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North Indian Ocean region around India and Sri Lanka is a complex and rich coastal
ecosystem undergoing various seasonal and inter-annual changes and various pressures.
Hence the objective of this study was to assess the scales of coupling between chlorophyll-
a concentration (chl-a) and the influencing variables and explore the nature of the
spatiotemporal variability of them. The seasonal and annual variations of chl-a along the
Bay of Bengal (BoB), Arabian sea (AS) and ocean region around Sri Lanka in relation to the
physical and chemical oceanographic variables were analyzed using satellite observations
covering the period of 2002-2018. The effects of diffuse attenuation coefficient,
photosynthetically available radiation (PAR), sea surface temperature (SST), Wind speed,
Eastward wind component, Nitrate, Black carbon column mass density, Sea Salt Surface
Mass Concentration, Open water net downward longwave flux, Surface emissivity were
considered on a monthly time scale. Wavelet analysis and the Boosted Regression Trees
(BRT) were used as the main analysis and modeling methods. The peaks of chl-a, diffuse
attenuation coefficient, and nitrate were observed in September. In wind speed and
eastward wind it was July and in black carbon column mass density, and PAR in March. In
Sea Salt Surface Mass Concentration, Open water net downward longwave flux, Surface
emissivity, Diffuse attenuation coefficient for downwelling irradiance, and SST mean
maximums were found in June, February, November, September, April respectively. In BRT
model the estimated cross validation (cv) deviance, standard error (se), training data
correlation, cv correlation, and D2 were 0.003, 0.002, 0.932, 0.949, and 0.846 respectively.
According to the results, diffuse attenuation coefficient (90%), eastward wind component
(3.7%) and nitrate (3%) were the most positively correlated variables with Chl-a
occurrence. SST evidenced an inverse relationship with Chl-a. According to the model built
<42 Einsteinm-2day-1 PAR, <0.986 surface emissivity, <70 Wm-2 open water net downward
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long wave flux, 28.2 -28.5 
0
C SST , 2 ms-1 Wind speed, 5 ms-1 - 6 ms-1 eastward wind, 4.8

x10-8 -7x10-8 kgm-3 sea salt surface mass concentration, and 0.1-0.5micromoleL-1 nitrate
are favourable for the optimum level of phytoplankton occurrence. Since BRT deals
robustly with non-linear relationships of the environmental variables it can be used in
further studies of ecological modeling.
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21 Abstract

22 North Indian Ocean region around India and Sri Lanka is a complex and rich coastal ecosystem 

23 undergoing various seasonal and inter-annual changes and various pressures. Hence the objective 
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24 of this study was to assess the scales of coupling between chlorophyll-a concentration (chl-a) and 

25 the influencing variables and explore the nature of the spatiotemporal variability of them. The 

26 seasonal and annual variations of chl-a along the Bay of Bengal (BoB), Arabian sea (AS) and 

27 ocean region around Sri Lanka in relation to the physical and chemical oceanographic variables 

28 were analyzed using satellite observations covering the period of 2002-2018. The effects of 

29 diffuse attenuation coefficient, photosynthetically available radiation (PAR), sea surface 

30 temperature (SST), Wind speed, Eastward wind component, Nitrate, Black carbon column mass 

31 density, Sea Salt Surface Mass Concentration, Open water net downward longwave flux, Surface 

32 emissivity were considered on a monthly time scale. Wavelet analysis and the Boosted 

33 Regression Trees (BRT) were used as the main analysis and modeling methods. The peaks of 

34 chl-a, diffuse attenuation coefficient, and nitrate were observed in September. In wind speed and 

35 eastward wind  it was July and in black carbon column mass density, and PAR in March. In Sea 

36 Salt Surface Mass Concentration, Open water net downward longwave flux, Surface emissivity, 

37 Diffuse attenuation coefficient for downwelling irradiance, and SST mean maximums were 

38 found in June, February, November, September, April respectively. In BRT model the estimated 

39 cross validation (cv) deviance, standard error (se), training data correlation, cv correlation, and 

40 D2 were 0.003, 0.002, 0.932, 0.949, and 0.846 respectively. According to the results, diffuse 

41 attenuation coefficient (90%), eastward wind component (3.7%) and nitrate (3%) were the most 

42 positively correlated variables with Chl-a occurrence. SST evidenced an inverse relationship 

43 with Chl-a. According to the model built <42 Einsteinm-2day-1 PAR, <0.986 surface emissivity, 

44 <70 Wm-2 open water net downward long wave flux, 28.2 -28.5 0C SST , 2 ms-1 Wind speed, 5 

45 ms-1 - 6 ms-1 eastward wind, 4.8 x10-8 -7x10-8 kgm-3 sea salt surface mass concentration, and 0.1-

46 0.5micromoleL-1 nitrate are favourable for the optimum level of phytoplankton occurrence. Since 
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47 BRT deals robustly with non-linear relationships of the environmental variables it can be used in 

48 further studies of ecological modeling.

