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Cellular heterogeneity is important to biological processes, including cancer1,2 and develop-

ment3. However, proteome heterogeneity is largely unexplored because of the limitations of

existing methods for quantifying protein levels in single cells. To alleviate these limitations,

we developed Single Cell ProtEomics by Mass Spectrometry (SCoPE-MS), and validated

its ability to identify distinct human cancer cell types based on their proteomes. We used

SCoPE-MS to quantify over a thousand proteins in differentiating mouse embryonic stem

(ES) cells. The single-cell proteomes enabled us to deconstruct cell populations and infer pro-

tein abundance relationships. Comparison between single-cell proteomes and transcriptomes

indicated coordinated mRNA and protein covariation. Yet many genes exhibited functionally

concerted and distinct regulatory patterns at the mRNA and the protein levels, suggesting

that post-transcriptional regulatory mechanisms contribute to proteome remodeling during

lineage specification, especially for developmental genes. SCoPE-MS is broadly applicable to

measuring proteome configurations of single cells and linking them to functional phenotypes,

such as cell type and differentiation potentials.
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Cellular systems, such as tissues, cancers, and cell cultures, consist of a variety of cells with

distinct molecular and functional properties. Characterizing such cellular differences is key to

understanding normal physiology, combating cancer recurrence1,2, and enhancing targeted differ-

entiation for regenerative therapies3; it demands quantifying the proteomes of single cells.

However, quantifying proteins in single mammalian cells remains confined to fluorescent imag-

ing and antibodies. Fluorescent proteins have proved tremendously useful but are limited to quan-

tifying only a few proteins per cell and sometimes introduce artifacts4. Multiple methods for quan-

tifying proteins in single cells have been recently developed, including single-cell Western blots5,

CyTOF6, and Proseek Multiplex, an immunoassay readout by RT-PCR7. These methods enabled

quantifying up to a few dozen endogenous proteins but their throughput and accuracy are limited

by the availability of highly-specific antibodies that bind their cognate proteins stoichiometrically.

We aimed to overcome these limitations by developing a high-throughput method for Single

Cell ProtEomics by Mass Spectrometry (SCoPE-MS) that can quantify thousands of proteins in

single mammalian cells. To develop SCoPE-MS, we resolved two major challenges: (i) delivering

the proteome of a mammalian cell to a MS instrument with minimal protein losses and (ii) simul-

taneously identifying and quantifying peptides from single-cell samples. To overcome the first

challenge, we manually picked live single cells under a microscope and lysed them mechanically

(by Covaris sonication in glass microtubes) in phosphate-buffered saline, Fig. 1a. This method

was chosen to obviate chemicals that may undermine peptide separation and ionization or sam-

ple cleanup that may incur significant losses. The proteins from each cell lysate were quickly

denatured at 90 oC and digested with trypsin at 45 oC overnight, Fig. 1a; see Methods for full

experimental details.

To overcome the second challenge, we made novel use of tandem mass tags (TMT). This

technology was developed for multiplexing8, which affords cost-effective high-throughput. Even

more crucial to our application, TMT allows quantifying the level of each TMT-labeled peptide

in each sample while identifying its sequence from the total peptide amount pooled across all

samples8. SCoPE-MS capitalizes on this capability by augmenting each single-cell set with a

sample comprised of ∼ 100 − 200 carrier cells that provide enough ions for peptide sequence

identification, Fig. 1a. Increasing the number of carrier cells increases peptide identification rates
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but decreases quantitative precision. The carrier cells also help with the first challenge by reducing

losses from single cells, since most of the peptides sticking to tips and tube walls originate from

the carrier cells. Thus, the carrier cells help overcome the two major challenges.

Quantification of TMT-labeled peptides relies on reporter ions (RI) whose levels reflect both

peptide abundances and noise contributions, such as coisolation interference and background noise8,9.

To evaluate the contribution of background noise to single-cell RI quantification, we estimated the

signal-to-noise ratio (SNR), Extended Data Fig. 1. The estimates indicated that RI intensities are

proportional to the amount of labeled single-cell proteomes, and very low for channels left empty.

These data suggest that the signal measured in single cells exceeds the background noise by 10-

fold or more. As an added SNR control for every TMT set, SCoPE-MS leaves the 130N channel

empty, thus simultaneously avoiding isotopic cross-contamination from the carrier cells in channel

131 and having a channel that reflects the background noise.

