A peer-reviewed version of this preprint was published in PeerJ on 30 July 2019.

View the peer-reviewed version (peerj.com/articles/7347), which is the preferred citable publication unless you specifically need to cite this preprint.

Characterization of the karyotype and accumulation of repetitive sequences in Australian Darling hardyhead *Craterocephalus amniculus* (Atheriniformes, Teleostei)

Zuzana Majtánová, Equal first author, 1 Karl G Moy Corresponding author, Equal first author, 2 Peter J Unmack 2 Petr Ráb 1, Tariq Ezaz 2

1 Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Libechov, Czech Republic
2 Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory, Australia

Corresponding Author: Karl G Moy
Email address: karl.moy@canberra.edu.au

Belonging to the order Atheriniformes, *Craterocephalus* is one of the most widespread genera of freshwater fishes in Australia, spanning along the northern coast from central Western Australia to central New South Wales and across the Murray-Darling and Lake Eyre basins. In this study, both conventional cytogenetic techniques (Giemsa, C-banding), CMA3/DAPI staining, and fluorescence in situ hybridization (FISH) with telomeric DNA and rDNA probes were used to examine, the karyotypes and other chromosomal characteristics of Darling hardyhead (*Craterocephalus amniculus*) from New South Wales, Australia. We identified diploid chromosome number 2n = 48 (NF = 58) in all studied individuals. FISH with rDNA probe showed a nonsyntenic pattern, with signals on one pair of subteloentric chromosomes for 28S rDNA and one pair of submetacentric chromosomes for 5S rDNA. C-banding displayed the accumulation of constitutive heterochromatin in the centromeric regions of approximately 40 chromosomes. CMA3/DAPI fluorescence staining revealed extremely GC-rich signals in pericentromeric region of one submetacentric chromosomal pair with size polymorphism. We detected telomeric signals at the end of all chromosomes and no interstitial signals.
Characterization of the karyotype and accumulation of repetitive sequences in
Australian Darling hardyhead *Craterocephalus amniculus* (Atheriniformes, Teleostei)

Zuzana Majtánová¹, Karl G. Moy²*, Peter J. Unmack², Petr Ráb¹, Tariq Ezaz²

¹ Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Czech Republic
² Institute for Applied Ecology, University of Canberra ACT 2617, Australia

¹ These authors contributed equally

* Corresponding author:

Karl G. Moy: Karl.Moy@canberra.edu.au
Abstract

Belonging to the order Atheriniformes, *Craterocephalus* is one of the most widespread genera of freshwater fishes in Australia, spanning along the northern coast from central Western Australia to central New South Wales and across the Murray-Darling and Lake Eyre basins. In this study, both conventional cytogenetic techniques (Giemsa, C-banding), CMA3/DAPI staining, and fluorescence *in situ* hybridization (FISH) with telomeric DNA and rDNA probes were used to examine the karyotypes and other chromosomal characteristics of Darling hardyhead (*Craterocephalus amniculus*) from New South Wales, Australia. We identified diploid chromosome number 2n = 48 (NF = 58) in all studied individuals. FISH with rDNA probe showed a nonsyntenic pattern, with signals on one pair of subtelocentric chromosomes for 28S rDNA and one pair of submetacentric chromosomes for 5S rDNA. C-banding displayed the accumulation of constitutive heterochromatin in the centromeric regions of approximately 40 chromosomes. CMA3/DAPI fluorescence staining revealed extremely GC-rich signals in pericentromeric region of one submetacentric chromosomal pair with size polymorphism. We detected telomeric signals at the end of all chromosomes and no interstitial signals.

