, BIN1 [61], CHGB [62],<br>VWF*, NEFL [63,64], LETMD1 <sup>#</sup> , CELF1 [65,66]                                                                                                     |
|   | Known o | T2D<br>target<br>(497) | 14                                                    | TCF7L2 [67-70], APOA1 [71-73], VWF*, CDKN2B<br>[74], CAT [75-77], ITGB2 [78,79], ISL1 [80],<br>POLD3 <sup>#</sup> , APP*, NFKBIB [81], GNA12 <sup>#</sup> , DEDD<br>[82,83], LDLR [84,85], PRKAB1 [86-88] |

2

### A regulatory sub-pathway (RSP)

Given a disease-associated miRNA, M, and its target gene T, the linked sequence (M, T,  $G_1$ ,  $G_2$ ) is an RSP associated with M, where  $G_1$  is a protein interacting (according to PPI data) with T, and  $G_2$  is a protein interacting with  $G_1$ . In the text,  $G_1(G_2)$  is said to have a level 1 (level 2) PPI with T.



Schematic construction of disease specific miRNA regulatory network (RRN)

For a given disease there may be more than one miRNA associated with it, and each diseaseassociated miRNA may have one or more target genes. After all the RSPs having the from (M, T,  $G_1$ ,  $G_2$ ) are constructed, an RRN is built from entire set of constructed RSPs by linking (pairs of) genes/proteins from different RSPs whenever they interact according to PPI data.



a) Disease-associated miRNAs. b) Extension of the regulatory network with miRNA-target gene.

### Entrance page of miRDRN

User may select "Single Search" to explore a single disease or "Comorbidity Search" to explore a disease-pair.



All rights reserved.

### Query interface of Comorbidity Search

User is required to select two diseases, Disease 1 ("Alzheimer's Disease" selected) and Disease 2 ("Type 2" selected), their respective tissue/tumor types ("bran" and "pancreas", respectively), pathway ranking method (by biological processes (BP) or molecular functions (MF)), and *p*-value threshold (0.005 for both diseases). There are also four optional filters regarding gene property (none selected).

| miRDRN                                                                                                                      | Comorbidity S     |                   |               | Search Sin     | gle Search | Contact L |
|-----------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------|---------------|----------------|------------|-----------|
|                                                                                                                             |                   | Disea             | ises          |                |            |           |
| Filter                                                                                                                      |                   | Disease 1         |               |                | Disease 2  |           |
|                                                                                                                             | Alzheimer Disease | Alzheimer Disease |               |                |            | ۲         |
| Tissue/Tumor type :                                                                                                         | brain             |                   | •             | pancreas       |            |           |
| Common expression of target gene,<br>gene 1 and gene 2 nodes in KEGG<br>(optional):                                         | C Yes             |                   |               | Pancreas Ves   |            |           |
|                                                                                                                             | Target Gene       | Gene 1            | Gene 2        | Target Gene    | Gene 1     | Gene 2    |
| Selection of cancerous protein<br>(optional):<br>Cancer related gene (CRG)<br>Oncogene (OCG)<br>Tumor suppressor gene (TSG) | <b>T</b>          | •                 | T             |                |            |           |
| Filter out receptor protein (optional):                                                                                     |                   |                   |               |                | 0          | 6         |
| Selectoin of transcription factor<br>(optional):                                                                            |                   |                   |               |                |            |           |
|                                                                                                                             |                   |                   | == Jaccard in | ndex (MF) == ▼ |            |           |
| Pathway ranking by:                                                                                                         |                   |                   | -             |                | No a broad | 1/        |

Result for miRNAs in Alzheimer's Disease-Type 2 Diabetes Comorbidity Search

Search result for miRNAs associated with Disease 1 (Alzheimer's Disease in this example) and Disease 2 (Type 2 Diabetes) and literature source (blue area) and list of gene(s) targeted by each miRNA (green area). For each gene the gene symbol and its OMIM id are given, as well as information on whether the protein it encodes has a cancerous protein tag: CRG, cancer related gene; OCG, oncogene; TSG, tumor suppressor gene.