49

50 Key words: Wavelet analysis, Boosted Regression Trees, Bay of Bengal, Arabian Sea, Sri lanka 

51 Exclusive Economic Zone, Phytoplankton, Monsoon, Upwelling, Predictor variables, Seasonal

52

53 Introduction

54 Arabian Sea (AS), Bay of Bengal (BoB) and Sri Lankan Exclusive economic zone (EEZ) are 

55 parts of North Indian Ocean which surround India and Sri Lanka. India has approximately 6000 

56 km long coastline and Sri Lanka 1,620 km (Dey & Singh, 2003; Government of Sri Lanka, 

57 Ministry of Finance, National Agency for, & Public Private Partnership, 2018). These oceanic 

58 regions which are close to the coastlines and equator experience many physical and chemical 

59 dynamics that effect to the primary production in the region (Krishna et al., 2015; Strutton et al., 

60 2015). Studying the circulation dynamics and the biological processes are important in 

61 understanding the numerous ocean processes. In the ocean, the physical, chemical, and biological 

62 processes are interlinked (Danling Tang, Kawamura, & Luis, 2002). Ocean properties such as 

63 chlorophyll concentration, currents, sea surface temperature, suspended particulate matter, 

64 dissolved organic matter ocean, ENSO event, fronts, and eddies influence the ocean dynamics. 

65 Remote sensing data provide information on the properties of ocean (Eg: concentration of 

66 phytoplankton pigments, suspended sediments, temperature, and radiation) and they can be used 

67 to monitor these processes in large special areas  for long terms (Elepathage & Tang, 2018; 

68 Elepathage, Tang, & Wang, 2018; D. L. Tang, Kawamura, & Luis, 2002; DanLing. Tang & Pan, 

69 2011). 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27662v2 | CC BY 4.0 Open Access | rec: 6 May 2019, publ: 6 May 2019



70 Although some studies have been done regarding the chlorophyll distributions in reference to the 

71 sea surface temperature, nitrate, sea surface height and mixed layer depth in either Arabian Sea 

72 or Bay of Bengal (Narvekar & Kumar, 2014; Sarangi & Devi, 2017; Sathyendranath, Gouveia, 

73 Shetye, Ravindran, & Platt, 1991), very limited efforts have been given to study all the factors 

74 that affect the chlorophyll distribution in the whole region. Especially not enough studies have 

75 been carried out in Sri Lankan region. AS is a highly productive area than the BoB (Jana et al., 

76 2018). The continental shelf of the AS is much shallower compared to the shelf in the southern 

77 BoB. AS is bounded to the east by India, to the north by Pakistan, Iran, and Saudi Arabia, and to 

78 the west by Oman and Somalia. The Arabian Sea is located in the monsoon region, hence 

79 nutrient cycle is affected by the monsoonal events (Karuppasamy, Muraleedharan, Dineshkumar, 

80 & Nair, 2010). The northern BoB is much productive than southern part since North region feeds 

81 from Ganges-Brahmaputra delta (Chauhan, Nagur, Mohan, Nayak, & Navalgund, 2001). The 

82 BoB circulation is affected by both wind and river forcing (Cutler & Swallow, 1984; Durand et 

83 al., 2011). In spring and autumn, the seasonally reversing wind force create reversing boundary 

84 currents and opposing gyre circulations (Cutler & Swallow, 1984).

85 Sri Lankan ocean region is also affected by the monsoon and hence the primary production is 

86 changed with the monsoon. The Indian Ocean monsoon currents flow eastwards along South 

87 region of Sri Lanka during the summer (May to September). They are called Summer Monsoon 

88 Current (SMC) or South-West monsoon currents. In winter or dry season from December to 

89 March, they start to flow westward and they are called Winter Monsoon Current (WMC) or 

90 North-East monsoon currents (Schott & McCreary, 2001). The SMC plays an important role in 

91 transferring of more saline water from the AS to the BoB (Jensen, 2001; Vinayachandran, Murty, 

92 & Ramesh Babu, 2002). They are linked with the remote forcing by the wind, as well as 
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93 interactions with westward-propagating Rossby waves and eddies (Rath, Vinaychandran, Behara, 

94 & Neema, 2017). 

95 These areas are interlinked by the ocean physical dynamics and hence the phytoplankton density 

96 that affects directly for the biodiversity and fisheries are changed with these influencing factors 

97 (Strutton et al., 2015). Phytoplankton community is the base of the ocean food web. Hence it 

98 plays a major role in regulating ocean biodiversity (Kong et al., 2019). The objective of this 

99 paper is to study the variability of the chlorophyll concentrations in the discussed part of North 

100 Indian Ocean in order to discuss the distribution, seasonal changes and to model the chlorophyll 

101 abundance after identifying the influencing factors regulate the chlorophyll concentrations.