Introduction

Atherinidae, commonly known as Old World silversides, is a widespread family found primarily in marine and estuarine waters mainly throughout the Indo-West Pacific (Nelson, Grande & Wilson, 2016). This family is comprised of four subfamilies, 14 genera, and 75 species (Fricke, Eschmeyer & van der Laan, 2019). *Craterocephalus* is the type genus for the subfamily *Craterocephalinae* which it shares only with the genus *Sashatherina* (Dyer & Chernoff, 1996; Ivantsoff & Allen, 2011; Campanella et al., 2015). It is one of the few genera within the family which have undergone an extensive freshwater radiation, with most species restricted to Australia, New Guinea and Timor-Leste, although a small number inhabit marine environments in Australia (Unmack & Dowling, 2010). Moreover, *Craterocephalus* is one of the most widespread genera of freshwater fishes in Australia, spanning the northern coast from central Western Australia to central New South Wales and across the Murray-Darling and Lake Eyre basins (Unmack & Dowling, 2010). Inherent to such a widespread distribution, members of this genus inhabit a broad range of habitats including arid intermittent rivers,
desert springs and lakes, through to large perennial rivers, smaller creeks and marine
mangroves, beaches and estuarine areas (Allen, Midgley & Allen, 2002).

The Darling hardyhead, *C. amniculus* is a small bodied species with an annual
lifecycle and a habitat preference for deep slow flowing pools (Moy, Wilson & Ellison, 2018).
This species is naturally distributed throughout the upper tributaries of the Darling River of
the Murray-Darling Basin and the coastal Hunter River (Adams et al., 2011). Recently, the
species has declined across parts of its range and is thought to be under threat from habitat
loss and degradation (Williamson, 2014), though it is often abundant in areas which it is still
present. Within *Craterocephalus*, *C. amniculus* belongs to the ‘eyersii’ clade and is the sister
taxon to *C. fluviatilis* (Unmack & Dowling, 2010).

Despite the fact that numerous studies regarding the taxonomy and phylogeny of the
genus have been published (Crowley, Crowley & Ivantsoff, 1990; Crowley & Ivantsoff, 1992;
Unmack & Dowling, 2010; Adams et al., 2011), no comparative cytogenetic research has
been performed. So far only two atherinid species have been studied cytogenetically
(Vasil’ev, 1980; Kikuno & Ojima, 1987), neither of which are from Australia. In this report,
we characterized for the first time the karyotypes of *C. amniculus* using a set of conventional
as well as molecular cytogenetic tools. We describe the chromosomal number, together with
the numbers and positions of minor and major rDNA genes, heterochromatin and telomeric
sequences. This study thus extends the knowledge about the genome evolution of this diverse
genus.

Material and methods

Specimens

Twenty-five juvenile individuals at four weeks of age were cytogenetically analysed in this
study. Parents of analysed individuals were collected from Swan Brook in the McIntyre River
(29°46'18.68"S 151°26'7.11"E) in March 2018. These fish were bred in captivity with the
offspring raised in separate aquariums. All samples were obtained under state fisheries
permits and research was conducted with approval from the University of Canberra ethics
committee (CEAE.15-05).

Chromosome preparation and staining
Chromosomal suspensions were obtained from four week old juvenile individuals using the protocol described by Netto et al. (2007) with slight modifications. Fish were euthanized using an overdose of anaesthetic (clove oil). Whole fish were homogenised to produce the cell suspension and cultured for 10 hours in RPMI 1640 medium (Life Technologies, Inc.) at 4°C. Colchicine treatment was performed for one hour, followed by hypotonization in 0.075 M KCl for 50 min at room temperature. Cell suspensions were fixed in freshly prepared fixative (methanol: acetic acid 3:1, v/v), washed twice in fixative, and finally spread onto slides. Chromosomal preparations were stained with Giemsa solution (5%, 10 min) to identify the number and morphology of chromosomes in all 25 individuals used in this study. C-banding, visualizing blocks of constitutive heterochromatin was performed according to Sumner (1972) with slight modifications as described in Pokorná et al. (2014). After C-banding the chromosomes were counterstained with Vectashield DAPI anti-fade medium (Vector Laboratories, Burlingame, CA, USA) to enhance the contrast, and the microphotographs were taken in the fluorescent regime and inverted. Chromomycin A3 (CMA3) staining was performed to reveal GC genome composition as described by Sola et al. (1992) with using of Vectashield DAPI anti-fade medium (Vector Laboratories, Burlingame, CA, USA) as a mounting reagent.

