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Abstract 

Epidemics may contribute to and arise as a result of conflict. The effects of conflict on 

infectious diseases are complex. There have been counter-intuitive observations of both 

increase and decrease in disease outbreaks during and after conflicts. However there is no 

unified mathematical model that explains all these observations. There is an urgent need 

for a quantitative framework for modelling conflicts and epidemics.  

We introduce a set of mathematical models to understand the role of conflicts in 

epidemics. Our mathematical framework has the potential to explain the counter-intuitive 

observations and the complex role of human conflicts in epidemics. Our work suggests 

that aid and peacekeeping organizations should take an integrated approach that combines 

public health measures, socio-economic development, and peacekeeping in conflict 

zones. 

Our approach exemplifies the role of non-linear thinking in complex systems like human 

societies. We view our work as a first step towards a quantitative model of disease spread 

in conflicts.  

 

Introduction 

Epidemics and conflicts are closely connected. Epidemics may both contribute to conflict 

and also arise as a result of violence in human societies. The effects of conflict on 

infectious diseases are multi-faceted and complex. There have been counter-intuitive 

observations of both increase and decrease in disease outbreaks during and after conflicts 

(McInnes, 2009). For example, epidemics have been observed to be both initiated and 

diminished by conflicts. Paradoxically, epidemics have been observed to rebound, even 

after conflicts have ended. However there is no unified quantitative model that explains 

all these counter-intuitive observations.  

There is an urgent need for a quantitative framework for modelling conflicts and 

epidemics. The recent appearance of emerging pathogens like Zika and Ebola virus in 

conflict-prone regions highlights the need for a quantitative framework that combines the 

effects of both disease spread and conflicts. 

Such models can be a first step towards shaping public health policy, spreading public 

awareness and may also be a tool for public health professionals in conflict zones. 

Quantitative techniques like these may also help predict possible emerging hotspots for 

emerging diseases (Banerjee, Perelson, & Moses, 2017). Models of joint epidemic and 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27651v8 | CC BY 4.0 Open Access | rec: 2 Jul 2019, publ: 2 Jul 2019



conflict risk may be of considerable interest to future humanitarian and peacekeeping 

missions. 

 

 

 

Materials and Methods 

Models 

We start with a basic susceptible-infected-recovered (SIR) model. The density of 

susceptible people who are healthy but can be infected by a pathogen is denoted by S. 

The density of people who are infected is represented by the compartment I. The 

interaction between infected and susceptible causes more infections which is represented 

by the mass action term – 𝛽𝐼𝑆 (the rate at which susceptibles become infected). This 

shows up as influx term in the infected compartment (+𝛽𝐼𝑆). The density of people who 

recover from infections is represented by R. This is composed of an influx from the 

infected population at a rate of  𝜈𝐼. The model is shown below. 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

We assume in this simple model that those who recover never become infected again. 

Additionally, we neglect birth and death processes in this simple model. All these 

assumptions can be relaxed in more involved models. A simulation of this simple model 

is shown below. 
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Figure 1. A simulation of the basic SIR model showing how the density of infected 

people (I, in red) rises and then decreases. The density of susceptible people (S, in black) 

declines causing the infection to start declining. The density of people who recover (R, in 

blue) increases throughout the process. 

The basic reproductive number (𝑅,) is the expected number of new infections produced 

by a single infected individual over the individual’s productively infected lifespan (in a 

completely susceptible population). It is given by the following quantity  

𝑅, =
𝛽𝑆

𝜈
 

This can be derived by observing that the infection can be sustained if the rate of change 

of infected individuals (I) is greater than 0 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 > 0 

𝛽𝐼𝑆 > 𝜈𝐼 

This finally gives us the following relationship 

𝑅, =
𝛽𝑆

𝜈
> 1 

 

Methods 

The dynamical models were implemented in Berkeley Madonna (Macey & Oster, 2001) 

and have been made available online (Banerjee, 2019). 
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Results 

1. Coupled models of disease and conflict  

We introduce the following model of two populations in conflict with each other. 𝑆1and 

𝑆2 refer to susceptible populations of two nations or communities within a nation 

(combines both civilians and combatants). The first term in each of these compartments 

simulates removal due to infection. The second term models influx or efflux of people: 

this could be due to refugees fleeing from one country to another or the invasion of an 

army. This is modelled as a piecewise linear function (X). 