102 Materials & Methods

103 Study area and Data Set

104 The study area (Figure 1) lies between 720 E, 00N and 98.50E, 220N which consists of BoB, AS 

105 and Sri Lankan EEZ was used for this study. The remote sensing data of Chl-a, diffuse 

106 attenuation coefficient, eastward surface wind, surface emissivity, wind speed, sea salt surface 

107 mass concentration, black carbon column mass density, open water net downward longwave 

108 radiation, and organic carbon column mass density from 2002 to 2018 and nitrates from 1998 to 

109 2018 were analysed since they were found to be interlinked according to the previous studies we 

110 have done and according to the literature review. 

111 Inter-annual time series Chl-a concentration data in the unit of mg m-3, Sea Surface Temperature 

112 (SST) at 4 microns data in 0C, diffuse attenuation coefficient for downwelling irradiance at 490 

113 nm (KD_490) in m-1 and Photosynthetically Available Radiation (PAR) in Einstein m-2 day-1 

114 (4km resolution) were obtained from Moderate-resolution Imaging Spectroradiometer (MODIS)-
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115 Aqua MODISA_L3m. Nitrate data 0.67 x 1.25 deg. data in micromole/L were taken from NASA 

116 Ocean Biogeochemical Model  (NOBM). Sea Salt Surface Mass Concentration in kg m-3, black 

117 Carbon Column Mass Density in kg m-2, eastward wind component @1000hPa in ms-1, open 

118 water net downward longwave flux in W m-2 and surface emissivity 0.5 x 0.625 deg data were 

119 obtained from Modern-Era Retrospective analysis for Research and Applications, Version 2 

120 (MERRA-2) Model M2TMNXRAD v5.12.4. Near-surface wind speed 0.25 deg. data in ms-1 

121 were obtained from the Global Land Data Assimilation System (GLDAS) Model 

122 GLDAS_NOAH025_M v2.1. These data were obtained from 

123 https://giovanni.gsfc.nasa.gov/giovanni.

124 Methods 

125 Preliminary analysis

126 The most common way of expressing the temporal variability of a data set is through monthly 

127 mean line graphs (Figure 2). Analytically, means and dispersion metrics were calculated from 

128 the 17 years of data logs. The standard deviations among them are mentioned in Table 1.

129 Wavelet Coherence Analysis 

130 The spatial and temporal patterns in the time series data reflect important parts of the biological 

131 cycles, particularly at intra-annual time scales. Wavelet analysis is a suitable method to examine 

132 the localized patterns of environment changes (Cyriac, Ghoshal, Shaileshbhai, & Chakraborty, 

133 2016; Lumban-Gaol et al., 2015; Torrence & Compo, 1998). 

134 The wavelet transform can be used to investigate the time series features at local scales with the 

135 broad features at long time scales and fine features at short ones (Carey et al., 2013). This is 

136 useful in analyzing the time series data with non-stationary power at many different frequencies 

137 (Daubechies, 1990). In this study to assess correlation and coupling between the influence 
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138 variables and Chl-a, the co-variation of the power spectra of those variables (Figure 3) were 

139 calculated using the wavelet coherence using R 3.4.2.

140 The wavelet power spectra are calculated in this method using the Morlet wavelet. This has been 

141 applied in many environmental studied due to since it detects time-dependent amplitude and 

142 different frequencies' phases in the time series (Torrence & Compo, 1998).

143 For a time series Xn, an ex- wave modulated by a Gaussian is characterized as:

144 Ψ0(η) = π ‒ 1

4
e

iω
0
η
e
‒ η2

2

145 where   is the wavelet function,  is a dimensionless time parameter, i is an imaginary unit, Ψ0(η) η
146 and  dimensionless angular frequency. The term "wavelet function" is refers to either ω0

147 orthogonal or nonorthogonal wavelets. The term "wavelet basis" is used only to an orthogonal 

148 set of functions. The orthogonal basis implies discrete wavelet transform while nonorthogonal 

149 wavelet function is used for discrete or continuous wavelet transform (Farge, 1992). The wavelet 

150 function is mathematically represented for a time series Xn as:

151 Wn(s) =
1

N

N ‒ 1∑
n

'
= 0

x
n

'Ψ ∗ [(n
' ‒ η)∆t

s ]

152  where (*) the complex conjugate. By varying the s wavelet scale and translocating along the 

153 localized time index n the amplitude of the studied feature vs scale and temporal change of the  

154 amplitude is graphically represented in wavelet analysis. In this equation Wn(s) is the wavelet 

155 transform coefficients, 𝛹 is the normalized wavelet, n is the localized time index, and is the 𝑛'

156 translated time index of the time ordinate x. 
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157 The wavelet coherence is the square of the cross-spectrum normalized by the power spectra. 

158 Wavelet coherence and phase are parts of the Fourier analysis and they quantify the cross-

159 correlation between two time series as a function of frequency (Torrence & Compo, 1998).

