

1 Targeted NGS for species level phylogenomics: "made to measure" or "one size fits all"?

2

3 Malvina Kadlec^{1,3}, Dirk U. Bellstedt², Nicholas C. Le Maitre², and Michael D. Pirie^{1,2}

4

- ¹Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-
- 6 Universität, Anselm-Franz-von-Bentzelweg 9a, 55099 Mainz, Germany
- ²Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602,
- 8 South Africa
- 9 ³Author for correspondence: <u>mkadlec@uni-mainz.de</u>

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Abstract

Targeted high-throughput sequencing using hybrid-enrichment offers a promising source of data for inferring multiple, meaningfully resolved, independent gene trees suitable to address challenging phylogenetic problems in species complexes and rapid radiations. The targets in question can either be adopted directly from more or less universal tools, or custom made for particular clades at considerably greater effort. We applied custom made scripts to select sets of homologous sequence markers from transcriptome and WGS data for use in the flowering plant genus Erica (Ericaceae). We compared the resulting targets to those that would be selected both using different available tools (Hyb-Seq; MarkerMiner), and when optimising for broader clades of more distantly related taxa (Ericales; eudicots). Approaches comparing more divergent genomes (including MarkerMiner, irrespective of input data) delivered fewer and shorter potential markers than those targeted for *Erica*. The latter may nevertheless be effective for sequence capture across the wider family Ericaceae. We tested the targets delivered by our scripts by obtaining an empirical dataset. The resulting sequence variation was lower than that of standard nuclear ribosomal markers (that in Erica fail to deliver a well resolved gene tree), confirming the importance of maximising the lengths of individual markers. We conclude that rather than searching for "one size fits all" universal markers, we should improve and make more accessible the tools necessary for developing "made to measure" ones.

30

Peer Preprints

- Keywords: Ericaceae; hybridization enrichment; marker development, next-generation 31
- 32 sequencing; phylogeny; targeted sequence capture; target enrichment; transcriptome

33

34

Introduction

- DNA sequence data is the cornerstone of comparative and evolutionary research, invaluable 35
- 36 for inference of population-level processes and species delimitation through to higher level
- 37 relationships. Sanger sequencing (Sanger, Nicklen & Coulson, 1977) and Polymerase Chain
- 38 Reaction (PCR) amplification (Saiki et al., 1985) have been standard tools for decades, aided
- 39 by the development of protocols that can be applied across closely and distantly related
- 40 organisms. In plants, universal primers such as for plastid (Taberlet et al., 1991), nuclear
- 41 ribosomal (White et al., 1990) and even single or low copy nuclear (Blattner, 2016) sequences
- 42 have been widely applied to infer evolutionary histories. Many empirical studies are still
- 43 limited to these few independent markers, the phylogenetic signal of which may not reflect
- 44 the true sequence of speciation events (Kingman, 1982; White et al., 1990). Additionally, the
- 45 resulting gene trees are often poorly resolved, particularly when divergence of lineages was
- 46 rapid. When it is not possible to generate a robust and unambiguous phylogenetic hypothesis
- 47 using standard universal markers, protocols for alternative low copy genes are highly
- 48 desirable (Sang, 2002; Hughes, Eastwood & Bailey, 2006).
- 49 With the development of next generation sequencing (NGS) techniques, we now have
- 50 potential access to numerous nuclear markers allowing us to address evolutionary questions
- 51 without being constrained by the generation of sequence datasets per se. In principle, the
- 52 whole genome is at our disposal, but whole genome sequencing (WGS) is currently relatively
- 53 expensive, time-consuming and computationally difficult, especially for non-model organisms
- 54 and eukaryote genomes in general (Jones & Good, 2016). These disadvantages will doubtless
- 55 reduce in the near future, but nevertheless much of the data that might be obtained through
- 56 WGS is irrelevant for particular purposes. In the case of phylogenetic problems, repetitive
- 57 elements and multiple copy genes are not useful; neither are sequences that are highly
- 58 constrained and hence insufficiently variable, nor indeed those that are too variable and
- 59 impossible to align; nor those subject to strong selection pressure. We need strategies to
- 60 identify and target sequencing of markers appropriate for phylogenomic analysis in different
- clades and at different taxonomic levels, and are currently faced with an array of options. 61
- Different methods, referred to in general as "genome-partitioning approaches", or "reduced-62