𝑑𝑆1

𝑑𝑡
= −𝛽𝐼𝑆1 + 𝛼1𝑋 

𝑑𝑆2

𝑑𝑡
= −𝛽𝐼𝑆2 + 𝛼2𝑋 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆1 + 	𝛽𝐼𝑆2 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

𝑋 =
0, 𝑡 < 𝑡8

𝛿 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

 

Figure 2. A simulation of the basic two-nation model showing how the density of 

infected people (I, in black) rises, decreases and then increases again. The density of 

susceptible people (S, in blue) declines initially causing the infection to start declining. It 

then starts increasing due to influx of soldiers and refugees, causing the rebound in 

infections. The density of people who recover (R, in red) increases throughout the 

process. 
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We note that some of these parameters might be correlated, e.g. increased migration 

might breakdown already strained medical services (parameter v in the SIR model). We 

look at this in a later model. 

We only show representative plots to demonstrate this case. We note that this model is 

not specific to any disease nor do we estimate model parameters specific to any pathogen. 

Our objective is only to demonstrate that such a situation is indeed feasible. It would be 

possible to fit these mathematical models to data, should adequate data become available. 

 

 

2. An epidemic can be decreased during times of conflict 

Epidemics could be reduced for some time during conflicts. This could happen due to: 

a) mobility of people being reduced. For example, lower incidence of HIV has 

been reported in Angola and is attributed to reduced mobility due to conflicts 

(McInnes, 2009). 

b) increase in susceptible population during conflict due to increase in migration. 

We show this effect can be simulated by an increase in the value of S(t) after some time. 

The increase (X) is modelled as a piecewise linear function: it is 0 before some time and 

increases linearly after some time. The model is shown below. 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 + 𝛼𝑋 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

𝑋 =
0, 𝑡 < 𝑡8

𝛿 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

 

A simulation of this outcome is shown in Figure 3 and it can be seen that the density of 

infections declines (after 100 time units) and then comes back up again. 
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Figure 3. A simulation of the migration model showing how the density of infected 

people (I, in red) rises and then decreases. The density of susceptible people (S, in blue) 

declines initially causing the infection to start declining. It then starts increasing due to 

migration, causing the rebound in infections. The density of people who recover (R, in 

red) increases throughout the process. 

 

 

 

3. Epidemics could reappear or be diminished after the end of conflicts 

Epidemics could reappear after the end of conflicts due to migration of refugees displaced 

during the conflict. This highlights the need for sustained humanitarian aid missions even 

after conflicts have ceased. 

This effect can be simulated by an increase in S(t). The model has been introduced in the 

previous section. Figure 3 shows that the infection can decline over certain periods of 

time; in the simulation it declines between 100 and 500 time units, before rebounding 

again. 

After a conflict ends, there could also be migration of refugees and peacekeepers, all of 

whom could either add to the susceptible or infected pool. This could cause a resurgence 

of the epidemic. We show another plausible model for this below. This model has an 

influx (after a certain time) in the susceptible (S) and infected (I) compartments. The 

increase is modelled as a piecewise linear function. 
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𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 + 𝛼1𝑋1 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 + 𝛼2𝑋2 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

𝑋1 =
0, 𝑡 < 𝑡8

𝛿1 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

𝑋2 =
0, 𝑡 < 𝑡8

𝛿2 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

 

We show a simulation below. The plot shows how the density of infected people rises, 

then decreases and then increases again. 

Figure 4. A simulation of a model after a conflict with migration of refugees and 

peacekeepers in both the infected and susceptible populations. The simulation shows how 

the density of infected people (I, in red) rises, then decreases and then increases again. 