160 The wavelet coherence of two time series X and Y analogous to the correlation coefficient in the 

161 frequency domain with wavelet transforms is mathematically written as𝑊𝑋𝑛(𝑠) and 𝑊𝑌𝑛(𝑠) 

162 𝑅2𝑛(𝑠) =
|𝑆(𝑠 ‒ 1𝑊𝑋𝑌𝑛 (𝑠))|2𝑆(𝑠 ‒ 1|𝑊𝑋𝑛(𝑠)|2) × 𝑆(𝑠 ‒ 1|𝑊𝑌𝑛(𝑠)|2)

163 Where S is a smoothing operator both in the scale axis and time domain. 

164 𝑆(𝑊) = 𝑆𝑠𝑐𝑎𝑙𝑒(𝑆𝑡𝑖𝑚𝑒𝑊𝑛(𝑠)))

165 Where  smooths along the time axis and along the scale axis. The first-order autoregressive 𝑆𝑡𝑖𝑚𝑒 𝑆𝑠𝑐𝑎𝑙𝑒
166 null model was  computed via Monte Carlo approach (Maraun & Kurths, 2004; Torrence & Compo, 

167 1998)

168 Boosted regression trees model execution

169 We modeled the occurrence and abundance of chl-a and its predictor variables using Boosted 

170 Regression Trees (BRT). Recent work has revealed that BRT is dealing well in ecological 

171 variables which have with non-linear relationships (Elith et al., 2006; J. Friedman, Hastie, & 

172 Tibshirani, 2002; Kraemer, Mehner, & Adrian, 2017; Nieto & Mélin, 2017).

173 Fist to determine the interannual relationship between chl-a and environment variables we used 

174 non-parametric Kendall’s rank correlation (Table 2) (Kendall, 1938). Then the relationship 

175 between the chl-a (dependent variable), and physical oceanographic variables were computed by 

176 a Boosted Regression Tree (BRT) analysis with year and month as time factors. BRT modeling 
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177 can fit complex nonlinear relationships and automatically handle outliers and interaction effects 

178 between predictors (Elith & Leathwick, 2017).

179 An initial set of BRT models was derived at the level of individual cells to account for the 

180 heterogeneity. The BRT construction was performed using the “dismo” package (Elith & 

181 Leathwick, 2017) in R version 3.4.2 (R Development Core Team, 2017). BRT model with 0.05 

182 learning rates and 5 levels of tree complexity 1300 trees was selected as the definitive model 

183 (Figure 4). To quantify how well the BRT model fitted the data, the percentage of deviance 

184 explained was used. The pseudo determination coefficient (D2) (Mateo & Hanselman, 2014), 

185 was calculated with the formula:

186 D2 = 1 − (residual deviance/total deviance)

187 Based on the result of the BRT model, the relative influence of each predictor on Chl-a was 

188 computed. The percentage of relative influence was used to quantify the importance of predictors 

189 (Figure 5). High relative influence values corresponding to the strong influence on the response 

190 (Elith & Leathwick, 2017). The partial dependency plots and weighted mean of fitted values in 

191 relation to each non-factor predictor plots were used to analyze the effect of variations in the 

192 predictors on the response variable. 

193

194 Results

195 Preliminary analysis 

196 According to the plots in Figure 2 surface emissivity, diffuse attenuation coefficient, and nitrate 

197 follow the same temporal variation of Chl-a. PAR, SST, and black carbon column mass density 

198 demonstrate inverse relationships with Chl. The peaks of chl-a, diffuse attenuation coefficient, 

199 and nitrate were observed in September. In wind speed and eastward wind  it was July and in 
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200 black carbon column mass density, and PAR in March. In Sea Salt Surface Mass Concentration, 

201 Open water net downward longwave flux, Surface emissivity, Diffuse attenuation coefficient for 

202 downwelling irradiance, and SST mean maximums were found in June, February, November, 

203 September, April respectively.

204 Comparatively high standard deviations could be observed only in some months of PAR, nitrate, 

205 open water net downward longwave flux and the eastward component data. In other variables, 

206 the standard deviations among the data were generally lower than 1 (Table 1). According to 

207 Kendall's rank correlation (Table 2) only diffuse attenuation coefficient, eastward wind 

208 component, nitrate, sea salt surface mass concentration, open water net downward longwave 

209 flux, surface emissivity manifested significant relationship with Chl-a. However, this can only 

210 identify more linear relationships.

211

212 Wavelet analysis

213 The chl-a and the influential variables wavelet coherencies (Figure 3) can be used to interpret at 

214 what period does coherency occur between the Chl-a and predictor variables. Diffuse attenuation 

215 coefficient shows a strong coherency evidenced by the large areas with dar that do show 

216 significant coherence. The right arrows further support that they have an in-phase relationship. 