Fluorescence in situ hybridization with telomeric probe and rDNA genes

The topology on the karyotype of the telomeric motif (TTAGGG)n and the rDNA genes within the genomes were analysed by fluorescence in situ hybridization (FISH). Telomeric FISH was performed using a Cy3-labelled PNA probe according to the manufacturer's instructions (Telomere PNA FISH Kit/Cy3, Dako). Probes for rDNA FISH experiments were produced by PCR with the primers pairs and thermal cycling conditions according Komiya and Takemura (1979) for 5S rDNA and Zhang et al. (2000) for 28S rDNA. The PCR reactions were carried out in a final volume of 25 μL consisting of 100 ng genomic DNA, 12.5 μL PPP master mix, 0.01 mM of each primer and PCR water to complete the volume (all reagents from TopBio, Prague, Czech Republic). Probes were indirectly labelled with biotin-16-dUTP (Roche, Mannheim, Germany) and digoxigenin-11-dUTP (Roche) through PCR reamplification of PCR products. Reamplification was carried out under the same condition as previous PCR reaction. Labelled PCR products were precipitated. A hybridization mixture was made consisting of hybridization buffer (Symonová et al., 2015), salmon sperm blocking DNA (15 μg/slide; Sigma-Aldrich, St. Louis, MO, USA) and differently labelled PCR.
products of both genes. The hybridization and detection procedure were carried out under conditions described by Symonová et al. (2015). The biotin-dUTP-labelled probes were detected by either the Invitrogen Cy3-Streptavidin (Invitrogen, San Diego, CA, USA; cat. no. 43-4315) or by the FITC-Streptavidin (cat. no. 43-4311). The digoxigenin-dUTP-labeled probes were detected either by the Roche Anti-Digoxigenin-Fluorescein (cat. no. 11207741910) or by the Anti-Digoxigenin-Rhodamin (cat. no. 11207750910). Finally, the slides were mounted with Vectashield DAPI anti-fade medium (Vector Laboratories, Burlingame, CA, USA).

Microscopy and Image Analyses

Chromosomal preparations were examined by an Olympus Provis AX 70 epifluorescence microscope. Images of metaphase chromosomes were recorded with a cooled Olympus DP30BW CCD camera. The IKAROS and ISIS imaging programs (Metasystems, Altlussheim, Germany) were used to analyse grey-scale images. The captured digital images from FISH experiments were pseudocolored (red for Anti-Digoxigenin-Rhodamin, green for Invitrogen FITC-Streptavidin) and superimposed using Adobe Photoshop software, version CS5. For CMA3/DAPI staining, the CMA3 signal was inserted into the red and the DAPI signal into the green channel to enhance the contrast between these two types of signals. The chromosomal categories were classified according to Levan et al. (1964) and chromosomes were ordered in decreasing size order.

Results

Karyotypes of all studied individuals possessed the same diploid chromosomal number, 2n = 48. Fundamental number (number of chromosomal arms) NF = 58 (Fig, 1A). At least five metaphases per individual have been inspected. A subset of 10 individuals with the most suitable chromosomal spreads was selected for further chromosomal analyses. C-banding revealed the accumulation of constitutive heterochromatin in the centromeric regions of approximately 40 chromosomes (Fig, 1B). One submetacentric chromosome possessed accumulation of heterochromatin on the whole p arm. FISH with an rDNA probe showed a nonsyntenic pattern, a signal in one pair of subtelocentric chromosomes for 28S rDNA and one pair of submetacentric chromosomes for 5S rDNA were detected (Fig, 1C). CMA3/DAPI
fluorescence staining revealed mostly homogeneously stained chromosomes with a balanced proportion of AT/GC, moderately GC-rich centromeric regions and extremely GC-rich signals in the centromeric region of one submetacentric chromosomal pair with size polymorphism in all individuals (Fig, 1D). We detected telomeric signals at the end of all chromosomes but no interstitial telomeric sites (ITSs) in studied individuals (Fig, 1E) were presented. The two 5SrDNA sites showed size heteromorphism, corresponding to GC-rich sites detected by CMA$_3$/DAPI staining while the larger signal also corresponded to the whole heterochromatinized arm revealed by C-banding.