The density of susceptible people (S, in black) declines and then increases again after a 

conflict (due to migration of refugees and peacekeepers). The density of people who 

recover (R, in blue) increases throughout the duration of the simulation. 
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4. The effects of migration on diseases 

As the previous cases demonstrate, migration has a significant effect on disease spread, 

during and after conflicts. Here we examine in more detail the different effects migration 

can have on spread of infectious diseases. Other additional factors that can compound 

recovery from epidemics, caused in part by both migration and conflicts, are: 

a) breakdown of medical infrastructure 

b) over-crowding, and 

c) unsanitary facilities 

Most of these would affect the rate of recovery (parameter v) in the model. We can 

simulate these effects by lowering the value of v in the model. The rate of recovery (v) is 

at baseline before some time and then is assumed to decrease linearly with time. We can 

look at other functional forms, but this is a very basic and simple formulation. In the 

future we can fit more complex functions, when data becomes available,. 

The model is shown below 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

𝜈 =
𝜈,, 𝑡 < 𝑡8

𝜈, − 𝜂 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

 

A simulation of this outcome is shown in Figure 5.  
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Figure 5. A simulation of the migration model with additional factors showing how the 

density of infected people (I, in red) rises, then decreases and then increases again. The 

density of susceptible people (S, in black) declines throughout this process. The density 

of people who recover (R, in blue) increases and then decreases again due to the decline 

in the rate of recovery (due to breakdown in infrastructure). 

 

Migration has a significant effect on infectious diseases, both during and after conflicts. It 

may make more people susceptible to diseases, or isolate people from diseases in regions 

with poor connectivity. In future work, we will look at spatial models that couple 

migration, disease and conflicts. 

 

 

 

5. Scenario with multiple factors 

We acknowledge the complexity of looking at conflict, disease and socio-economics as a 

coupled system. Many of the factors that we outlined above may co-occur with each 

other. As an example, we present one such integrated model below. The model below 

incorporates an increase in the susceptible population (S(t)). It also simulates a 

breakdown of critical infrastructure that causes a decline in the recovery rate (v). 
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𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 + 𝛼𝑋 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

𝜈 =
𝜈,, 𝑡 < 𝑡8

𝜈, − 𝜂 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

𝑋 =
0, 𝑡 < 𝑡8

𝛿 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

6. Modelling interventions 

If there is available data, future modellers can even try to estimate the increase in 

recovery rate (v) required to reduce epidemics below a certain threshold. This assumes 

that the intervention can only effect v. Other interventions can affect the susceptible (S) 

and infected (I) populations by targeted vaccinations. 

We present such a model below. We note that currently we do not have data to calibrate 

these models. We hope that emerging technologies like smartphones in developing 

nations and remote sensing by satellites can enable modellers to get some approximate 

estimates of model parameters, like populations of infected and susceptible people 

(World Health Organization Report, 2019). This may enable forecasts of amount of 

humanitarian aid required to reduce an infection below a threshold. We model an 

intervention as an increase (piecewise linear) in the rate of recovery of infected 

individuals (v). 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 + 𝛼𝑋 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

𝜈 =
𝜈,, 𝑡 < 𝑡8

𝜈, + 𝜂 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

𝑋 =
0, 𝑡 < 𝑡8

𝛿 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

First, we show the simulations from a model without the intervention (Fig. 6).  
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Figure 6. A simulation of the migration model showing how the density of infected 

people (I, in red) rises, then decreases and then increases again (due to migration). The 

density of susceptible people (S, in black) declines and then increases due to migration. 

We then show the effect of an intervention of increasing the rate of recovery (v) by 

improved access to health services and vaccination (Fig. 7). The intervention, initiated 

after some time, has the effect of checking the rebound in infections seen in the model 

without interventions. 

 

Figure 7. A simulation of the migration model with an intervention of increasing the rate 

of recovery after some time (v). This has the effect of checking the increase in infected 

people seen in the model without intervention. The density of infected people (I, in red) 

rises and then decreases. 
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7. Effect of poverty on diseases 

We can simulate the effect of poverty on disease propagation by coupled models of 

socio-economics and diseases. The gross domestic product (GDP) of a country may affect 

the rate at which infected patients recover (parameter v). Poorer nations may have a lower 

value of v thereby compromising their chances of recovering from epidemics after a 

conflict. We parameterize v as a function of GDP. 