217 From around 2016 the relationship has been strengthened drastically.

218 SST shows a relationship with Chl in 4-8 and 8-16 periods. The strongest relationship can be 

219 seen between 8-16 period. Within the 8-16 period we can see a 1350 phase angle of arrows. In 

220 SST also we can observe the highest relationship after 2016.

221 With PAR the relationship is completely out phase and after 2016 the coherence power has been 

222 increased. With wind speed, eastward surface wind component and the sea salt surface mass 

223 concentration the phase angle is 900 and as before the high power coherence is there after 2016.
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224 Black carbon column mass density has a 2250 angle and open water net downward longwave 

225 flux has a 450 phase angle. Surface emissivity has a 3150 phase angle. Nitrate has an in phase 

226 coherence and unlike all others, it has the high power coherence from 2002 to 2007.

227 Boosted regression trees

228 After making several preliminary fittings as the final fitting of BRT, a 1300 trees model was selected 

229 with 0.05 learning rates and 5 levels of tree complexity. The mean total deviance of the model was 

230 0.013, mean residual deviance was 0.002. The estimated cv deviance was 0.003 and the standard error 

231 (se) was 0.002 Training data correlation was 0.932 and cv correlation was 0.949. D2 was 0.846. The 

232 model plot is indicated in Figure 4. Deviance was calculated from models fitted to a data set of 12 

233 variables. 

234 The tree complexity (TC) reflect the true interaction order in the response being modeled (Jerome H 

235 Friedman, 1999), and the best set with independent data. In Figure 4 the solid black curve is the mean, 

236 and the dotted curves are indicated in about 1 standard error area. The red line shows the minimum of the 

237 mean, and the green line the number of trees at which that occurs. Predictive performance is influenced 

238 strongly by sample size and large samples gave models with a lower predictive error. 

239 The summary of the Model gives a feature importance plot (Figure 5). According to Figure 5, it is clear 

240 that the diffuse attenuation coefficient is the most important variable and the month is the least important 

241 variable.

242 Partial dependence plots for the BRT are displayed in Figure 6. Each plot shows the relationship of chl-a 

243 (response variable) to each individual variable after accounting for the effects of all the predictor 

244 variables in the final model. Visualization of fitted functions in a BRT model is easily achieved using 

245 partial dependence functions that show the effect of a variable on the response after accounting for the 

246 average effects of all other variables in the model. 
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247 In the weighted mean of fitted values in relation to each non-factor predictor (Figure 7), the slopes of the 

248 relationships between Chl and influenced variables differed significantly across the variables. The final 

249 BRT model had 12 predictors with the two factors of year and month. Chl with the most predictive power 

250 included diffuse attenuation coefficient (90%), Eastward wind component (3.7%) and nitrate (3%). If 

251 there are strong interactions in the data or predictors are strongly correlated, they provide a useful basis 

252 for interpretation (J. H. Friedman, 2001). The diffuse attenuation coefficient and the nitrate the slope of 

253 the relationship were substantially high, whereas slopes in other variables were substantially low. The 

254 predictive accuracy of the models also varied across the variables. 

255 These plots in Figure 8 simply show the relation between the variables in the x-axis and the mapping 

256 function f(x) on the y-axis. Plots show that diffuse attenuation coefficient, eastward wind component, and 

257 sea salt surface mass concentration are positively correlated with the response Chl-a, whereas PAR is 

258 negatively correlated. Others relationships are complex. According to the variability of Chl with other 

259 variables diffuse attenuation coefficient increases 0.1-0.6m-1 with primary production and then it becomes 

260 stable. PAR <42Einstein m-2 day-1, surface emissivity <0.986 and Open water net downward longwave 

261 flux <70 Wm-2 is favorable for primary production. Chl-a increases with SST 28.2 -28.5 0C and then it 

262 declines. Chl-a increases at wind speed 2 ms-1 then stabilize and drop again at 2.8 ms-1. Moreover, 

263 phytoplankton increases from the eastward wind component at 5 ms-1 and stabilizes at 6 ms-1. Moreover, 

264 Chl-a increases at sea salt surface mass concentration from 4.8 x10-8 to 7x10-8 kgm-3 and then drops. 

265 Nitrate 0.1-0.5micromoleL-1 is favorable for the phytoplankton abundance. 

266 The seasonal spatiotemporal pattern of the Chl and influencing variables change (Figure 9) clearly 

267 interpret their relationships. Specially in the season from June- August the comparatively cold SST, 

268 moderate open water longwave flux, eastward wind component and nitrate show high Chl abundance and 

269 distribution. The diffuse attenuation coefficient is always following the same spatiotemporal variation 

270 pattern of Chl
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271 Discussion

272 According to the results, it was clear that Chl-a and the diffuse attenuation coefficient have a positively 

273 related strong coherence. Light attenuation in an aquatic environment is the sum of light absorbing and 

274 scattering of optically active components available in water. These components include phytoplankton 

275 pigments such as chlorophyll, pure water and tripton (non pigmented particulate matter), and colored 

276 dissolved organic matter (CDOM) (Kirk, 1994). The diffuse attenuation coefficient is a key parameter 

277 used to quantify the feedback of phytoplankton biomass in the ocean (Jerlov, 1976; Kirk, 1994, 2011). 