63	representation genome sequencing", have been developed that are cheaper, faster and
64	computationally less demanding than WGS, and as such are currently more feasible for
65	analyses of numerous samples for particular purposes (Mamanova et al., 2010). These
66	include reduced-site-associated DNA sequencing (RAD-seq; Miller et al., 2007), and similar
67	Genotyping by sequencing (GBS) approaches (Elshire et al., 2011), and whole-transcriptome
68	shotgun sequencing (RNA-seq; Wang, Gerstein & Snyder, 2009). RADSeq and GBS libraries
69	are generated using restriction digestion (followed by size-selection and PCR enrichment) to
70	obtain homologous sequences representing a more or less random subset of the total genomic
71	DNA, whereas RNA-seq uses NGS to retrieve the complete transcriptome of a sample from
72	isolated RNA. These methods can be applied to non-model species (Johnson et al., 2012) but
73	do not necessarily deliver the most informative data for phylogenetic inference. RAD-
74	seq/GBS sequences are short, generally used for obtaining (independent) single nucleotide
75	polymorphisms (SNPs) from across the genome, suitable for population genetic analyses.
76	Transcriptome data cannot be obtained from dried material (such as herbarium specimens),
77	restricting its application. The sequences are functionally conserved and therefore may be
78	more suitable for analysing more ancient divergences, such as the origins of land plants
79	(Wickett et al., 2014). Neither approach is ideal for inferring meaningfully resolved
80	independent gene trees of closely related species as they will inevitably present limited
81	numbers of linked, informative characters.
82	Alternative approaches can be used to target more variable, longer contiguous sequences
83	involving selective enrichment of specific subsets of the genome before using NGS through
84	PCR based, or sequence capture techniques. PCR based enrichment, or multiplex and
85	microfluidic amplification of PCR products, is the simultaneous amplification of multiple
86	targets (e.g. 48, as used in Uribe-Convers, Settles & Tank, 2016; to potentially hundreds or
87	low thousands per reaction). Although this method dispenses with the need for time-
88	consuming library preparation, it requires prior knowledge of sequences for the design of
89	primers; such primers must be restricted to within regions that are known to be conserved
90	across the study group.
91	Current targeted sequence capture methods involve hybridization in solution between
92	genomic DNA fragments and biotinylated RNA "baits" (also referred to as "probes" or the
93	"Capture Library") between 70 and 120 bp long. Hybridization capture can be used with non-
94	model organisms (as is the case for RAD-seq/GBS and RNA-seq), and shows promising
95	results with fragmented DNA (such as might be retrieved from museum specimens) (Moriarty

Peer Preprints 96 Lemmon, 2013; Zimmer & Wen, 2015; Hart et al., 2016). Moreover, even

70	Zemmon & Zemmon, 2013, Zimmor & Wen, 2013, Trait et al., 2010). Wellow tell, even
97	without baits specifically designed using organelle genomes, plastid and mitochondrial
98	sequences can also be retrieved during the hybrid-enrichment process (Tsangaras et al., 2014).
99	Use of targeted sequence capture for phylogenetic inference is on the increase but still
100	somewhat in its infancy, with a range of different more or less customised laboratory and
101	bioinformatic protocols being applied to different organismal groups and in different
102	laboratories. The protocols follow two general approaches: One is to design baits for use in
103	specific organismal groups (e.g. Compositae, Mandel et al., 2014; cichlid fish, Ilves & Lopez-
104	Fernandez, 2014; and Apocynaceae, Weitemier et al., 2014 □). To this end, conserved
105	orthologous sequences of genes of the species of interest are identified e.g. using a BLASTn
106	or BLASTx search (or equivalent) with transcriptome data, expressed sequences tags (ESTs)
107	and/or WGS. Alternatively, and with considerably less effort, pre-designed sets of more
108	universal baits are used (Faircloth et al., 2012; Lemmon, Emme & Lemmon, 2012). Of the
109	latter, "Ultra Conserved Elements" (UCE) (Faircloth et al., 2012) and "Anchored Hybrid
110	Enrichment" (AHE) (Lemmon, Emme & Lemmon, 2012) approaches have been applied in
111	phylogenetic analyses of animal (e.g. snakes, Pyron et al., 2014; lizards, □Leaché et al., 2014;
112	frogs, Peloso et al., $2016\Box$; and spiders, Hamilton et al., 2016) and plant (<i>Medicago</i> , De
113	Sousa et al., 2014□; <i>Sarracenia</i> , Stephens et al., 2015; palms, Comer et al., 2016; Heyduk et
114	al., 2016; Heuchera, Folk, Mandel & Freudenstein, 2015; Inga, Nicholls et al., 2015; and
115	Protea, Mitchell et al., 2017) clades.
116	Universal protocols are an attractive prospect, in terms of reduced cost and effort, and
117	because they might generate broadly comparable data suitable for wider analyses (or even
118	DNA barcoding; Blattner, 2016). However, the resulting sequence markers may not be
119	optimal for all purposes. For phylogenetic inference, low-copy markers are required to avoid
120	paralogy issues, and for successful hybridisation capture similarity of baits to target sequences
121	must fall within c. 75-100% (Moriarty Lemmon & Lemmon, 2013). This places a restriction
122	on more universal markers that will necessarily exclude potentially useful low copy, high
123	variability markers where these are subject to duplications or too variable in particular
124	lineages.
125	The selection of appropriate sequence markers may therefore be crucial in determining the
126	success of this kind of analysis, especially for non-model species. Transcriptome data for
127	increasing numbers of non-model organisms are available (Matasci et al., 2014) and
128	bioinformatics tools are available that can assist in the selection of markers and design of