We present a simple model of this effect below 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

𝜈 =
𝑓(𝐺𝐷𝑃), 𝑡 < 𝑡8

𝑓(𝐺𝐷𝑃) − 𝜂(𝐺𝐷𝑃) 𝑡 − 𝑡8 , 𝑡 ≥ 𝑡8
 

 

 

8. Socio-economics of disease spread  

Conflicts can contribute to and also may be caused by diseases (Altman, 2010). Here we 

consider the socio-economics of infectious disease spread. 

Diseases can breakdown resources, reduce GDP, and deplete resources. This may in some 

instances compel these nations to initiate conflicts for acquiring resources externally 

(Altman, 2010). 

We look at coupled models of socio-economics and disease spread. We assume that the 

rate of recovery (v) from infections is related to the GDP. 

The model is shown below. We assume there are two countries that are competing with 

each other economically. Their GDPs are denoted by x and y. They each have epidemics 

where the rate of recovery (v) is dependent on GDP.  
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𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝜎𝑥𝑦 

𝑑𝑦

𝑑𝑡
= −𝛿𝑦 + 𝛾𝑥𝑦 

 

𝑑𝑆1

𝑑𝑡
= −𝛽𝐼1𝑆1 

𝑑𝐼1

𝑑𝑡
= 𝛽𝐼1𝑆1 − 𝜈1𝐼1 

𝑑𝑅1

𝑑𝑡
= 𝜈1𝐼1 

𝜈1 = 𝑓(𝑦) 

 

𝑑𝑆2

𝑑𝑡
= −𝛽𝐼2𝑆2 

𝑑𝐼2

𝑑𝑡
= 𝛽𝐼2𝑆2 − 𝜈2𝐼2 

𝑑𝑅2

𝑑𝑡
= 𝜈2𝐼2 

𝜈2 = 𝑓(𝑥) 

 

This is a very simple model where two countries that are competing economically have 

GDPs x and y. The rate of recovery (v) is dependent on GDP through a function f(GDP). 

In this model,  the GDP fluctuates over time due to competition between the two 

countries (as in a predator-prey model). The rate of recovery from infections also changes 

due to linked dynamics with socio-economics (GDP). 

Our models demonstrate the vicious cycle of poverty, disease and conflicts especially in 

some developing nations. This also suggests that aid organizations should take an 

integrated public health approach that is combined with efforts to aid socio-economic 

development. 
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We also show another model where we model the public health burden of epidemics.  

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝜎𝑥𝑦 − 𝑔(𝐼1) 

𝑑𝑦

𝑑𝑡
= −𝛿𝑦 + 𝛾𝑥𝑦 − 𝑔(𝐼2) 

 

𝑑𝑆1

𝑑𝑡
= −𝛽𝐼1𝑆1 

𝑑𝐼1

𝑑𝑡
= 𝛽𝐼1𝑆1 − 𝜈1𝐼1 

𝑑𝑅1

𝑑𝑡
= 𝜈1𝐼1 

𝜈1 = 𝑓(𝑦) 

 

𝑑𝑆2

𝑑𝑡
= −𝛽𝐼2𝑆2 

𝑑𝐼2

𝑑𝑡
= 𝛽𝐼2𝑆2 − 𝜈2𝐼2 

𝑑𝑅2

𝑑𝑡
= 𝜈2𝐼2 

𝜈2 = 𝑓(𝑥) 

 

Again we assume a scenario where two countries are competing economically and have 

GDPs x and y. As before the rate of recovery (v) is dependent on GDP through a function 

f(GDP). Additionally, the GDPs of the countries are now also reduced based on a 

function (g) of the number of infected people. This models the economic impact of 

epidemics. 

 

 

9. A scenario of a complex interaction of disease spread in a predator-prey system 

Our models are general enough to capture conflict-disease dynamics in other species. We 

consider a final scenario which may occur in other species. Consider two species, one of 

which preys on the other (predator-prey system). Assume that there is an infectious 

disease that infects only one species (say, the prey).  
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The model is shown below 

𝑑𝑥

𝑑𝑡
= 𝛼𝑥 − 𝜎𝑥𝑦 

𝑑𝑦

𝑑𝑡
= −𝛿𝑦 + 𝛾𝑥𝑦 

     𝑦 = 𝑆 + 𝐼 + 𝑅 

𝑑𝑆

𝑑𝑡
= −𝛽𝐼𝑆 

𝑑𝐼

𝑑𝑡
= 𝛽𝐼𝑆 − 𝜈𝐼 

𝑑𝑅

𝑑𝑡
= 𝜈𝐼 

Here we have a predatory-prey Lotka-Volterra model coupled to an SIR model. 

