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Using remote sensing data of sea surface temperature (SST), chlorophyll-a (Chl-a) together
with catch data, the pelagic hotspots of Skipjack tuna (SKPJ) were identified. MODIS/Aqua
satellite data and the fish catch data were obtained during 2002-2016 period. Empirical
cumulative distribution frequency (ECDF) model of satellite-based oceanographic data in
relation to skipjack fishing was used for the initial statistical analysis and the results
showed that key pelagic habitat corresponded mainly with the 0.4 – 0.7 mg m-3 Chl-a
concentration. Chl-a represents the phytoplankton that attracts the food items of SKPJ like
zooplankton and nekton The favorable SST range for SKPJ is 26 - 27 

0
C which provides

suitable thermocline and an optimum level of upwelling to circulate nutrients needed for
the primary production. The high total catches and CPUEs were found within the months of
September to December and the optimum levels of Chl-a, SST also were observed in
similar months. Hence, the South-West monsoon season was identified as the best and
peak season of SKPJ fisheries. SST and Chl-a are important indicators to detect the habitats
of SKPJ and the maps prepared can be used in the future to cost-effectively and efficiently
identify and demarcate the biological conservation regions or fisheries zones of SKPJ.
According to GAM the 0.3 - 0.6 mg m-3 Chl-a, 28 - 28.5 

0
C SST in Western and 0.25 - 0.3 mg

m-3 Chl-a and 28.5 - 28.8
0
C SST in Eastern were found as highly correlated predictor

variables value ranges with SKPJ abundance. The deviances explained in above areas in
GAM were 90.8% and 61.4% respectively. The GAM was considered as a robustly dealing
method with nonlinear relationships and it can be used to model the fish catch abundance
with influencing variables significantly since it could predict the CPUE values greater than
90% similarly to nominal CPUEs in both subregions of the study area.
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22 ABSTRACT

23 Using remote sensing data of sea surface temperature (SST), chlorophyll-a (Chl-a) together with 

24 catch data, the pelagic hotspots of Skipjack tuna (SKPJ) were identified. MODIS/Aqua satellite 

25 data and the fish catch data were obtained during 2002-2016 period. Empirical cumulative 

26 distribution frequency (ECDF) model of satellite-based oceanographic data in relation to 

27 skipjack fishing was used for the initial statistical analysis and the results showed that key 

28 pelagic habitat corresponded mainly with the 0.4 – 0.7 mg m-3 Chl-a concentration. Chl-a 

29 represents the phytoplankton that attracts the food items of SKPJ like zooplankton and nekton  

30 The favorable SST range for SKPJ is 26 - 27 0C which provides suitable thermocline and an 

31 optimum level of upwelling to circulate nutrients needed for the primary production. The high 

32 total catches and CPUEs were found within the months of September to December and the 

33 optimum levels of Chl-a, SST also were observed in similar months. Hence, the South-West 

34 monsoon season was identified as the best and peak season of SKPJ fisheries. SST and Chl-a are 

35 important indicators to detect the habitats of SKPJ and the maps prepared can be used in the 

36 future to cost-effectively and efficiently identify and demarcate the biological conservation 

37 regions or fisheries zones of SKPJ. According to GAM the 0.3 - 0.6 mg m-3 Chl-a, 28 - 28.5 0C 

38 SST in Western and 0.25 - 0.3 mg m-3 Chl-a and 28.5 - 28.80C SST in Eastern were found as 

39 highly correlated predictor variables value ranges with SKPJ abundance. The deviances 

40 explained in above areas in GAM were 90.8% and 61.4% respectively. The GAM was 

41 considered as a robustly dealing method with nonlinear relationships and it can be used to model 

42 the fish catch abundance with influencing variables significantly since it could predict the CPUE 

43 values greater than 90% similarly to nominal CPUEs in both subregions of the study area.