Discussion

Genomes of teleost fishes have intrinsic characteristics that may be involved in the formation of the amazing diversity of this group. Particularly, there is now substantial evidence that an ancient event of genome duplication (tetraploidization) has provided the evolutionary framework for the diversification of gene functions and for speciation in fish (Volff, 2005). Karyotypes of several thousand fish species have been described in the decades since the development of various methods for characterizing chromosome sets (for last comprehensive review see (Arai, 2011), providing valuable information about the structure and evolution of fish genomes. However, similarly to other fish families in Australia, representatives of the family Atherinidae have been omitted from even basic conventional cytogenetic analyses.

Two previously studied Atherinidae species, *Atherina mochon* and *Hypoatherina bleekeri*, demonstrated diploid chromosome numbers 2n = 48. In this study we provide the first karyotype description of *C. amniculus* which is distributed throughout the Darling River system in Australia. The diploid chromosomal number of *C. amniculus* is 2n = 48, which is in concordance with previously published results, implicating karyotype stability in the speciation of this clade. Nevertheless, previously studied species differ in NF; karyotype of *Atherina mochon* (= *Atherina boyeri*) display NF = 54 (Vasil’ev, 1980), *Hypoatherina bleekeri* (= *Hypoatherina valenciennei*) display NF = 96 (Kikuno & Ojima, 1987) and *C. amniculus* possess NF = 56. These differences suggest microstructural chromosome changes in centromeric positions during the evolutionary diversification process. Unfortunately, more detailed comparison of atherinid species examined as yet with *C. amniculus* is impossible due to the lack of published information. No differentiated sex chromosomes have been described in previous analyses of species belonging to this clade. Similarly, we did not observe any karyotypic differences among the 25 individuals studied. *Craterocephalus amniculus*
displayed two signals for both major and minor rDNA genes located on nonsyntenic
chromosomes (Fig. 1). This pattern is the most frequent for the majority of teleost species
(Gornung, 2013). 5S rDNA signals displayed a size heteromorphism between homologous
chromosomes, which has also been observed in *Atherinella brasiiliensis*, a related lineage in
the Atheriniformes from the family Atherinopsidae (Sczepanski et al., 2007). 5S signals
correspond to GC-rich signals revealed by CMA₃/DAPI fluorescence staining (Fig. 1C) and
also co-localizes with constitutive heterochromatin, which was overall located in the
pericentromeric regions of 40 chromosomes. In order to document interstitial telomeric sites
(ITSs) as remnants of chromosomal rearrangements, we employed FISH with conserved
vertebrate telomeric repeat (TTAGGG)_n. However no ancestral chromosomal fusions
represented by ITSs were detected in *C. amniculus*.

In conclusion, our study revealed, for the first time, the karyotype and other
chromosomal characteristics of *C. amniculus* and that this species has retained the karyotypic
structure stability (2n = 48) typical for the family Atherinidae. By using advanced cytogenetic
techniques, our results have extended the knowledge of genome organization in the family
Atherinidae. Nevertheless, detailed cytogenetic characterization of more species from
Atherinidae is needed to provide a comprehensive overview of comparative cytotaxonomy of
the group.

Acknowledgements

Many thanks to Š. Pelikánová and P. Šejnohová for their assistance in the lab. The primary
authors would also like to express their gratitude to S. Stacey and S. Gavin for raising the
offspring analysed in this study.
References

Carphodactylidae), a member of the ancient gecko lineage. *Cytogenetic and Genome Research* 142:190–196. DOI: 10.1159/000358847.

Figure 1

Cytogenetics of *Craterocephalus amniculus*.

(A) Representative karyotype arranged from Giemsa-stained chromosomes. (B) C-banded chromosomes. The C-banding pattern was counterstained with DAPI and inverted; (C) Metaphase chromosomes after FISH with 28S rDNA (red signals) and 5S rDNA (green signals) probes; (D) CMA$_3$/DAPI stained chromosomes. The CMA$_3$ signal was inserted from green into red and the DAPI signal from blue into the green channel to enhance the contrast between these signals. (E) Metaphase chromosomes after FISH with telomeric probe. Particular images were adjusted separately before assembling the plate. Bars equal 10 μm.