Whenever the density of predator (x) goes down, the prey (y) goes up. The total 

population of the prey (y) is composed of S + I + R. Some fraction of S is going to 

increase whenever the population of prey increases.  

From the discussion in the previous sections, when we increase the susceptible 

population, we can get oscillations of infections going up and down. We hypothesize that 

in certain cases the pathogen may evolve to reproduce around the peaks of the prey 

population. 

 

 

Preliminary Trends 

We acknowledge there is very scarce data on conflicts and diseases simultaneously with 

good resolution and fidelity. Nevertheless we would like to point out some trends from 

whatever data sources do exist.  

We add the caveat that there is very scarce data and the reliability and granularity with 

which this data was collected also needs to be critically examined. 

In the future, it may be possible to capture data at higher granularity and build data driven 

mathematical models. 

We show some trends using a visualization platform (gapminder, 2019). Figure 8 below 

shows a visualization of deaths in battles (per 100,000) vs. deaths due to malaria. Shown 

are trends (no statistical significance or causation is implied) for three countries from 

2002 to 2004. The visualization is freely available online (gapminder, 2019). 
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For Angola, which had been suffering a war from 1975 to 2002, we observe that deaths in 

battles decreased over this timespan, whereas deaths due to malaria increased and then 

decreased.  

The Democratic Republic of Congo (DRC) had been suffering from a war from 1998 to 

2003. There is still an ongoing conflict with terrible casualties till date. For the DRC, we 

observe that battle deaths decrease over time and deaths due to malaria unfortunately 

show an increasing trend. 

Unfortunately Burundi has seen a steady increase in battle deaths with no visually 

appreciable trend in deaths due to malaria. 

We would again like to reiterate that we do not imply statistical significance or causality. 

The data sources and collection methods need to be critically examined. Our objective is 

only to highlight trends and make a case for a more concerted effort for data collection in 

conflict prone regions. 

 

Figure 8. A visualization of deaths in battles vs. deaths due to malaria. The lines show a 

trend over time from 2002 to 2004 for three countries. The countries shown are Angola, 

Democratic Republic of Congo and Burundi. Based on free material from gapminder.org, 

CC-BY license. The visualization can be viewed online (gapminder, 2019).  

 

We also look at the number of refugees over time for three countries (Iran, Pakistan and 

Afghanistan) in a region that has seen conflicts for the last few decades (figure below). 
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Figure . A visualization of the number of refugees in Iran, Pakistan and Afghanistan over 

time. The lines show a trend over time from 1990 to 2017 for these three countries. Based 

on free material from gapminder.org, CC-BY license. The visualization can be viewed 

online (gapminder, 2019).  

 

 

Discussion 

The effects of conflict on infectious diseases are multi-faceted and complex. There have 

been observations of both increase and decrease in disease outbreaks during conflicts. 

Epidemics have been observed to be both initiated and extinguished by conflicts 

(McInnes, 2009). However there is no unified mathematical model that explains all these 

counter-intuitive observations.  

The recent appearance of emerging pathogens like Zika and Ebola virus in conflict-prone 

regions, highlights the need for a quantitative framework that integrates both diseases and 

conflicts.  

Such models can be a first step towards policy, spreading public awareness and may also 

be a tool for public health professionals in conflict zones. Quantitative techniques like 

these may also help us predict possible emerging hotspots for emerging diseases 

(Banerjee et al., 2017). 

In this work, we introduce a set of mathematical models to understand the role of 

conflicts in epidemics. Our mathematical framework has the potential to explain counter-

intuitive observations and the complex role of human conflicts in epidemics. 
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The role of non-linear models in understanding complex systems 

We suggest that non-linear mathematical models can help us understand why conflicts 

may both increase and decrease epidemics. We outline a few situations which explain the 

previously counter-intuitive observations. We develop coupled non-linear models of 

conflict, socio-economics and disease spread. 

We show representative plots to demonstrate the role of dynamical systems in this field. 

We note that the models are not specific to any disease nor do we estimate model 

parameters specific to any pathogen. Our objective is only to demonstrate that such a 

situation is indeed feasible. It should be possible to fit similar mathematical models to 

data, once such data becomes available. 

We note that the type of disease also matters, e.g. a vector-borne disease will have 

different characteristics compared to sexually transmitted diseases. Hence diseases may 

have different effects on conflicts based on their type and mode of transmission. 

Conflicts also cause a higher incidence of stress and trauma related diseases like diabetes 

and strokes (Maxmen, 2017). 

Conflicts can also help introduce new pathogens. Invading armies can introduce new 

diseases to a population that has no immunity (the English and the American armies 

introduced smallpox to Native Americans) or the invading army itself may be exposed to 

a novel pathogen (Napoleon’s army suffered from typhus during the Russian invasion) 

(Roy and Ray, 2018). We speculate that diseases may, in certain cases, even pause 

conflicts.  

 

Policy implications 

At the end of conflicts, epidemics could go away or reappear due to migration of aid 

workers, displaced populace, etc. Timely humanitarian intervention is key to reducing the 

spread of diseases. 

The policy implications are that public health officials will need to work closely with 

peacekeeping missions and humanitarian aid workers to manage crises, both during and 

after conflicts.  

Migration has a significant effect on infectious diseases during and after conflicts. This 

suggests that steps taken to manage refugee crises during and after conflicts are critical in 

preventing outbreaks of infectious diseases.  

Our models demonstrate the vicious cycle of poverty, disease and conflicts, especially in 

some developing nations. Diseases can cause more poverty due to the increased public 

health burden. Ultimately this may also lead to conditions that encourage conflicts for 

resources.  
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This suggests that aid and peacekeeping organizations should take an integrated approach 

that combines: 

1) public health measures 

2) efforts to aid socio-economic development 

3) peacekeeping in the region 

We also suggest that managing public health crises and reducing poverty can have 

significant knock-on effects including, we hope optimistically, reduction of conflicts. It is 

intriguing to speculate that perhaps an integrated approach where public health 

intervention is coupled with nation-building efforts, for example to build technological 

infrastructure and international scientific collaboration networks, may help these 

countries recover in the long term (Banerjee, 2015). 

We do however acknowledge the difficulties humanitarian organizations will face in 

reaching communities at times of conflict. 

 

Future Work 

There are certain aspects of this complex system that we have not incorporated which 

may form the subject of future investigations. We outline some of those factors here.  

Human trafficking during and after conflicts is an unfortunately common occurrence in 

conflict zones. The trauma it leaves behind in victims alone is unfathomable. 

Humanitarian aid or peacekeeping organizations also sometimes unfortunately exploit 

people in conflict zones, as has happened in the erstwhile Yugoslavia in the 1990s and 

more recently in Haiti. These incidents inflict further trauma on the victims. They also 

erode trust in these organizations and further delay and complicate recovery efforts after 

conflicts. 

Another area of future investigation can be the humanitarian and ethical aspects and other 

benefits that come from welcoming refugees and displaced people. Refugees can bring in 

a lot of diversity into another country and enrich it in many ways (Banerjee, 2017).  

 

Conclusion 

We view our work as a step towards a quantitative model of disease spread in conflicts. 

Our model explains apparently inconsistent observations on disease spread during 

conflicts. A multitude of possibilities are explained in a quantitative framework.  

Our work also highlights the importance of simple mathematical models and the perils of 

applying linear thinking to non-linear complex systems. Non-linear models produce 

counter-intuitive results; disease spread is a non-linear phenomenon which produces 

counter-intuitive results. Such mathematical models have been used in the past to model 
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diverse complex systems ranging from socio-economic to biological systems (Banerjee et 

al., 2017). We note that similar mathematical models have also been used to explain 

crime and violence in human societies (Banerjee, 2017). 

Our work raises the hope for a predictive model that may be of use to first responders and 

public health officials in conflict hotspots. Mathematical models of joint epidemic and 

conflict risk would be of considerable interest to future humanitarian and peacekeeping 

missions. 
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