44
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48 Introduction

49 Sri Lanka is one of the oldest and one of the most famous tuna producing islands in the Indian 

50 Ocean. Yellowfin tuna, Skipjack tuna, Marlin, Sailfish, Swordfish, rays, and sharks are some 

51 commercially valuable fish species live around Sri Lanka (Ariyawansa, Wijendra, and 

52 Senadheera 2003; Elepathage and Tang 2018; Indian ocean tuna commission 2019). Among 

53 these species Skipjack tuna (Katsuwonus pelamis) is an important migratory fish that 

54 significantly contributes to the economy and the global fishery industry. Skipjack tuna (SKPJ) 

55 plays an important role in tropics in balancing the ecosystems (Yen et al. 2016). SKPJ may 

56 relocate searching for the environment satisfy their physiological and phenological needs since 

57 they are sensitive to the environment change (Yen et al. 2012).

58 Some studies have recognized heat exchange as a factor that regulates the spatial range and depth 

59 of the habitats of tuna species and thus the catchability of fishing operations (Brill et al. 2005). 

60 Temperature variations in oceanic surface waters specially near coastal boundaries and near the 

61 equator are corelated to heat exchange at the ocean-atmosphere interface and to heat transported 

62 by ocean currents (Alexander et al. 2002; Luis and Kawamura 2004). The steep temperature 

63 gradient in the water column comprised with two layers with different temperatures is called 

64 thermocline (Qian, Hu, and Zhu 2003; Schott, Dengler, and Schoenefeldt 2002). When the wind 

65 blows, it mixes the surface waters but only down to the thermocline. The density difference is 

66 sufficiently strong to resist further mixing, and so the heat accumulates mostly near the surface 

67 (Jana et al. 2018). As the major indicator of the heat exchange, thermocline and stratification, sea 

68 surface temperature (SST) is used for investigating the distribution of migratory fish species 

69 (Abdellaoui B 2017; Brill et al. 2005; Lan, Evans, and Lee 2013; Yen et al. 2016). 
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70 Ocean temperatures and other physical and chemical variables change seasonally and they 

71 regulate the ocean climate (Badjeck et al. 2010; Fernandes et al. 2013). These changes in ocean 

72 affect several biotic components such as phytoplankton distribution and abundance (Elepathage 

73 and Tang 2018; Elepathage, Tang, and Wang 2018; Kong et al. 2019; MacNeil et al. 2010).

74 Phytoplankton is the primary  biological component in the ocean that responsible for nutrient and 

75 energy transformations within both coastal and open ocean waters. The ability to produce energy 

76 from carbon dioxide and solar energy makes these organisms’ key players in the global carbon 

77 cycle too (Kong et al. 2019). Conversely, blooms of toxic or noxious species of phytoplankton 

78 can disrupt energy transfer in planktonic food webs and result in illness or death of mammals, 

79 birds, and commercially important fish and shellfish (Hallegraeff 2010). SKPJ also depends on 

80 zooplankton and nekton (Zainuddin et al. 2017). 

81 However, climate change has lead to several differences in ocean temperature and ecosystem 

82 stability (Chan et al. 2019; Pörtner and Peck 2010). Since the rate of climate change and the 

83 impacts differ in different oceanic environment regions (Pörtner and Peck 2010), and since there 

84 are some genetic variations and the adaptation differences among different communities of SKPJ 

85 (Dammannagoda, Hurwood, and Mather 2011) the favorable conditions for these communities 

86 also may be different in each region. However, the optimum environmental conditions for these 

87 species in the Indian Ocean region around Sri Lanka have not been studied sufficiently.

88 At present, the physical, chemical and biological components of the ocean can be detected using 

89 satellite remote sensing (SRS) data and geographic information system (GIS) methods (Kong et 

90 al. 2019; Nehorai et al. 2009; D. L. Tang, Kawamura, and Luis 2002; D. Tang and Pan 2011) and 

91 they provide powerful tools to detect potential fishing grounds, particularly for highly migratory 

92 fish species (Elepathage, Tang, and Wang 2018). Hence, in this paper, using SRS and GIS we 
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93 studied the extent of the effect of Sea Surface Temperature (SST) and phytoplankton density 

94 (through Chl-a) to skipjack in the Indian Ocean region around Sri Lanka. The major objectives of 

95 the study were to identify the pattern of temperature, Chl-a, and SKPJ variations in Sri Lankan 

96 ocean region, to identify the optimum levels of SST and Chl-a  favorable for SKPJ, to map the 

97 potential hot spot habitats of SKPJ according to the results and to model the SKPJ abundance 

98 according to the influencing factors.