29 baits, taking transcriptome and/or whole genome sequences of releva

129	bans, taking transcriptome and/or whole genome sequences of relevant taxa as input. These
130	include MarkerMiner (Chamala et al., 2015), Hyb-Seq (Weitemier et al., 2014; Schmickl et
131	al., 2016) and BaitsFisher (Mayer et al., 2016). The question for researchers embarking on
132	phylogenomic analyses is whether it is worth the additional cost and effort involved in
133	designing custom baits, and how to select sequence markers in order to get the most
134	information out of a given investment of time and funds.
135	Our ongoing research addresses the challenge of resolving potentially complex phylogenetic
136	relationships between closely related populations and species of a non-model flowering plant
137	group, the genus <i>Erica</i> (Ericaceae; one of 22 families of the asterid order Ericales; (Stevens,
138	2001)). The c. 700 South African species of <i>Erica</i> represent the most species rich 'Cape
139	clade' in the spectacularly diverse Cape Floristic Region (Linder, 2003; Pirie et al., 2016).
140	Analyses of the Erica clade as a whole offer a rich source of data in terms of numbers of
141	evolutionary events, and our ability to infer such events accurately is arguably greatest in the
142	most recently diverged species and populations. In such clades, the historical signal for shifts
143	in key characteristics and geographic ranges are in general less likely to have been
144	overwritten by subsequent shifts and (local) extinction. However, phylogenetic inference in
145	rapid species radiations, such as that of Cape Erica (Pirie et al., 2016), Andean Lupinus
146	(Hughes & Eastwood, 2006) or Lake Malawi cichlid fish (Santos & Salzburger, 2012)
147	presents particular challenges. These include low sequence divergence confounded by the
148	impact of both reticulation and coalescence on population-level processes. To infer a
149	meaningful species tree under such circumstances, we need data suitable to infer multiple,
150	maximally informative, independent gene trees.
151	The aims of this paper are to compare custom versus universal approaches to marker
152	selection, in terms of the predicted sequence lengths and variability and to compare their
153	potential for delivering multiple independent and informative gene trees. In so doing, we
154	generate a tool for low-level phylogenetic inference in <i>Erica</i> , we test it experimentally by
155	generating empirical data, and we assess its potential application across a wider group, e.g.
156	the family Ericaceae.
157	

158

159

160

Materials & Methods

Our first aim was to identify homologous, single-copy sequence markers for which we could design baits (probes) with similarity of ≥75% (as hybridization between target and probe