To evaluate the ability of SCoPE-MS to distinguish different cell types, we prepared two label-

swapped and interlaced TMT sets with alternating single Jurkat and U-937 cells, two blood cancer

cell lines with average cell diameter of only 11 µm (Fig. 1b). The levels of all 583 proteins quan-

tified in single cells were projected onto their principle components (PC). The three-dimensional

projections of single-cell proteomes clustered by cell type (Fig. 1c), suggesting that SCoPE-MS

can identify cell types based on their proteomes. Next, we identified proteins whose levels vary

less within a cell type than between cell types. Among the 117 proteins showing such trends at

FDR < 2%, we plotted the distributions for seven in Fig. 1d. Some of these proteins are expected

to be cell type specific, such as the higher abundance of Complement C3 in the U-937 cells, which

are myeloid lineage precursors for macrophages. The consistency of protein fold-changes between

Jurkat and U-937 cells is also reflected in the positive correlations among fold-changes estimated

from different cells and TMT channels, Extended Data Fig. 2.

Next, we quantified single-cell proteome heterogeneity and dynamics during ES cell differ-

entiation. To initiate differentiation, we withdrew leukemia inhibitor factor (LIF) from ES cell

cultures and transitioned to suspension culture; LIF withdrawal results in complex and highly het-

erogeneous differentiation of epiblast lineages in embryoid bodies (EB). We used SCoPE-MS to

quantify over a thousand proteins at FDR = 1 % (Extended Data Fig. 3a) and their pair-wise cor-

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2767v1 | CC BY 4.0 Open Access | rec: 31 Jan 2017, publ: 31 Jan 2017



relations (averaging across single cells) in days 3, 5, and 8 after LIF withdrawal (Fig. 2a). Cells

from different days were processed together to minimize batch biases10.

We first explored protein covariation as reflected in the overrepresentation of functionally re-

lated proteins within highly coherent clusters of protein-protein correlations, Fig. 2a. The large

clusters on all days are enriched for proteins with biosynthetic functions. This covariation is con-

sistent with the possibility of heterogeneous and asynchronous slowing of cell growth as cells

differentiate. The smaller clusters correspond to lineage-specific proteins and more specialized

functions.

Next, we projected the proteomes of single cells from all days (190 cells) onto their PCs,

Fig. 2b. The projections cluster by date; indeed, PC 1 loading correlate to the days post LIF with-

drawal, Extended Data Fig. 3b. The small clusters of lineage-specific genes (Fig. 2a) suggest that

we have quantified proteomes of distinct cell states; thus we attempted to identify cell clusters by

projecting the EB proteomes onto their PCs and identifying sets of proteins that are concertedly

regulated in each cluster, Fig. 2c,d. The projection resulted in clusters of cells, whose identity is

suggested by the dominant proteins in the singular vectors. We identified biological functions over-

represented11 within the distribution of PC loadings and colorcoded each cell based on the average

levels of proteins annotated to these functions. The PCs do not correlate to missing data, indicat-

ing that our experimental design has overcome challenges common to high-throughput single-cell

data10; see Methods. These results suggest that SCoPE-MS data can meaningfully classify cell

identity for cells from complex and highly heterogeneous populations.

Klein et al.12 recently quantified mRNA heterogeneity during ES differentiation, and we used

their inDrop data to simultaneously analyze mRNA and protein covariation and to directly test

whether genes coexpressed at the mRNA level are also coexpressed at the protein level. To this

end, we computed all pairwise correlations between RNAs (Fig. 3a) and proteins (Fig. 3b) for all

genes quantified at both levels in cells undergoing differentiation for 7 and 8 days. Clustering

hierarchically the correlation matrices results in 3 clusters of genes. To compare these clusters,

we computed the pairwise Jaccard coefficients, defined as the number of genes present in both

classes divided by the number of genes present in either class, i.e., intersection/union). The results

(Fig. 3c) indicate that the largest (green) cluster is 55 % identical and the medium (blue) cluster is
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33 % identical. This cluster stability is also reflected in a positive correlation between correspond-

ing mRNA and protein correlations, Fig. 3d. The magnitude of this correlation is comparable to

protein-mRNA correlations from bulk datasets11,13 and testifies strongly for the quantitative accu-

racy of both inDrop and SCoPE-MS.