99

100 Materials and methods

101 Study area

102 The area within latitudes 20N – 13.50N and longitudes 76.50E - 880E was the target area of this 

103 study and indicated in Figure 1. The study area was studied as four regions in initial analysis 

104 (NorthWest: NW, North East:NE, South West:SW, South East:SE) and as 2 region in modeling 

105 study (Western and eastern).

106 Satellite data

107 Aqua/MODIS satellite remote sensing data of SST and Chl-a were used to derive environmental 

108 variables. The data from 2002-2016 were used for initial analysis. Gillnet fishery data of SKPJ 

109 were obtained from the Indian Ocean Tuna Commission (IOTC) and The National Aquatic 

110 Resources Research and Development Agency (NARA)- Sri Lanka. Fishing frequency data can 

111 be used as an index of fish occurrence and CPUE data is a good proxy of fish abundance 

112 (Lehodey et al. 1998).

113 Fish catch per unit effort was calculated in 

114 CPUE Skipjack tuna = Number of fish caught/ Number of trips of gill net fishing

115 Method
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116 The SST and Chl-a data were extracted under the fish catch points and the monthly spatial 

117 distribution maps of the environment variables were prepared. Aqua/MODIS images were 

118 processed by SeaDAS, ILWIS 3.3 and Arc GIS 10.5 software. The point maps with fish catch 

119 data were interpolated using ArcGIS 10.5 to allege the potential fishing grounds.

120 To describe the relationship between oceanographic conditions of SST, Chl-a and fish CPUE, 

121 empirical cumulative distribution function (ECDF) analysis was used. The ECDF functions 

122 (Sukresno et al. 2015) can be mathematically represent as follows:

123 (1)f(t) =
1

n
∑n

i = 1
l(xi)

124  

125 With the indicator function

126 𝑙(𝑥𝑖) = {1,  𝑥𝑖 ≤ 1
0,  𝑥𝑖 > 1�

127 (2)g(t) =
1𝑛∑𝑛𝑖 = 1

yi

y
l(xi)

128

129 (3)𝐷(𝑡) = max |𝑓(𝑡) ‒  𝑔(𝑡)|

130

131 Where, 

132 f(t): empirical cumulative frequency distribution function,

133 g(t): catch-weighted cumulative distribution function,

134 l(xi): indication function 

135 D(t): the absolute value of the difference between two curves f(t) and g(t) at any point t, and 

136 assessed by standard Kolmogorov- Smirnov test,

137 n: the number of fishing trips

138 xi : the measurement for satellite-derived oceanographic variables in a fishing trip i,
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139 t: an index, ranging the ordered observations from lowest to the highest value of the 

140 oceanographic variables,

141 yi: the CPUE obtained in a fishing trip i,

142 y: the estimated mean of CPUE for all fishing trips. The coordinate labeled “max” represents the 

143 specific value of the variables at which the difference between the two curves (׀g(t)-f(t)׀) was 

144 maximum.

145 The graphs were drawn for the f(t), g(t) and D(t) values to analyze the pattern of distribution and 

146 to find out D(t) =max |f(t) – g(t)| graphically. Possible fishing grounds were demarcated in each 

147 map according to the time using the results of ECDF analysis.

148 Then to improve the nonlinear-correlation Generalized Additive Model (GAM) was tested 

149 approaching by means of smoothing functions fn(x) (Hastie and Tibshirani 1990). For GAM 

150 analysis, the data during 2014-2016 were used as the train data set ant it was conducted in Ri386 

151 3.4.2. The aim of this investigation was to identify the nonlinear relationship between the 

152 abundance of SKPJ and environmental conditions. The year and the month were used as the 

153 seasonal factors and the cubic spline function used in GAM can be written as

154 𝑆𝐾𝑃𝐽 𝐶𝑃𝑈𝐸 = 𝑌𝑒𝑎𝑟 + 𝑀𝑜𝑛𝑡ℎ + 𝑠(𝑆𝑆𝑇) + 𝑠(𝐶ℎ𝑙 ‒ 𝑎) + 𝜀
155 Where ε = interactions.

156 GAM was applied to Western and eastern subregions separately. Using the model results the 

157 CPUE values for both regions were predicted. The similarity of the predicted values and the 

158 nominal values were tested using paired T-test in SPSS 16.

159 Results

160 Chl-a and SST change within the study area
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161 In this study, we analyzed the variations of the SST and Chl-a during 2002-2015 initially. The 

162 ocean region around Sri Lanka experiences two major monsoons which are called South West 

163 monsoon (Summer monsoon) which prevails from June - September with heavy rains and the 

164 North East monsoon (Winter monsoon) occur from December - April (De Vos, Pattiaratchi, and 

165 Wijeratne 2014). These monsoonal events have half year cycles with reversing winds and 

166 currents. They make several changes in SST and the upwelling scenario (Rath et al. 2017).

167 Previous studies have found that the potential habitat for SKPJ lies within the warm surface 

168 layers of tropical and subtropical oceans (Akaomi et al. 2005; Lehodey et al. 1998) and their 

169 migration, distribution, and abundance are closely linked with oceanic fronts and eddies 

170 (Andrade 2003). During the summer monsoon, heavy rainfalls and enormous river discharge into 

171 the study area form a barrier layer between low-salinity surface waters and highly saline deep-

172 ocean waters (Girishkumar et al. 2011). The stratification occurs with the barrier layer formation 

173 makes small-scale mixing across this layer which leads to heat mass momentum and 

174 biogeochemical fluxes (Vinayachandran, Murty, and Ramesh Babu 2002). Large-scale currents 

175 and eddies transport the low saline water towards the center of the Bay of Bengal which is 

176 located at the Eastern side of the study area. These eddies degenerate into submesoscale and 

177 create sharp salinity fronts and filaments (Sengupta et al. 2016). Lateral mixing is linked with 

178 these submesoscale dynamics and they regulate the SST (Jinadasa et al. 2016). During the SW 

179 monsoon with the high precipitation and lateral mixing SST gradually decreases while Chl-a 

180 increase, providing high biological productivity (Sarangi and Devi 2017). Hence it provides the 

181 clue to understand the SKPJ is linked with eddies due to the low SST and high primary 

182 productivity. The monthly plots in Figure 2 show the reducing SST and the increasing Chl-a 

183 within the study region from July to December in 2006 as an example. 
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184 SKPJ catch distribution in the study region

185 Several studies have found that SKPJ distribution is affected by the SST and the Chl-a (Andrade 

186 2003; Lehodey et al. 1998; Zainuddin et al. 2017). The catch distribution of SKPJ from July - 

187 December in 2006 is mapped in Figure 3. Figure 2 and Figure 3 demonstrate a visible correlation 

188 of SKPJ with SST and Chl-a. The SKPJ catches are comparatively high during September - 

189 December and the cold SST and comparatively high Chl-a also can be observed in similar 

190 months within the study period. The graphs in Figure 4 demonstrate the fish catch frequency 

191 variation with the studied influencing factors.

192 Favorable conditions for SKPJ according to ECDF analysis and GAM

193 The ECDF plots of the relationship between studied fish CPUE and the influencing 

194 environmental variables are indicated in Figure 5. The variation SKPJ CPUE with Chl-a and SST 

195 monthly averages during 2014-2016 in Western and Eastern areas are indicated in Figure 7. The 

196 graphs show a seasonal biphasic cycle in the study area in all variables. The nonlinear 

197 relationships (GAM) between the SKPJ CPUE, SST, and Chl-a concentration are indicated in 

198 Figure 8. The ash area shows the 95% confidence level and the area it highly coincides with the 

199 fitted line can be considered as the highly correlated value range. The plots of the smoothing 

200 parameter selection done with the Generalized Cross Validation (GCV) method are indicated in 

201 Figure 9. Q-Q plots in both areas (Figure 9:A and E) coincides with straight line closely, indicate 

202 reasonable distributional assumption. The plots in B and F suggest that variance is not varying 

203 significantly as the mean increases. The C and G are the plots of response against fitted values. 

204 They demonstrate a positive linear relation with a good deal of scatter. The histograms of 

205 residuals (D and H) are consistent with normality. In the Eastern area, the basic dimension (k) 

206 was comparatively high in SST with the values of 8.00, 1.23, and 0.88 for edf, k-index, and p-
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207 value respectively. For Chl-a they were 2.65, 0.94, 0.26 respectively. In Eastern area in both SST 

208 and Chl-a basic dimensions were high and the above values were 1.00, 1.17, 0.82 for Chl-a and 

209 3.47, 1.25 and 0.88 for SST respectively. k' value was 9 for all the influencing variables. Usually 

210 Low p-value with k-index<1 may show that k is too low, especially if edf is close to k'. 

211 Discussion

212 Preliminary analysis and ECDF analysis

213 During the study period, the highest total catch of SKPJ was found in September. When NW, 

214 NE, SW, SE areas were considered separately in Economic Exclusive Zone (EEZ) of Sri Lanka 

215 the highest total catches and the CPUEs of the SKPJ were found in December in NE and NW 

216 regions and in September in SE and SW regions. The SST and Chl-a values extracted from the 

217 satellite images of the points which the positive fish catches had been obtained, showed a 

218 particular range which we can assume as the approximately suitable ranges of SST and Chl-a 

219 concentration for SKPJ. In the points that SKPJ were caught the SST and Chl-a were found in 

220 the ranges of 24-27 0C and 0-1.24 mg m-3 respectively. The SST and Chl-a values found under 

221 the highest catches were ~25 0C and ~0.23 mg m-3 respectively. 

222 According to the graphs in Figure 4 with fish catch frequency variation with the influencing 

223 factor the SST and Chl-a range that SKPJ frequent catches were observed in 26-29 0C and 0 – 

224 0.50 mg m-3. According to the ECDF analysis, a strong correlation of SKPJ was identified with 

225 the 26-27 0C SST and 0.4 – 0.7 mg m-3 Chl- a. The ECDF analysis shows that favorable Chl-a 

226 for SKPJ has more specific range than the previous preliminary study. In the peak season of 

227 SKPJ fishery in the study region, a fairly well distribution of phytoplankton can be observed.

228 The maps in Figure 6 were prepared according to the optimum SST and Chl-a values identified 

229 from the ECDF analysis. They can be used to demarcate the biological hotspot habitats of SKPJ 
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230 since there is a high probability of the SKPJs recruitment and feeding occurrence in the 

231 demarcated area since the favorable conditions for them are abundant in that area. 

232 Generalized additive model

233 The monthly averages of the variables show a hot season with high SST from February to April 

234 and a comparatively cold season from May to December. In between that SST become a bit 

235 higher from August to October. The inter-annual variability of SST was not significantly large. 

236 Chl-a is low in the months with high SST and has come to a peak between June and September 

237 in both areas. The interannual variability of Chl-a is also not comparatively high. However in 

238 2016 September in the Western area an unexpected Chl-a of (5.1mg m-3) could be observed. In 

239 the Western area, the highest mean CPUEs were found in February- March, and August- 

240 September months. In Eastern area, they were found during January- March, and July- 

241 September months.

242 Relationship analysis with GAM

243 Generalized additive model (GAM) was used to highlight the relationship between predictor 

244 variables (SST and Chl-a), seasonal factor and fluctuations of CPUE. In the Western area the 

245 R2.(adj), deviance explained and GCV values of the GAM were  0.854, 90.8% and 0.3274 

246 respectively. In Eastern area they were 0.54, 61.4% and 0.12743 were respectively. That shows 

247 the smoothed values in Western area more significantly explain the variations of SKPJ CPUE 

248 variations than it is accomplished by GAM in Eastern area. According to GAM s(Chl-a)  and 

249 s(SST), both were statistically significant variables that effect to the SKPJ CPUE abundance and 

250 their p-values were  0.00378 and 2.14e-09 respectively. In Eastern area s(SST) was significant 

251 (p-value= 0.032) and Chl-a had a p-value of 0.141. In Western area 0.3-0.6 mg m-3 Chl-a and 

252 SST from 28-28.5 0C seemed highly correlated with SKPJ CPUE variations. In Eastern area 
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253 0.25-0.3 mg m-3 Chl-a and 5 28.5- 28.8 0C were correlated more. In both areas, the residuals 

254 showed a normal distribution and the fitted values were smoothly fitted on the response. 

255 According to the GAM, the predicted values were calculated to both areas and in the Western 

256 area, the predicted values showed a 93% similarity while in Eastern area 90% similarity 

257 according to the t-test.

258 Conclusion

259 Habitat hotspots for skipjack tuna in the ocean region around Sri Lanka are influenced by the 

260 optimum combination of SST and Chl-a. The key pelagic habitat corresponded mainly with the 

261 0.4 – 0.7 mg m-3 Chl-a concentration which could stimulate enhanced forage abundance for 

262 SKPJ. The favorable SST range for SKPJ is 26-27 0C which provides suitable thermocline and 

263 an optimum level of upwelling to circulate nutrients needed for the primary production. The 

264 optimum levels of Chl-a, SST and the high total catches and CPUEs of the train data set were 

265 found during the months of September to December. Hence, the South-West monsoon season 

266 can be précised as the best and peak season of SKPJ fisheries. SST and Chl-a act as important 

267 indicators to detect the habitat hotspots for SKPJ and the maps prepared can be used to 

268 demarcate the biological conservation zones or fisheries zones to identify the SKPJ abundant 

269 areas cost-effectively and efficiently. According to GAM the 0.3-0.6 mg m-3 Chl-a and SST from 

270 28-28.5 0C in Western area and 0.25-0.3 mg m-3 Chl-a and SST between 28.5-28.8 0C in Eastern 

271 area are highly correlated with SKPJ abundance and Western sub-region was explained better by 

272 GAM than Eastern area. GAM was found to be a suitable model that can be used to model the 

273 fish catch abundance with influencing parameters since it could predict the values greater than 

274 90% similarly in both subregions of the study area.
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Figure 1(on next page)

The study area was divided into 4 sub-areas of Northwest (NW: 8.14N -8.93N, 78.74E
-79.71E), Northeast (NE:8.69°N -9.48°N, 81.38°E -82.35°E), Southwest (SW:6.19N -
6.98N, 78.75E -79.72E), and Southeast (SE: 6.78°N -7.57°N, 82.02°E -82.99°E)

Study area is in blue color

Land masks and outer space in ash color
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Figure 2(on next page)

Monthly changes of A: SST and B: Chl-a from July- December 2006
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Figure 3(on next page)

SKPJ distribution around Sri Lanka from July - December 2006. The ocean is marked in
black color while the land masks are demarcated in ash color. The fishing points are
marked in white color the amount of fish catch is represented by the symbol size
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Figure 4(on next page)

Fish catch frequency vs influencing variables variation (A: SST, B:Chl-a)
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Figure 5(on next page)

Graphs of Empirical Cumulative Distribution Frequency related to A: SST and B: Chl-a
concentration
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Figure 6(on next page)

Potential fishing grounds of SKPJ spatiotemporal distribution according to the favorable
SST and Chl-a identified from ECDF. Land masks are shown in ash color.
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Figure 7(on next page)

Monthly variations of the SKPJ mean CPUE, mean SST and mean Chl-a during 2014-2016
within Western and Eastern areas

W= Western

E= Eastern
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Figure 8(on next page)

The nonlinear relationships (GAM) between the SKPJ CPUE, SST, and Chl-a concentration

A= Fit of SKPJ CPUE with Chl-a in Western area

B= Fit of SKPJ CPUE with SST in Western area

C= Fit of SKPJ CPUE with month in Western area

D= Fit of SKPJ CPUE with year in Western area

E= Fit of SKPJ CPUE with Chl-a in Eastern area

F= Fit of SKPJ CPUE with SST in Eastern area

G= Fit of SKPJ CPUE with month in Eastern area

H= Fit of SKPJ CPUE with year in Eastern area
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Figure 9(on next page)

Basic residual plots for checking the GAM model fitting processin Western and Eastern
areas

A= (Q-Q) plot for Western area

B= Residuals vs. linear predictors for Western area

C= Responce vs. fitted values for Western area

D= Histogram of residuals in Western area

E= (Q-Q) plot for Eastern area

F= Residuals vs. linear predictors for Eastern area

G= Responce vs. fitted values for Eastern area

H= Histogram of residuals in Eastern area
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Figure 10(on next page)

SKPJ CPUE nominal and predicted values monthly changes in Western and Eastern areas

W= Western area

E= Eastern area
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