161	tolerates a maximum of 25% divergence) that would be predicted to deliver the greatest
162	numbers of informative characters. Baits currently represent a relatively large proportion of
163	the total cost of the protocol (which is expensive on a per sample basis compared to e.g. PCR
164	enrichment). We therefore restricted the total length of hybridisation baits to 692,400 bp
165	(5770 individual 120 bp baits), representing a total "capture footprint" (i.e. sequence length)
166	of 173,100 bp given probe overlap representing 4x coverage. With our lab protocol (see
167	below) this permits dilution of the baits to capture five samples per unit of baits instead of just
168	one. We developed custom-made Python 2.7.6 scripts to identify the wider pool of all
169	potential target sequences from transcriptome and WGS data, as well as applying already
170	available scripts/software for comparison. We subsequently implemented in further scripts
171	different options for prioritising target variability, length and/or intron numbers and lengths to
172	select optimal sequence markers from these pools of potential targets. We then compared the
173	lengths and numbers of the sequences in the different resulting potential and optimal marker
174	sets.
175	
176	Identifying potential target sequences
177	Our custom-made script (AllMarkers.py; summarised in Fig. 1 available at Github:
178	https://github.com/MaKadlec/Select-Markers/tree/AllMarkers) requires at least two
179	transcriptomes, ideally of taxa closely related to the focal group. Where WGS/genome
180	skimming data of one or more such taxa is available, it can be used too, as in Folk, Mandel &
181	Freudenstein (2015). AllMarkers.py implements the following steps: First, multiple
182	transcriptomes are compared to identify homologues, retaining those found in at least two
183	transcriptomes (and hence likely to also be found in related genomes). We have successfully
184	used up to eight transcriptomes; on eight cores of a fast desktop PC the analyses ran for up to
185	two days. Particularly when larger numbers of larger transcriptomes are compared, an
186	additional filter can be applied prior to this step to remove shorter sequences (e.g. those
187	<1,000 bp) and thereby improve speed. Next, multiple copy sequences (for which homology
188	assessment might be problematic) are identified, either using BLASTn of transcriptome
189	against WGS, or (when no WGS data is available) by comparison to the classification of
190	proteins as single/mostly single copy across angiosperms by De Smet et al. (2013), using
191	BLASTx following the approach used in MarkerMiner (Chamala et al., 2015). Multiple-copy
192	sequences are then excluded. Finally, a filter for similarity ≥75% is applied. This series of
193	steps is comparable to but differs from those implemented in Hyb-Seq (Weitemier et al.,

194	2014) and in MarkerMiner (Chamala et al., 2015) (Fig. 1), which we also applied here.
195	The Hyb-Seq pipeline uses transcriptome and WGS sequences of closely related species to
196	select marker sequences. This pipeline employs BLAT (BLAST-like Alignment Tool) to
197	identify single-copy sequences with identity > 99%. After isoform identification, sequences
198	with exons <120 bp and those of total length <960 bp are removed (representing a further
199	filtering of potential targets that is comparable in part to the next steps in our own scripts, as
200	described below), then orthologous sequences are identified using the transcriptome of a
201	closest related species or transcriptomes of four angiosperms (Arabidopsis thaliana, Oryza
202	sativa, Populus trichocarpa and Vitis vinifera).
203	For MarkerMiner, WGS data is neither required nor used. This pipeline involves selecting
204	sequences by size in input transcriptomes (we set length parameter to >1000 bp) then using
205	reciprocal BLAST between transcriptomes and a reference proteome to select sequences
206	above 70% similarity. The proteome most closely related to Erica implemented in
207	MarkerMiner in August 2016 was that of Vitis vinifera (Vitaceae; Vitales; core eudicots;
208	Stevens, 2001). This minimum similarity threshold does not directly reflect that required for
209	successful probe hybridisation, and particularly given comparison to a relatively distantly
210	related proteome (as in this case) can be expected to be conservative. In the final step,
211	MarkerMiner retains putative single copy ortholog pairs following De Smet et al. (2013).
212	
213	Selection of optimal target sequences from pools of potential targets
214	The above steps result in potentially large pools of potentially highly suboptimal targets, in
215	particular shorter and/or invariable sequences that, given rapid lineage divergence, may not
216	deliver enough informative characters to discern meaningfully resolved independent gene
217	trees. In order to select optimal markers from these pools given a limited number of baits we
218	designed a further script (available at Github: https://github.com/MaKadlec/Select-
219	<u>Markers/tree/BestMarkers.py</u>). Depending on the phylogenetic problem to hand (e.g. recent,
220	species level divergence versus older radiations) and available information (e.g. about
221	sequence variability in the focal clade; positions and lengths of potentially more variable
222	introns), various options are possible. In our case, from WGS and transcriptome data we
223	know where introns are likely to be found, but in the absence of sequences from multiple
224	accessions of our ingroup, the only indication of sequence variability comes from comparison
225	of coding regions of relatively distantly related taxa, i.e. single species of Rhododendron,