| Total: 3                                  |                                               |                                      |  |  |
|-------------------------------------------|-----------------------------------------------|--------------------------------------|--|--|
| miRNA                                     |                                               | Pubmed                               |  |  |
| hsa-mir-29a, hsa-mir-195                  | , hsa-mir-146a                                | 20202123, 22721728, 18801740         |  |  |
| )isease 2 associated miR                  | NAs                                           |                                      |  |  |
|                                           |                                               |                                      |  |  |
| miRNA                                     |                                               | Pubmed                               |  |  |
| hsa-mir-144                               |                                               | 21829658                             |  |  |
|                                           |                                               |                                      |  |  |
| arget genes by miRNAs                     |                                               |                                      |  |  |
| arget genes by miRNAs<br>Total: 4         |                                               |                                      |  |  |
| arget genes by miRNAs<br>Total: 4<br>Gene | Cancerous protein OMIM ID                     | miRNAs                               |  |  |
| Total: 4<br>Gene<br>NAV3                  | Cancerous protein OMIM ID<br>611629           | miRNAs<br>hsa-mir-29a                |  |  |
| Total: 4<br>Gene<br>NAV3<br>BACE1         | Cancerous protein OMIM ID<br>611629<br>604252 | míRNAs<br>hsa-mir-29a<br>hsa-mir-195 |  |  |

Result on RSP in Alzheimer's Disease-Type 2 Diabetes Comorbidity Search

RSPs are listed in descending order (column 1) by *p*-value (column 6). Columns 2-4 give the symbols of genes in the sequence (T,  $G_1$ ,  $G_2$ ). Column 5 gives known pathways, such as a KEGG pathway, of which (T,  $G_1$ ,  $G_2$ ) is a part. On first appearance, all RSPs (4552 in this example) are listed on multiple pages. There are two options for displaying/using a smaller RSP set: "Gene filter", where user can restrict the set to only those RSPs containing a specified gene, and "Show top ... sub-pathways", where user can ask for only the N-top RSPs having the smallest *p*-values be listed and used for network construction.

|     | liller          | (Please inp   | out a gene symbol, e |                    |           |        |
|-----|-----------------|---------------|----------------------|--------------------|-----------|--------|
|     | y P-Value V Sho | w top 4552 st | ub-pathways GO       |                    |           |        |
|     |                 |               |                      |                    |           | Next > |
|     |                 |               |                      |                    |           |        |
| No. | Target Gene     |               |                      | Common Pathwa      | ay P-Valu |        |
| 1   | BACE1 🚳         | PSEN1         | PSMA5                |                    | 9.443511  | e-14   |
| 2   | BACE1 🚳         | PSEN1         | PSMB1                |                    | 9.443511  | e-14   |
| 3   | BACE1 🞯         | PSEN1         | STAMBPL1             |                    | 2.761702  | e-10   |
| 4   | BACE1           | PSEN1         | CASP1                |                    | 5.522146  | e-10   |
| 5   | IRS1            | YWHAG         | YWHAH                | hsa04151           | 7.887880  | e-10   |
| 6   | BACE1 🚳         | PSEN1         | CTNNA1               |                    | 9.661552  | e-10   |
| 7   | IRS1            | CBLB CRG      | ASAP2                |                    | 3.310267  | 7e-9   |
| 8   | IRS1            | CBLB CRG      | NR2C2                |                    | 3,310267  | 'e-9   |
| 9   | IRS1            | PIK3R1        | YWHAG                | hsa04151           | 8,731441  | le-9   |
| 10  | IRS1            | PTK2          | TRIO OCG             |                    | 1,125868  | Be-8   |
| 11  | IRS1            | PTK2          | PET OCG RO           |                    | 1 125868  | Be-8   |
| 12  | IRS1            | PTK2          | MAPK8IP3             |                    | 1,125868  | 3e-8   |
| 13  | IRS1            | PTK2          | FPHB2 TSG RC         |                    | 1,125868  | Be-8   |
| 14  | IRS1            | PTK2          | PHKG2                |                    | 1.125868  | Be-8   |
| 15  | IRS1            | AKT1 OCG      | PFKFB2               |                    | 1.790201  | le-8   |
| 16  | IRS1            | AKT1 OCG      | WNK1                 |                    | 1.790201  | le-8   |
| 17  | IRS1            | AKT1 OCG      | PDK2                 |                    | 1,790201  | le-8   |
| 18  | IRS1            | AKT1 OCG      | CLK2                 |                    | 1,790201  | le-8   |
| 19  | IRS1            | AKT1 OCG      | PINK1                |                    | 1.790201  | le-8   |
| 20  | IRS1            | AKT1 OCG      | CKB                  |                    | 1.790201  | le-8   |
| 21  | IRS1            | AKT1 OCG      |                      |                    | 1.790201  | le-8   |
| 22  | IRS1            | AKT1 OCG      | MARK2 R              |                    | 1 790201  | le-8   |
| 23  | IRS1            | AKT1 OCG      | PAK6                 |                    | 1 790201  | le-8   |
| 24  | IRS1            |               | TEC OCG R            |                    | 3 808/82  | 2e-8   |
| 24  | IDS1            |               |                      |                    | 2 909492  | 0 9    |
| 23  | ID01            | JAKZ 🐷        | FES MOK              |                    | 0.000402  | e-0    |
| 20  | IK31            | INSR W        |                      | boo05150           | 3.608482  | 2-0    |
| 27  | UFH             | TIGAM 🤓       | 11GB2 🥨              | 115805150          | 6.060787  | e-8    |
| 28  | IRS1            | PIK3R1        | PIK3C2B              |                    | 9.565237  | 'e-8   |
| 29  | IRS1            | PTK2          | BBS10                |                    | 2.251149  | le-7   |
| 30  | IRS1            | CBLB CKG      | IANK                 | baa04020 baa04044  | 3.116147  | e-/    |
| 31  | IRS1<br>IPS1    | PIK3P1        | SUCS2<br>EVR         | nsau4930, nsau4910 | 4.32/160  | le-7   |
| 33  | IRS1            | YWHAG         | PARD3                |                    | 6.489754  | le-7   |
| 34  | IRS1            | YWHAG         | CDC5I OCG 1          |                    | 6,489754  | le-7   |
| 35  | IRS1            | GRB10         | DOK1                 |                    | 7.787705  | ie-7   |
| 36  | BACE1           | MMP2 🔞        | MMP25 😢              |                    | 9.084275  | ie-7   |
| 37  | BACE1           | MMP2 R        | MMP17 8              |                    | 9 084275  | ie-7   |
| 38  | IRS1            | YWHAG         | ARHGEF16             |                    | 9.084275  | 5e-7   |
| 39  | IRS1            | IRS2          | II 4R 😢              |                    | 9.084275  | ie-7   |
|     | IDCA            | ALCTA DOCO    |                      |                    | 0.000000  | - 7    |

Result on comorbidity genes in Alzheimer's Disease-Type 2 Diabetes Comorbidity Search

Genes common to some RSPs of both diseases are listed, together with information on cancer genes status, OMIM Id, and KEGG pathway.

| tal: 500   Next >> |          |                      |                        |                                                                                                                                                        |  |
|--------------------|----------|----------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| No.                | Gene     | Cancerous<br>protein | OMIM ID                | KEGG                                                                                                                                                   |  |
| 1                  | A2M      |                      | 103950                 | hsa04610                                                                                                                                               |  |
| 2                  | ABCF1    |                      | 603429                 |                                                                                                                                                        |  |
| 3                  | ACHE     |                      | 100740                 | hsa00564, hsa04725                                                                                                                                     |  |
| 4                  | ACO1     |                      | 100880                 | hsa00020, hsa00630, hsa00300                                                                                                                           |  |
| 5                  | AFG3L1P  |                      | 603020                 |                                                                                                                                                        |  |
| 6                  | ALOX5    |                      | 152390                 | hsa04726, hsa05145, hsa00590,<br>hsa04913                                                                                                              |  |
| 7                  | BIN1     | TSG                  | 601248                 |                                                                                                                                                        |  |
| 8                  | ANXA11   |                      | 602572                 |                                                                                                                                                        |  |
| 9                  | APBB1    |                      | 602709                 | hsa05010                                                                                                                                               |  |
| 10                 | APBB2    |                      | 602710                 |                                                                                                                                                        |  |
| 11                 | APLP1    |                      | 104775                 |                                                                                                                                                        |  |
| 12                 | APOA1    |                      | 107680                 | hsa03320, hsa04977, hsa04975,<br>hsa05143                                                                                                              |  |
| 13                 | APP      |                      | 605378, 100070, 104760 | hsa04726, hsa05010                                                                                                                                     |  |
| 14                 | ARL4D    |                      | 600732                 |                                                                                                                                                        |  |
| 15                 | ASS1     |                      | 603470                 | hsa00250, hsa00330                                                                                                                                     |  |
| 16                 | RERE     |                      | 605226                 |                                                                                                                                                        |  |
| 17                 | ATP5A1   |                      | 164360                 | hsa05012, hsa05016, hsa00190,<br>hsa05010                                                                                                              |  |
| 18                 | ALDH7A1  |                      | 107323                 | hsa00260, hsa00380, hsa00330,<br>hsa00280, hsa00410, hsa00300,<br>hsa00561, hsa00310, hsa00340,<br>hsa00640, hsa00053, hsa00620,<br>hsa00071, hsa00010 |  |
| 19                 | ATP6V1E1 |                      | 108746                 | hsa05110, hsa04966, hsa05323,<br>hsa04721, hsa05120, hsa00190,<br>hsa04145                                                                             |  |
| 20                 | BLMH     |                      | 602403                 |                                                                                                                                                        |  |
| 21                 | BNIP1    |                      | 603291, 612478         | hsa04130                                                                                                                                               |  |
| 22                 | BTF3     |                      | 613595                 |                                                                                                                                                        |  |
| 23                 | MRPL49   |                      | 606866                 |                                                                                                                                                        |  |
| 24                 | CARS     |                      | 123859                 | hsa00970                                                                                                                                               |  |
| 25                 | CAT      |                      | 115500 607424          | hsa05014, hsa00380, hsa00630,                                                                                                                          |  |

Display of a sub-RRN built from a subset of RSPs determined by the user using options available in the interface shown in Figure 6

The option "Show top-70" RSPs (by p-value) was used. When the mouse is placed on a node in the displayed RRN, a small text window opens showing the name of the node/gene and annotations from GO, OMIM, KEGG, and GeneBank databases.



A partial miRNA regulatory network (RRN) for colorectal neoplasm

The RRN is constructed from the top 70 RSPs by *p*-value for colorectal neoplasm, tissue type, colorectal tumor. A link indicates a miRNA-target relation or a PPI; red circle, miRNA; blue circle, miRNA target gene; yellow circle, non-target gene; diamond, oncogene; triangle, tumor suppressor gene.



### The sub-RRN Network-1

This largest connected sub-RRN for colorectal neoplasm (constructed from the top 70 RSPs by *p*-value), containing six miRNAs targeting four genes connected to 52 other genes, is itself composed of two parts, one 28 nodes (five miRNAs targeting three genes) and the other 34 nodes (one miRNA targeting one gene), connected by a single link.



A sub-RRN of CRC obtained by using *TNK2* as a gene filter

The RRN contains the target gene *AXL* regulated by three miRNAs, hsa-mir-199b, hsamir-34a, hsa-mir-199a, and linked by PPI to *TNK2*, itself linked by PPI to four other genes *AXL*(OCG), *MAGI3*, *HSP90AB2P*, *MERTK*(OCG), *KAT8*.

| Total: 45565       |                                                                                                                           |                                     |                                               |                    |                                                       |
|--------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------|--------------------|-------------------------------------------------------|
|                    | ene filter TNK2                                                                                                           | (Please in                          | nput a gene symbol, e:                        |                    |                                                       |
|                    | ort by P-Value . Sh                                                                                                       | ow top 70                           | sub-pathways GO                               | (Number of list:4) |                                                       |
|                    |                                                                                                                           |                                     |                                               |                    |                                                       |
|                    |                                                                                                                           |                                     |                                               |                    | Next >>                                               |
|                    |                                                                                                                           |                                     |                                               |                    | Next >>                                               |
| No.                | Target Gene                                                                                                               | Gene 1                              | Gene 2                                        | Common Pathway     | P-Value                                               |
| No.<br>1           | Target Gene                                                                                                               | Gene 1<br>TNK2 ®                    | Gene 2<br>MERTK OCG &                         | Common Pathway     | Next >><br>P-Value<br>2.998519e-18                    |
| No.<br>1<br>2      | Target Gene<br>AXL OCG RC<br>AXL OCG RC                                                                                   | Gene 1<br>TNK2 66<br>TNK2 66        | Gene 2<br>MERTK OCG &<br>HSP90AB2P            | Common Pathway     | P-Value<br>2.998519e-18<br>7.875431e-7                |
| No.<br>1<br>2<br>3 | Target Gene         AXL       ocg         AXL       ocg         AXL       ocg         AXL       ocg         AXL       ocg | Gene 1<br>TNK2<br>TNK2<br>TNK2<br>C | Gene 2<br>MERTK OCG &<br>HSP90AB2P<br>MAGI3 & | Common Pathway     | P-Value<br>2.998519e-18<br>7.875431e-7<br>1.574368e-6 |



| CA. | -         | ** | + |
|-----|-----------|----|---|
|     | $\subset$ | -  | Ð |

A miRNA regulatory sub-network centered on the AD-associated gene BACE1

The genes *PSEN1*, *NCSTN*, *RANBP9*, *PLSCR1*, *MMP2*, and *FURIN* are shown to be immediately downstream to, i.e., have level 1 PPI with, *BACE1*.