278 Differences in phytoplankton biomass are correlated with changes in water transparency. Therefore, 

279 Diffuse attenuation of photosynthetic active radiation ( Kd(PAR)) (can be determined by Chl-a 

280 concentration (transformed as t(x) = ln(x+1)) and light distribution measurements (Vernet et al., 2012).

281 Since the SST showed a greater value than π/2 in the wavelet coherence phase relationship, it is proven 

282 that the SST has a negative relationship with the chlorophyll. SST regulates vertical mixing and it affects 

283 the SST change in return (Kumar, Prakash, Ravichandran, & Narayana, 2016; Luis & Kawamura, 2004). 

284 Significant correlation between Chl-a concentration and SST has been found in the North Indian ocean by 

285 previous studies and they have identified that the vertical mixing of deeper water with the surface water 

286 causes a decrease in SST and supplies nutrients to the upper layers which enhance the productivity 

287 (Prakash & Ramesh, 2007). Several previous studies also have found that cold SST anomalies induce by 

288 Ekman pumping (Kug & Kang, 2006). (Weisberg & Wang, 1997) have stated that El Niño–related 

289 anomalous convection make a pair of off-equatorial cyclones with westerly wind anomalies on the 

290 equator in the equatorial central Pacific and these equatorial westerly winds deepen thermocline and raise 

291 SST giving a positive feedback for anomaly growth. (Kong et al., 2019) has found that the El Niño 

292 induces the elevated SST and SLA and increased rainfall in the open seas of the equatorial Pacific and the 

293 central southern Indian Ocean which strengthens the ocean stratification and deepens the thermocline. 

294 That leads to the reduction of mixing efficiency and inhibited vertical nutrient inputs into the euphotic 
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295 layer. Moreover, it reduces the solar radiation resulted in decreased phytoplankton production. Chl-a is 

296 anomalously negative in concert with sensitive responses to ENSO (Kong et al., 2019).

297 To the best of our knowledge PAR has not shown any negative relationship with chlorophyll in previous 

298 studies. Hence, it is necessary to find the reason for this relationship between PAR and Chl. 

299 In this study, we found that wind plays a major role in regulating the air-sea interactions. Wavelet 

300 analysis clearly demonstrates that wind speed has a positive relationship with Chl-a within the study 

301 region. Vertical mixing occurs with increased wind speed cools the water and deepen the surface mixed 

302 layer transferring nutrients from deep water to the surface (Kumar et al., 2016). Moreover, since the phase 

303 angle is 900 upward it is clear that Chl-a is leading the wind speed, eastward component, and sea salt 

304 surface mass concentration. Wind speed governs the  upwelling and vertical mixing in the upper ocean 

305 (Kumar et al., 2016).  (Feng et al., 2015) has found that in low-latitude oceans and bell shaped in 

306 temperate oceans chl-a and wind speed have positive correlations. Some studies evidence that chl-a pulses 

307 are associated with the intensification of eastward winds at the surface and eastward currents in the mixed 

308 layer (Strutton et al., 2015). It is believed that the equatorial Indian Ocean is strongly influenced by 

309 physical processes on intra-seasonal to inter-annual timescales. (Waliser, Murtugudde, Strutton, & Li, 

310 2005) have found that Chlorophyll-a can vary at Madden– Julian Oscillation (MJO) time scales.  MJO is 

311 an eastward moving strong contributor to various extreme events of rainfall, winds, clouds, and pressure 

312 that traverses in the tropics (Drushka et al., 2012; Valadão, Carvalho, Lucio, & Chaves, 2017). The is 

313 found to be influenced by the atmospheric variability, with periods of 30–60 days and eastward 

314 propagation of atmospheric convection cells (Hendon & Salby, 1994). All of these physical processes 

315 affect the biogeochemistry of the ocean (Strutton et al., 2015). Some studies that have been carried out 

316 with satellite derived data have found that the Indian Ocean Dipole events significantly increase chl-a 

317 concentrations and primary production in eastern Indian Ocean equatorial waters, and they can also 

318 influence chl and production over the entire northern basin (Wiggert, Murtugudde, & Christian, 2006).
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319 Ocean salinity plays a significant role in global climate variability and ocean dynamics regulation  

320 (Lagerloef, 2002). Sea surface salinity (SSS) is regulated by the local evaporation (E) and precipitation 

321 (P) in the global ocean and the river discharges in the coastal regions. In the tropical Indian Ocean (TIO), 

322 the surface salinity shows significant east-west contrast. Basically, the east-west contrast occurs because 

323 of the extreme evaporation in the Arabian Sea and abundant rainfall and river discharges in the Bay of 

324 Bengal and the eastern TIO (Schott, Dengler, & Schoenefeldt, 2002), while the SSS tongues are 

325 influenced by ocean circulations (W. Han & McCreary, 2001). Previous studied have found that 

326 the significant change in salinity appears south of the equatorial Indian Ocean with upwelling Rossby 

327 wave and high Chl-a implies high-salinity water at the surface coming from the subsurface, bringing in 

328 high nutrients or higher subsurface Chl-a (Du & Zhang, 2015). Moreover according to that study 

329 upwelling brings more significant effects on sea surface salt mass concentration than downwelling does, 

330 due to the stratification. It mainly happens due to the characteristics of the mixed layer. When upwelled 

331 high-salinity water entered the surface layer, mixing made water properties uniform in the vertical quickly 

332 (Du & Zhang, 2015) bringing the nutrients to the surface needed for the phytoplankton growth. 

333 In this study, it is clear that nitrates have a strong positive inphase relationship with Chl-a. It is a well-

334 known fact that nutrients such as nitrogen are essential for phytoplankton growth (Harrison, 1992). 

335 Nitrate, the most common oxidized form of nitrogen, and it provides the largest inorganic oceanic 

336 reservoir of this limiting nutrient for most marine phytoplankton  (Levitus, Conkright, Reid, Najjar, & 

337 Mantyla, 1993)

338 We found that black carbon column mass density has a negative relationship with Chl-a. By lowering 

339 carbonate ion levels and increasing carbonate solubility, ocean acidification is thought to increase the 

340 energetic cost of calcification (Fabry, Seibel, Feely, & Orr, 2008). Acidification, therefore, could have 

341 major impacts on biogenic habitat and planetary geochemical cycles (e.g., pelagic coccolithophore algae) 

342 (Scott C. Doney et al., 2012). 
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343 Open water net downward longwave radiation flux has a positive relationship with Chl. Direct 

344 measurements of long-wave radiation fluxes are not studied with canopy and climatological studies much. 

345 The constituent downwelling (Ld) and upwelling (Lu) fluxes, or even the net flux (Ln) have also been 

346 measured only rarely (Gilgen, Ohmura, Gilgen, & Ohmura, 1999; Kessler & Jaeger, 1999). 

347 The paucity of reliable data on long-wave radiation prevents adequate confirmation of the existing within 

348 vegetation long-wave radiation models (Paw U, 1992; Rotenberg et al., 1998). Long-wave radiation's net 

349 value (Ln) is estimated as the difference between global net radiation and the net shortwave radiation. 

350 However, the effect of longwave net downwelling radiation flux on chlorophyll has not been studied in 

351 detail yet. Previous studies also suggest that there is, an increasing need that there is a need for a good 

352 description of the temporal and spatial variation of radiation fluxes in plant canopies if processes such as 

353 photosynthesis are to be modeled successfully (Barradas, Jones, & Clark, 1999). Moreover, previous 

354 studies suggest that more attention needs to be paid to the monitoring of the long-wave radiation fluxes of 

355 different types of surfaces and in different climatic regions than is the case at present. They also mention 

356 that it will take a long time before measurements at a single site can reveal the influence of increasing 

357 CO2 concentration in the atmosphere on long-wave counter radiation A (Kessler & Jaeger, 1999).

358 Model development for chlorophyll

359 Booster Regression Trees (BRT) seems a good choice for a chl-a model because BRT can deal with many 

360 relationships between Chl-a and the influencing factors derived from satellite data (L. Han, Rundquist, 

361 Liu, Fraser, & Schalles, 1994; Kutser, Herlevi, Kallio, & Arst, 2001). BRT is a machine-learning 

362 algorithm based on decision trees that have significant potential to analyze the remote sensing 

363 hydrological parameters. BRT uses usually thousands of decision trees to minimize model deviance 

364 (Jerome H Friedman, 1999). Each decision tree is built to minimize the error. The final BRT model is the 

365 sum of predictions of all nodes and trees. Regression models are built individually for each subsample. 

366 Since the subsamples are classified step by step using different predictors in BRT, the interactions of 
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367 predictors can be modeled. Like other decision tree algorithms, BRT simulates both non-linear and linear 

368 relationships without the requirement of data distribution (e.g. normal distribution) (Lin, Qi, Jones, & 

369 Stevenson, 2018).

370 The final model that is returned in the model object is built on the full data set, using the number of trees 

371 identified as optimal. BRT results clarified the influence of predictor variables on Chl-a variability, and 

372 certainly, they could provide a view of the behavior between Chl-a and physical environment, and 

373 optimal environment for the phytoplankton.  From the BRT analysis, it appeared that the relative 

374 influence of each physical predictor varied between systems. According to the final model upwelling 

375 conditions with Low PAR, surface emissivity, moderate SST, wind speed and eastward wind component, 

376 open water longwave flux, sea salt surface mass concentration, nitrate are good for the phytoplankton 

377 growth. The model with the diffuse attenuation coefficient, eastward wind component, nitrate, open water 

378 net downward longwave radiation and SST were identified as the model with the highest correlation and 

379 lowest deviance and standard error.