226	Vaccinium and Erica. We therefore assessed two options: 1) simply selecting the longest
227	sequences. 2) Selecting the longest sequences, but taking into account the (likely) additional
228	length of introns. Using WGS data, we assessed the number and length of introns. For the
229	purpose of ranking potential markers, we decided to use mean intron length in order to avoid
230	favouring the selection of sequences with large introns that a) might not be efficiently
231	captured/sequenced; or b) might not be so large in the focal clade. Finally, the longest
232	sequences were selected that could be captured with our maximum number of baits. Coding
233	regions <120 bp long are shorter than the baits and are likely to be ineffectively captured. For
234	this reason, in the Hyb-Seq approach (Weitemier et al., 2014) all sequences including exons
235	<120 bp are excluded; however, this is at the expense of excluding otherwise optimal markers
236	that may include individual exons of <120 bp. We therefore opted to retain sequences
237	including one or more coding regions \geq 120 bp, whilst excluding individual exons $<$ 120 bp as
238	potential targets for baits.
239	
240	In silico comparison with empirical data
241	Our custom scripts (AllMarkers.py and BestMarkers.py), the Hyb-Seq and MarkerMiner
242	pipelines were each applied to the transcriptomes of Rhododendron scopulorum (18,307 gene
243	sequences; 1KP project (Matasci et al., 2014) and (diploid) Vaccinium macrocarpon
244	(cranberry) (48, 270 sequences, NCBI) (both Ericaceae subfamily Ericoideae; Ericales); and
245	(except for MarkerMiner) WGS of V. macrocarpon (NCBI) and Erica plukenetii (Le Maitre
246	& Bellstedt, unpublished data). The (potential) length and identity of the resulting targets was
247	compared.
248	In order to compare these "made to measure" (taxon-specific) targets with those that might be
249	selected using a more "one size fits all" (universal) approach to probe design, we compared
250	transcriptomes from more distantly related plants 1) of Ericales (Actinidia chinensis
251	[Actinidiaceae; 10,000 sequences, NCBI], Aegiceras corniculatum [Primulaceae; 49,412
252	sequences, NCBI], Camellia reticulata [Theaceae; 139,145 sequences, NCBI], Diospyros
253	lotus [Ebenaceae; 413, 775 sequences, NCBI], R. scorpulum and V. macrocarpon); and 2) of
254	eudicots (Anemone flaccida [Ranunculales; 46,945 sequences, NCBI], Dahlia pinnata
255	[Asterales; 35,638 sequences, NCBI], Gevuina avellana [Proteales; 185,089 sequences,
256	NCBI], Mesembryanthemum crystallinum [Caryophyllales; 24,204 sequences, NCBI],
257	Solanum chacoense [Solanales; 42,873 sequences, NCBI], Vigna radiata [Fabales; 78,617

258	sequences, NCBI], Vitis vinifera [Vitales; 52,310 sequences, NCBI] and R. scorpulum).
259	Because in this wider context it is no longer appropriate to identify single copy markers on the
260	basis of Ericoideae data alone, we instead used the option to compare to the angiosperm-wide
261	database (De Smet et al., 2013) following an approach similar to MarkerMiner (Chamala et
262	al., 2015). We compared the resulting targets to those of the <i>Erica</i> -specific approach, as
263	above.
264	
265	Generation of a novel empirical dataset
266	In order to confirm that our scripts can be used to obtain datasets of single-copy markers, we
267	applied them to our empirical study on Cape <i>Erica</i> . We used the 132 sequences resulting from
268	our custom scripts, taking into account the potential intron lengths (see results and
269	discussion).
270	In addition to these targets, we made a small number of ad-hoc modifications of the final
271	dataset, adding further sequences that were not otherwise selected as optimal with the above
272	scripts to the final probe design datasets for the purpose of comparison with other datasets.
273	Two additional targets were rpb2 (as used in phylogenetic reconstruction in <i>Rhododendron</i> ;
274	Goetsch, Eckert & Hall, 2005) and topoisomerase B (as proposed for use across flowering
275	plants; Blattner, 2016).
276	
277	Laboratory methods: Plant material was collected in the field under permit (Cape Nature:
278	0028-AAA008-00134; South Africa National Parks: CRC-2009/007-2014) or obtained from
279	cultivation. DNA was extracted from one sample of <i>Rhododendron camtschaticum</i> , supplied
280	by Dirk Albach and Bernhard von Hagen from collections of the Botanic Garden, Carl von
281	Ossietzky Universität, Oldenburg, Germany; and 12 of Erica (Table 1) using Qiagen
282	DNAeasy kits (Qiagen, Hilden, Germany). DNA extraction in <i>Erica</i> is generally challenging
283	(Bellstedt et al., 2010) and the quantity and quality of DNA obtained differed considerably
284	between species. To reach the correct amount of DNA required for library preparation,
285	multiple DNA extractions from the same sample were combined.
286	Earlibrary agreementian and hybridication agrichment, we used the Asilant ConsCalactVT
287	For library preparation and hybridisation enrichment, we used the Agilent SureSelectXT
288	protocol (G7530-90000), incorporating sample-specific indexes for pooled sequencing. For
289	the library preparation, amount of gDNA used was between 1 and 3 µg, and during the

290	hybridisation and capture step, we used a diluted capture library (1 part Agilent baits solution
291	to 4 of ddH ₂ O). Sequencing was performed with Illumina NextSeq500 (StarSeq, Mainz,
292	Germany) to generate 25 million paired-end reads of length 150 bp.
293	
294	Bioinformatic analysis: Using the de novo assembler MIRA (version 4.0) (Chevreux, Wetter
295	& Suhai, 1999), reads were assembled into contiguous sequences (contigs) and then compared
296	using BLASTn against the sequence targets as well as against nuclear ribosomal (nrDNA),
297	plastid, and mitochondrial data.
298	Using the L-INS-i (iterative refinement method incorporating local pairwise alignment
299	information) method of MAFFT (Katoh et al., 2002), we aligned contigs with each other and
300	with the sequence targets. We removed duplicates and merged identical overlapping
301	sequences using custom scripts and excluded alignment positions representing indels or
302	missing data in one or more samples. We then calculated the percentage of variable sites per
303	marker, including combined mitochondrial and plastid sequences and individual nrDNA
304	sequences representing Internal and External Transcribed Spacer regions (ITS and ETS) as
305	obtained using Sanger sequencing in previous work (Pirie, Oliver & Bellstedt, 2011; Pirie et
306	al., submitted). Gene trees were inferred using RAxML (Stamatakis, 2014) and used as a
307	rough test for potential paralogy, under the assumption that the ingroup (comprising all
308	samples except Rhododendron and the more closely related outgroups Erica abietina and
309	Erica plukenetii) is monophyletic.
310	
311	Results
312	Similarity, length and overlap of selected markers: "made to measure" versus "one size fits
313	all"
314	The lengths of sequences selected using the different scripts are presented in Fig. 2. Summary
315	comparisons by method are presented in Table 2 (sequence numbers, lengths and similarity).
316	In general, the additional filter that includes mean intron length resulted in an increased
317	number of shorter targets that might nevertheless deliver greater final sequence lengths, if
318	average lengths of flanking introns are effectively captured (Fig. 2).
319	Made to measure: We identified 4649 potential markers using our custom script
320	AllMarkers.py. Applying script BestMarkers.py to this pool to optimise for length, two

Peer Preprints

321

321	different subsets of optimal markers were obtained: 132 with median length (of coding
322	region) of 2,187 bp when taking intron lengths into account; 79 of median length 2,631 bp
323	when not. Sequence identity was similar (Table 2).
324	With the Hyb-Seq pipeline, 782 sequences were obtained, which after applying
325	BestMarkers.py, was reduced to 55 of median length 2,157 bp when taking introns into
326	account and 66 of median length 2,184 bp when not. Sequence identity was similar, and
327	similar to that resulting from AllMarkers.py (Table 2).
328	With MarkerMiner, target sequences are delivered separately for each transcriptome provided.
329	We selected a total pool of 544 potential target sequences, of which 389 are represented in the
330	R. scopulorum data and 222 in V. macrocarpon. By comparison using our own scripts
331	(available on request) we identified just 67 that were common to both (whereby it should be
332	noted that AllMarkers.py by default retains only those found in at least two transcriptomes).
333	Of the 544 sequences, 519 are indicated by MarkerMiner as mostly single copy and 25 as
334	strictly single copy in angiosperms. After applying BestMarkers.py we retained 254 sequence
335	targets when taking introns into account and 207 sequences when not. Use of MarkerMiner
336	resulted in the selection of greater numbers of shorter and slightly more conserved markers
337	compared to both AllMarkers.py and HybSeq (Table 2, Figs. 2-3).
338	One size fits all: Applying AllMarkers.py/BestMarkers.py to transcriptomes of Ericales
339	resulted in a pool of 2,354 potential markers and final datasets of 409 sequences when taking
340	introns into account and 171 when not. With the Eudicot transcriptomes, the total pool
341	included 461 potential markers and final datasets 249 (when taking introns into account) and
342	130 sequences (when not) (Table 2). In the latter, there is a slight increase in similarity
343	(≥85%, similar to MarkerMiner; Fig. 3), and in both, sequences are shorter (Table 2, Fig. 2).
344	The numbers of markers in common given the different methods for selecting them, before
345	and after applying BestMarkers.py are presented in Fig. 4. Fig. 4a illustrates both the low
346	overlap and large differences in numbers between the complete pools of potential markers
347	identified using the different methods/input data. Expanding in taxonomic scope from Erica
348	(identifying single-copy genes on the basis of WGS data) to Ericales and to eudicots
349	(adopting single copy markers from the database of De Smet et al. (2013) resulted in a
350	decrease in numbers of potential markers, and the use of MarkerMiner a further decrease. Fig.
351	4b illustrates the differences in the optimal markers selected using BestMarkers.py on these
352	pools. There is limited overlap and considerable differences in both target numbers and

Peer Preprints lengths: overall, AllMarkers.py/BestMarkers.py and HybSeq delivered the longest sequences,

353

354	whereby the former delivered more markers for the same number of baits. Both the Ericales
355	and eudicot analyses and MarkerMiner delivered greater numbers of shorter sequences.
356	
357	Empirical data
358	We performed selective enrichment of 134 markers. Exon sequences used for probe design
359	are presented in supplementary data 1 and sequence alignments in supplementary data 2. With
360	the exception of a single marker, capture was equally effective in the single <i>Rhododendron</i>
361	sample and thirteen Erica samples. One marker was captured only in Rhododendron, and two
362	others was not captured at all. All of the remaining 129 markers plus rpb2 and topoisomerase
363	B were recovered from all thirteen samples analysed. Of these, 6 were single copy without
364	allelic variation; 83 included sequence polymorphisms corresponding to two distinguishable
365	putative alleles in one or more (but not all) individual samples. A further 40 included
366	sequence polymorphisms in all samples which exhibited two or more copies. Of the latter 40,
367	28 represented paralogs that were easily distinguished on the basis of high sequence
368	divergence in one or more coding region and could thus be segregated into separate matrices
369	of homologous sequences. The remainder (12) included multiple copies sequences that could
370	not obviously be distinguished. Inspection of individual gene trees failed to reject the
371	monophyly of the ingroup in all but five cases.
372	Comparison of sequence length/variability was limited by uneven sequencing coverage, but
373	we could confirm the capture of complete intron sequences of up to c. 1000 bp and partial
374	introns/flanking non-coding regions of up to c. 500 bp. In addition, large stretches of
375	homologous high copy nuclear ribosomal and mitochondrial sequences were captured for all
376	samples, as well as more fragmented plastid sequences.
377	Despite incomplete sequencing coverage, the average alignment length of single copy nuclear
378	sequences was 1810 bp, with a range between 823 and 5574 bp. With all gaps and missing
379	data excluded (resulting in alignments of between 327 and 4716 bp), the single copy nuclear
380	sequences presented between 5 and 412 variable positions each, representing a range of 0.5-
381	18% variability. Variability of rpb2 was 3.4%; topoisomerase B: 7.5%; ETS: 22.1%; ITS:
382	17.9%; mitochondrial: 6.3%; and plastid sequences: 0.54%. A plot of original predicted
383	length of markers (instead of real length since in most cases complete sequences were not
384	obtained) against variability is presented in Fig. 5. There was no obvious relationship between

385	sequence length and variability. A further plot of observed sequence variability against
386	variability of the corresponding transcriptome data (Rhododendron compared to Empetrum) is
387	presented in Appendix 1; there was also no obvious relationship. Gene trees inferred under
388	ML are documented in Supplementary Material 3 (with further details in Supplementary
389	Material 4), with six based on selected markers (ITS, mitochondrion, and four single copy
390	nuclear markers that provided the greatest numbers of variable characters) illustrated in Fig. 6.
391	
392	Discussion
393	Comparing closely versus distantly related genomes for marker selection
394	It seems intuitively obvious that optimal markers for a given phylogenetic problem will be
395	those informed by comparison to transcriptomes/WGS of the most closely related
396	representative taxa. With such data, lineage specific gene duplications can be identified and
397	the number of potential targets of appropriate variability maximised. However, the genomic
398	data available for a given focal group (such as transcriptome data from the 1KP project;
399	Matasci set al., 2014) may represent taxa more or less distantly related to it, and particular
400	researchers may or may not wish to go to the trouble of designing and applying custom
401	protocols. Indeed, if an off-the-shelf tool will provide appropriate data, it would be a great
402	deal simpler just to use it. Hence, before embarking on expensive and time-consuming lab
403	procedures, we need to know to what degree targets designed for one group might be applied
404	to more distantly related ones (e.g. in this case the utility of Erica baits across Ericaceae, or
405	Ericales); and conversely, how suboptimal baits designed for universal application (e.g. across
406	angiosperms) are likely to be for a given subclade.
407	Using our own custom scripts, we compared the pools of markers that might be selected on
408	the basis of comparison of relatively closely related genomes with those on the basis of more
409	distantly related ones (i.e. within the subfamily Ericoideae as opposed to within the order
410	Ericales or across eudicots). Our results showed that both the pools and the best marker sets
411	from those pools differed considerably, and that the sequences of the latter were considerably
412	shorter (Table 2, Figs. 2 and 3). On the other hand, sequence variability within Ericales
413	(minimum sequence identity between Ericaceae and Actinidiaceae: 73%) suggests that baits
414	designed for Erica are also potentially suited for use at least across Ericaceae, including in
415	Rhododendron and Vaccinium (both species-rich genera for which such tools might be
416	particularly useful (Kron, Powell & Luteyn, 2002; Goetsch, Eckert & Hall, 2005). In general,

417	our results confirm both the greater potential of custom baits developed for specific clades;
418	and show that once obtained, such tools are nevertheless likely to apply across a fairly broad
419	range of related taxa.
420	
421	The impact of method for marker selection
422	Having decided to design custom baits, the next question that we might ask is which method
423	to use for probe selection/design. Our results suggest that this is also likely to have a
424	significant impact on the resulting datasets. We compared three approaches to marker
425	selection: our own custom scripts; those presented in the Hyb-Seq approach (Weitemier et al.,
426	2014) and MarkerMiner (Chamala et al., 2015).
427	Of these three, MarkerMiner is arguably the most user-friendly, which is important given that
428	its user base ought ideally to include biologists without extensive bioinformatics skills.
429	However, in our comparisons it fared poorly, delivering the lowest sequence lengths (Table
430	2). The reasons for this are two-fold: first (and perhaps most importantly), because the
431	transcriptomes used, irrespective of their similarity one to another, are compared to what is
432	likely to be a rather distantly related proteome; second, because the approach for identifying
433	single or low-copy markers involves comparison to a general database (in this case for
434	flowering plants), rather than a case-by-case assessment. Hence, in its current implementation
435	it is to be expected that the most variable sequences will be excluded, as will some that are
436	single copy in the focal group (or with easily discerned paralogs, as was the case here and also
437	at lower taxonomic levels in Budenhagen et al. 2016); and that some that are not single copy
438	in that group will in fact be included. This is reflected in our results by the low number of
439	potential target sequences recovered in total; in the low proportion of those that were
440	recovered also being recovered using our own custom scripts and Hyb-Seq; and in the lower
441	sequence length: the removal of more variable sequences arbitrarily results in the removal of
442	longer ones too (Table 2). This phenomenon is apparently also reflected in the even shorter
443	sequences reported by Budenhagen et al. (2016), using universal angiosperm probes (average
444	764 bp, derived from targets averaging 343 bp).
445	The Hyb-Seq approach is more similar to our own, but nevertheless results in a different
446	dataset of selected sequences. The main differences lie in the search tool and filters. Our script
447	uses BLAST, whereas Hyb-Seq uses BLAT. BLAT is faster than BLAST, but needs an exact
448	or nearly-exact match to return a hit. