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ABSTRACT

The problem of cell formation is an NP-Hard problem, which consists of organising a group of machines

and pieces in several cells. The machines are arranged in a fixed way inside the cells, and each machine

has some manufacturing operation that applies in different pieces or parts. The idea of the problem

is to be able to minimise the movements made by the pieces to reach the machines in the cells. For

this problem, a data set has been organised using three manufacturing cells. Through the data set an

experiment has been carried out that focuses on obtaining the best solution using a global search solution

within 6 days for each instance. The experimental results have been able to obtain the general optimum

value for a set of test instances.

1 INTRODUCTION

The problem of manufacturing cell manufacturing is a classic NP-Hard problem of literature. The

general objective is to be able to organise a limited number of machines in a set of cells or constructions.

When the machines are already arranged in the cells, a certain number of parts will be entered into

different cells and the machines will carry out some manufacturing process in the parts.

For the cell formation problem there are different types of mathematical models with different

approaches to organise machines and parts. One of the models focuses on the clustering efficiency Paydar

and Saidi-Mehrabad (2013), where the goal is to maximise the effectiveness of the solution with a number

of unknown cells. Another model consists of minimising the total cost of the required machines, as well

as the handling of the materials or parts used in the loads that are transferred between the cells Vakharia

and Chang (1997). A model that focuses on minimising the transfer of parts between the various cells

Boctor (1991), this model has an unalterable number of cells and a maximum number of machines per

cell. This model will be used in this investigation, because it focuses on already built cells, such as a

group of buildings that can not be demolished due to the cost involved. Previous research work on this

model can be found in Soto et al. (2015); Almonacid et al. (2016, 2017); Soto et al. (2019); Almonacid

and Soto (2018).

The objective of this research is to solve the problem of manufacturing cells using the model proposed

in Boctor (1991). In addition, focus on solving a set of instances of non-homogeneous tests in number of

machines and parts, but using three cells of manufactures. The focus in this research to be able to perform

the resolution of the cell formation problem is to determine the overall optimal value, which is the best

solution found to solve the problem. Among the challenges are that the bigger the problem in terms of

variables, the run-time increases. The main benefits expected from this work are as follows: Report the

global optimal values for the first 15 instances of testing. Report the solution matrices for the instances of

problems where the global optimum value has been obtained. Describe the data descriptor for the set of

35 test instances for the cell formation problem, using three manufacturing cells.

The rest of the scientific article is organised as follows: Section 2 describes the problem of the

formation of manufacturing cells. Section 3 shows the numerical test performed in the test instances.
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Finally, section 4 indicates the conclusions and indicates the guidelines for future work.

2 CELL FORMATION PROBLEM

The mathematical model of the cell formation problem is defined by a set of parameters, indexes,

variables with their respective domains, an objective function and a set of constraints. The mathematical

model has been modeled by Boctor (1991). The main components of the mathematical model are indicated

in the tables 1 and 2.

Table 1. Cell Formation Problem - Symbology and description.

Abbreviation Description

M Number of machines

P Number of parts

C Number of cells

Mmax Maximum number of machines per cell

i The index of machines

j The index of the parts

k The index of the cells

Ai j The matrix of incidences machines-parts of size M×P

yik A matrix machines-cells of size M×C

z jk A matrix parts-cells of size P×C

Table 2. Cell Formation Problem - Data type, rank and domain for parameters.

Abbreviation Kind Range Domain

M Parameter N
+ −

P Parameter N
+ −

C Parameter N
+ −

Mmax Parameter Mmax ∈ {0, . . . ,M} −
i Iterator i ∈ {1, . . . ,M} −
j Iterator j ∈ {1, . . . ,P} −
k Iterator k ∈ {1, . . . ,C} −

Ai j Parameter Binary matrix −
yik Variable − Binary.

z jk Variable − Binary.

The elements of the mathematical model are described below.

The incidence matrix Ai j indicates which parts are processed by the machines. In other words, which

machine i is in charge of processing the j part. The matrix of machine-parts incidences has a binary

domain of size M×P, which means that each value of Ai j is determined by the equation 1.

Ai j =

{

1 if the machine i process the part j.

0 another case.
(1)

The mathematical model is composed of a set of elements, such as:

• A pair of matrices of machine-cell variables, described in equation 2.

yik =

{

1 if the machine i belongs to the cell k.

0 another case.
(2)
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• A pair of matrices of part-cell variables, described in equation 3.

z jk =

{

1 if the part j belongs to the cell k.

0 another case.
(3)

The mathematical model has a unique objective function F . The objective function is described in the

equation 4. The objective of the equation 4 consists of minimizing the amount of displacements of the P

parts between the manufacturing cells Ck, k ∈ {1, . . . ,C}.

minimizar F =
C

∑
k=1

M

∑
i=1

P

∑
j=1

Ai jz jk(1− yik) (4)

The objective function F is subject to three constraints.

• The first constraint 5 consists of restricting in the matrix yik that each machine i must belong only

to a single cell k.

C

∑
k=1

yik = 1 ∀i ∈ {1, . . . ,M} (5)

• The second constraint 6 consists in restricting in the matrix z jk that each part j must belong only to

a single cell k.

C

∑
k=1

z jk = 1 ∀ j ∈ {1, . . . ,P} (6)

• The third constraint 7 consists of limiting the number of machines that each cell has. This constraint

is due to the fact that physically, a cell has a limited space to install machinery.

M

∑
i=1

yik ≤ Mmax ∀k ∈ {1, . . . ,C} (7)

3 NUMERICAL TESTS

This section is composed of the descriptor of the test instances, the configuration of the tests, and the

results.

3.1 Data Descriptors

Table 3 describes 35 types of problems collected in the literature. These problems have the characteris-

tic that they are not homogeneous, which implies that most problems have a different number of machines

and parts with each other. The 35 problems have been configured with a number of cells equal to 3.

The test data set can be downloaded in Almonacid (2019). The test data is composed of a set of

files. As an example, the descriptor 1 represents the information used by problem CFP01, this descriptor

describes a numeric identifier of the test problem (ids), the name of the problem (name), a description of

the test file, the number of machines (num machines), the number of parts (num parts), and the incident

matrix (A). The direct correspondence of the data descriptor 1 with the mathematical model is described

below:

• num machines → M
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Table 3. The following table describes the set of 35 test instances for the cell formation problem. These

test instances are configured to be used only with three manufacturing cells. The description of the table

has the following attributes: Column 1 (Problem) indicates the assigned identifier for each test instance.

Column 2 (Source) describes the origin in which the instance matrix A has been obtained. Column 3 (M)

is the number of machines in the incidence matrix. Column 4 (P) is the number of parts of the incidence

matrix. Column 5 (C) is the number of cells. Column 6 (Mmax) is the maximum number of machines to

assign to each cell.

Problem Source M P C Mmax

CFP01 King-Nakornchai King and Nakornchai (1982) 5 7 3 2

CFP02 Waghodekar-Sahu Waghodekar and Sahu (1984) 5 7 3 2

CFP03 Seifoddini Seifoddini (1989) 5 18 3 2

CFP04 Kusiak-Cho Kusiak and Cho (1992) 6 8 3 2

CFP05 Kusiak-Chow Kusiak and Chow (1987) 7 11 3 3

CFP06 Boctor Boctor (1991) 7 11 3 3

CFP07 Seifoddini-Wolfe Seifoddini and Wolfe (1986) 8 12 3 3

CFP08 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1986) 8 20 3 3

CFP09 Chandrasekharan-Rajagopalan P Chandrasekharan and Rajagopalan (1986) 8 20 3 3

CFP10 Mosier-Taube Mosier and Taube (1985a) 10 10 3 4

CFP11 Chan and Milner Chan and Milner (1982) 10 15 3 4

CFP12 Askin-Subramanian Asktn and Subramantan (1987) 14 24 3 5

CFP13 Stanfel Stanfel (1985) 14 24 3 5

CFP14 McCormick McCormick Jr et al. (1972) 16 24 3 6

CFP15 Srinivasan Srinlvasan et al. (1990) 16 30 3 6

CFP16 King King (1980) 16 43 3 6

CFP17 Carrie Carrie (1973) 18 24 3 6

CFP18 Mosier-Taube Mosier and Taube (1985b) 20 20 3 7

CFP19 Kumar Kumar et al. (1986) 20 23 3 7

CFP20 Carrie Carrie (1973) 20 35 3 7

CFP21 Boe-Cheng Boe and Cheng (1991) 20 35 3 7

CFP22 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1989) 24 40 3 8

CFP23 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1989) 24 40 3 8

CFP24 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1989) 24 40 3 8

CFP25 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1989) 24 40 3 8

CFP26 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1989) 24 40 3 8

CFP27 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1989) 24 40 3 8

CFP28 McCormick McCormick Jr et al. (1972) 27 27 3 9

CFP29 Carrie Carrie (1973) 28 46 3 10

CFP30 Kumar-Vannelli Kumar and Vannelli (1986) 30 41 3 10

CFP31 Stanfel Stanfel (1985) 30 50 3 10

CFP32 Stanfel Stanfel (1985) 30 50 3 10

CFP33 King-Nakornchai King and Nakornchai (1982) 36 90 3 12

CFP34 McCormick McCormick Jr et al. (1972) 37 53 3 13

CFP35 Chandrasekharan-Rajagopalan Chandrasekharan and Rajagopalan (1987) 40 100 3 14

• num parts → P

• A → Ai j

The configuration for each problem CFP01 to CFP35 is described in the data descriptor 2. The direct

correspondence of the data descriptor 2 with the mathematical model is described below:

• M → M

• P → P

• Cell → C

• Mmax → Mmax
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Data Descriptor 1. File of the CFP01 test data in JSON format.

1 {

2 ” i d s ” : 1,

3 ” name ” : ”CFP01”,

4 ” d e s c r i p t i o n ”: ”CFP01 King−Nakorncha i Problem 01 5x7 ”,

5 ” num machines ” : 5,

6 ” n u m p a r t s ” : 7,

7 ”A” :

8 [

9 [0, 1, 0, 1, 1, 1, 0],

10 [1, 0, 1, 0, 0, 0, 0],

11 [1, 0, 1, 0, 0, 0, 1],

12 [0, 1, 0, 1, 0, 1, 0],

13 [1, 0, 0, 0, 0, 0, 1]

14 ]

15 }
✆

Data Descriptor 2. Configuration file for the 35 test data in JSON format. Each configuration indicates

the number of three cells and the maximum number of machines per cell.

1 {

2 ”CFP01”: {

3 ”M”: 5,

4 ”P”: 7,

5 ” C e l l ”: 3,

6 ”Mmax”: 2

7 },

8 ”CFP02”: {

9 ”M”: 5,

10 ”P”: 7,

11 ” C e l l ”: 3,

12 ”Mmax”: 2

13 },

14

15 ...

16

17 ”CFP35”: {

18 ”M”: 40,

19 ”P”: 100,

20 ” C e l l ”: 3,

21 ”Mmax”: 14

22 }

23 }
✆

3.2 Test configuration

To determine the optimal global value of the problems in table 3. The CFP problem has been modeled

with the constraint programming technique. The modeling of the problem was done using the Minizinc

language Nethercote et al. (2007); Stuckey et al. (2014). The tests were performed using the MiniZinc

IDE software and the Gecode solver Schulte et al. (2006, 2010). The configuration used in the Minizinc

IDE is: -s -f ”fzn-gecode -mode stat”. The tests were performed on a computer with an AMD Athlon II

X4 640 processor with 4 GB of ram.
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3.3 Results

Each problem has been executed with a maximum execution time of six days. If the global optimum

value is not reached, the search for that problem will be canceled. In the tests carried out, it has been

possible to obtain the global optimum value for problems CFP01 to CFP15. For the problems CFP16 to

CFP35 it has not been possible to determine the global optimum value in less than six days.

Table 4 describes the general results of the search for global optimum values for problems CFP01

to CFP15. It also indicates the execution time used to be able to find the global optimum value for each

problem, the number of solutions and variables.

Table 4. Global optimal value found for instances with three cells The column 1 (Problem) corresponds

to the identifier assigned to each instance. The column 2 (Run Time) represents the execution time in

milliseconds (ms). The column 3 (Variables) corresponds to the number of variables in the test instance.

The column 4 (Optimal Global) indicates the overall optimum value found in the test instance.

Problem Execution time Solutions Variables Optimal Global

CFP01 0.006 (6.178 ms) 7 94 2

CFP02 0.065 (65.273 ms) 3 112 8

CFP03 2.602 (2602.950 ms) 13 223 11

CFP04 0.124 (124.274 ms) 6 127 7

CFP05 0.138 (138.630 ms) 6 145 5

CFP06 0.024 (24.532 ms) 9 139 2

CFP07 0.099 (99.208 ms) 15 190 7

CFP08 4.712 (4712.477 ms) 24 292 14

CFP09 2 days, 8:36:30.990 (203790990.258 ms) 17 382 39

CFP10 0.026 (26.867 ms) 11 163 0

CFP11 0.402 (402.101 ms) 23 244 0

CFP12 18.302 (18302.063 ms) 32 331 2

CFP13 32.783 (32783.344 ms) 32 340 2

CFP14 18:15:52.650 (65752650.323 ms) 24 424 22

CFP15 3:37:36.598 (13056598.406 ms) 53 540 17

Table 5 and 6 describe statistics regarding the nodes and maximum depth of the search tree, propagators,

propagations, failures and restarts with respect to the tests performed on the CFP01 to CFP15 problems.
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Table 5. The column 1 (Problem) corresponds to the identifier assigned to each instance. The column 2

(Nodes) indicates the number of nodes created in the binary search tree. The column 3 (Maximum Depth)

corresponds to the value that indicates the depth of the search tree.

Problem Nodes Max deep

CFP01 366 20

CFP02 8609 21

CFP03 341900 44

CFP04 9674 24

CFP05 16234 31

CFP06 1197 31

CFP07 10198 40

CFP08 508493 54

CFP09 29397863219 53

CFP10 1438 33

CFP11 44055 40

CFP12 1736293 67

CFP13 3224255 64

CFP14 5455525847 75

CFP15 1114280276 82

Table 6. The column 1 (Problem) corresponds to the identifier assigned to each instance. The column 2

(Propagators) and 3 (Propagations) indicate the propagators and propagations respectively in the

execution of the mathematical model. The column 4 (Faults) and 4 (Restarts) correspond to faults and

restarts.

Problem Propagators Propagations Faults Restarts

CFP01 73 7181 172 0

CFP02 91 175140 4301 0

CFP03 180 10616341 170937 0

CFP04 102 217897 4031 0

CFP05 112 386306 8110 0

CFP06 106 29753 584 0

CFP07 153 317334 5078 0

CFP08 239 18771617 254209 0

CFP09 329 900426273847 14698931593 0

CFP10 126 31254 695 0

CFP11 197 1230983 21740 0

CFP12 258 58368413 868064 0

CFP13 267 104084498 1612040 0

CFP14 347 198608736756 2727762867 0

CFP15 446 40872474298 557140062 0
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4 CONCLUSIONS

In this article, a global search experiment was conducted in search of the best solution for the cell

formation problem with three manufacturing cells. According to the tests carried out, it has been possible

to reach the overall optimum value for 15 test instances, from the CFP01 instance to the CFP15 instance.

For the CFP16 instances to the CFP35 instance, it has not been possible to find the optimal global value

within a time limit of 6 days for each test instance. As future work, the problem is left open in order to

obtain optimal global values or good optimal values with various incomplete search algorithms, such as

metaheuristic algorithms, neural networks, or heuristics applied in CFP16 to CFP35 problems.
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