380 This study presented an overview of the relationships existing between the physical environment and Chl, 

381 prominence the main features of the NIO as well as its complexity. It focused on the seasonal variations 

382 characterizing the NIO basin system. The relationships might tell us what possible evolutions are in store 

383 for phytoplankton as the physical environment is affected by climate change.

384

385 Conclusions

386 The overall goal of this paper was to explore the nature of the spatiotemporal variability of the 

387 studied variables and assess the scales of coupling between Chl-a and the influencing variables. 

388 Maximum abundance of Chl-a within the study area can be observed from June- September. 

389 According to the wavelet analysis and BRT, we found diffuse attenuation coefficient, eastward 

390 wind component and nitrate as the most positively correlated variables with Chl-a occurrence. 
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391 SST evidenced an inverse relationship with Chl-a. According to the model built we believe that 

392 <42Einsteinm-2day-1 PAR, <0.986 surface emissivity, <70 Wm-2 open water net downward 

393 longwave flux, 28.2 -28.5 0C SST , 2 ms-1 Wind speed, 5 ms-1 - 6 ms-1 eastward wind, 4.8 x10-8 -

394 7x10-8 kgm-3 sea salt surface mass concentration, and 0.1-0.5micromoleL-1 nitrate are favorable 

395 for the optimum level of phytoplankton occurrence. Wavelet analysis and BRT deal well with 

396 the non-linear relationships of the ecological variables. Hence these methods can be used for the 

397 ecological model building in the future studies.

398
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Figure 1(on next page)

Figure 1 : Study area in blue color lied in 720 E, 00N and 98.50E, 220N
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Figure 2(on next page)

Figure 2 : The monthly mean variability of the Chl-a and the influencing factors. A:Chl-a,
Surface emissivity, Diffuse attenuation coefficient, PAR,SST, Nitrate; B: Chl-a, Wind
speed, Eastward wind component, Black carbon concentration, Sea surface sa
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Figure 3(on next page)

Figure 3 . Exponent wavelet coherences among Chlorophyll and influential variables
from 2002-2018. The horizontal axis is the 17 years of monthly record beginning from
September 2002.

The Cone of Influence defines the areas that are not influenced by edge effects of the
wavelet spectra. Colours indicate the strength of the coherence, Yellow to red areas
demonstrates the significant correlation at the 95% level against red noise. Directions of the
arrows indicate the degree to which the chl-a and other variable series are in phase or
outphase. Right arrows indicate they are completely inphase, left indicate they are
completely outphase (180° phase angle), and down arrows indicate chl-a lags influencing
variable by 90° (one fourth of the cycle at that period). A phase-difference between 0 and ±
π /2 indicates the variables are in-phase (or positively related) while a phase difference of
absolute magnitude greater than π /2 indicates an out of phase (or negative) relationship.
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Figure 4(on next page)

Figure 4 . The BRT model holdout deviance vs no of trees.

The lowest predictive deviance achieved for each panel is indicated by a dotted

horizontal line; the line for learning rate achieving the minimum is shown in bold

line.
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Figure 5(on next page)

Figure 5 . Relative influence of variables on Chl-a according to BRT
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Figure 6(on next page)

Figure 6 . Partial dependence plots for the BRT. Each plot shows the relationship of chl
(response variable) to the individual variable after accounting for the effects of all the
predictor variables in the final model
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Figure 7(on next page)

Figure 7 . weighted mean of fitted values in relation to each non-factor predictor
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Figure 8(on next page)

Figure 8 .The relationship between the influencing variable and the mapping function
f(x) of Chl-a
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Figure 9(on next page)

Figure 9 : Seasonal variations of the important predictor variables

(A:December - February, B: March-May, C: June-August, D:September-November)
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Table 1(on next page)

Table 1 : Standard deviations of the data sets of the variables for 17 years
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Table 2(on next page)

Table 2 : Kendall's rank correlation results declaration
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1

2

Variable Kendall’s rank correlations Chi Sq P

Diffuse attenuation coefficient 0.9929 391.1953 <0.0001

PAR 0.266 104.7891 1.00

SST 0.2532 99.7513 1.00

Wind speed 0.4043 159.296 0.98

Eastward wind component 0.5901 232.4897 0.04

Nitrate 0.9118 293.5874 <0.0001

Black carbon column mass density 0.3623 142.7583 1.00

Sea Salt Surface Mass Concentration 0.6044 238.1378 0.02

Open water net downward longwave flux 0.64 252.1486 0.00

Surface emissivity 0.7658 301.737 <0.0001
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