Having established a good overall concordance between mRNA and protein covariation, we

next explored whether and how much this concordance varies between genes with different bio-

logical functions. The covariation concordance of a gene was estimated as the similarity of its

mRNA and protein correlations, i.e., the correlation between the corresponding correlation vec-

tors14. The median concordance of ribosomal proteins (RP) of both the 60S (RPL) and 40S (RPS)

is significantly higher than for all genes, Fig. 3e. This result indicates that RPL and RPS genes have

significantly (p < 10−20) more similar gene-gene correlations at the mRNA and the protein levels

than the other quantified genes. Some RPs correlate less well to the remaining RPs (Extended Data

Fig. 4), which may reflect lineage specific ribosome remodeling, but this possibility needs to be

evaluated more directly with isolated ribosomes15. In contrast to RPs, genes functioning in tissue

morphogenesis, proteolysis, and development have significantly (p < 10−3) lower concordance at

the mRNA and protein level than all genes, Fig. 3e.

The power of MS proteomics had been circumscribed to bulk samples. Indeed, the TMT

manufacturer recommends 100 µg of protein per channel, almost 106 more than the protein content

of a typical mammalian cell. SCoPE-MS bridged this gap by efficient sample preparation and the

use of carrier cells. These innovations open the gates to further improvements (e.g., increased

multiplexing) that will make single-cell MS proteomics increasingly powerful.

SCoPE-MS enabled us to classify cells and explore the relationship between mRNA and protein

levels in single mammalian cells. This first foray into single mammalian proteomes demonstrates

that mRNA covariaion is predictive of protein covariaion even in single cells. It further establishes

the promise of SCoPE-MS to quantitatively characterize single-cell gene regulation and classify

cell types.
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Figure Captions

Figure 1 | Validating SCoPE-MS by classifying single cancer cells based on their proteomes.
(a) Conceptual diagram and work flow of SCoPE-MS. Individually picked live cells are lysed
by sonication, the proteins in the lysates are digested with trypsin, the resulting peptides labeled
with TMT labels, combined and analyzed by LC-MS/MS (Orbitrap Elite). (b) Design of control
experiments used to test the ability of SCoPE-MS to distinguish U-937 cells from Jurkat cells.
(c) Unsupervised principal component (PC) analysis using data for all quantified proteins from
the experiments described in panel (b) stratifies the proteomes of single cancer cells by cell type.
(d) Distributions of protein levels across single U-937 and Jurkat cells indicate cell-type-specific
protein abundances.

Figure 2 | Identifying protein covariation and cell clusters across differentiating ES cells.
(a) Clustergrams of pairwise protein-protein correlations in cells differentiating for 3, 5, and 8 days
after LIF withdrawal. The correlation vectors were hierarchically clustered based on the cosine of
the angles between them. (b) The proteomes of all single EB cells were projected onto their PCs,
and the marker of each cell color-coded by day. The single-cell proteomes cluster by day, a trend
also reflected in the distributions of PC 1 loadings by day, Extended Data Fig. 2. (c, d) The
proteomes of cells differentiating for 8 days were projected onto their PCs, and the marker of each
cell color-coded based on the normalized levels of all proteins from the indicated gene-ontology
groups.

Figure 3 | Coordinated mRNA and protein covariation in differentiating ES cells.
(a) Clustergram of pairwise correlations between mRNAs with 2.5 or more reads per cell as quan-
tified by inDrop in single EB cells12. (b) Clustergram of pairwise correlations between proteins
quantified by SCoPE-MS in 12 or more single EB cells. (c) The overlap between corresponding
RNA from (a) and protein clusters from (b) indicates similar clustering patterns. (d) Protein-
protein correlations correlate to their corresponding mRNA-mRNA correlations. Only genes with
significant mRNA-mRNA correlations were used for this analysis. (e) The concordance between
corresponding mRNA and protein correlations (computed as the correlation between between cor-
responding correlations14) is high for ribosomal proteins (RPL and RPS) and lower for develop-
mental genes; distribution medians are marked with red pluses. Only the subset of genes quantified
at both RNA and protein levels were used for all panels.
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Figure 1 | Validating SCoPE-MS by classifying single cancer cells based on their proteomes.
(a) Conceptual diagram and work flow of SCoPE-MS. Individually picked live cells are lysed
by sonication, the proteins in the lysates are digested with trypsin, the resulting peptides labeled
with TMT labels, combined and analyzed by LC-MS/MS (Orbitrap Elite). (b) Design of control
experiments used to test the ability of SCoPE-MS to distinguish U-937 cells from Jurkat cells.
(c) Unsupervised principal component (PC) analysis using data for all quantified proteins from
the experiments described in panel (b) stratifies the proteomes of single cancer cells by cell type.
(d) Distributions of protein levels across single U-937 and Jurkat cells indicate cell-type-specific
protein abundances.
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Figure 2 | Identifying protein covariation and cell clusters across differentiating ES cells.
(a) Clustergrams of pairwise protein-protein correlations in cells differentiating for 3, 5, and 8 days
after LIF withdrawal. The correlation vectors were hierarchically clustered based on the cosine of
the angles between them. (b) The proteomes of all single EB cells were projected onto their PCs,
and the marker of each cell color-coded by day. The single-cell proteomes cluster by day, a trend
also reflected in the distributions of PC 1 loadings by day, Extended Data Fig. 2. (c, d) The
proteomes of cells differentiating for 8 days were projected onto their PCs, and the marker of each
cell color-coded based on the normalized levels of all proteins from the indicated gene-ontology
groups.
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d e

Figure 3 | Coordinated mRNA and protein covariation in differentiating ES cells.
(a) Clustergram of pairwise correlations between mRNAs with 2.5 or more reads per cell as quan-
tified by inDrop in single EB cells12. (b) Clustergram of pairwise correlations between proteins
quantified by SCoPE-MS in 12 or more single EB cells. (c) The overlap between corresponding
RNA from (a) and protein clusters from (b) indicates similar clustering patterns. (d) Protein-
protein correlations correlate to their corresponding mRNA-mRNA correlations. Only genes with
significant mRNA-mRNA correlations were used for this analysis. (e) The concordance between
corresponding mRNA and protein correlations (computed as the correlation between between cor-
responding correlations14) is high for ribosomal proteins (RPL and RPS) and lower for develop-
mental genes; distribution medians are marked with red pluses. Only the subset of genes quantified
at both RNA and protein levels were used for all panels.
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Extended Data Figures
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Extended Data Figure 1 | Contribution of background noise to quantification of peptides in

single cells. (a) Reporter ion (RI) intensities in a SCoPE set in which the single cells were omitted

while all other steps were carried out, i.e., trypsin digestion, TMT labeling and addition of carrier

cells in channel 131. Thus, RI intensities in channels 126 − 130C correspond to background

noise. The distribution of RI intensities in the inset shows that the RI for most peptides in channels

126 − 130C are zero, i.e., below the MaxQuant noise threshold. The y-axis is limited to 150

to make the mean RI intensities visible. The mean RI intensity for single-cell channels is about

500. (b) Mean RI intensities for a TMT set in which only 6 channels contained labeled proteome

digests and the other 4 were left empty. Channels 126, 127N, 128C, and 129N correspond to

peptides diluted to levels corresponding to 100, 100, 200 and 300 picograms of cellular proteome,

channel 131 corresponds to the carrier cells (bars truncated by axes), and the remaining channels

were left empty. The RI for most peptides are not detected in the empty channels, and their mean

levels very low. This suggests that background noise is low compared to the signal from peptides

corresponding to a single cell.
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Extended Data Figure 2 | Consistency of protein ratios between Jurkat and U-937 cells esti-

mated from different combinations of TMT channels. (a) A correlation matrix of all pairwise

Pearson correlations among the ratios of peptide abundances in U-937 and in Jurkat cells from Set

1 in Fig. 1b. The superscripts corresponds to the TMT labels ordered by mass, with 1 being 126, 2

being 127N and so on.
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Extended Data Figure 3 | Proteome coverage of differentiating ES cells and distributions

of the PC 1 loadings by day of differentiation. (a) Distribution of protein abundances for all

proteins quantified from 107 differentiating ES cells or in at least one single-cell SCoPE-MS set

at FDR ≤ 1 %. The probability of quantifying a protein by SCoPE-MS is close to 100 % for the

most abundant proteins quantified in bulk samples and decreases with protein abundance, for total

of 1526 quantified proteins. (b) The proteomes of all differentiating single cells were decomposed

into singular vectors and values, and distributions of the loading (elements) of the singular vector

with the largest singular value, i.e., PC 1, shown as violin plots. Individual blue circles correspond

to single cells, and the red crosses correspond to the medians for each day.
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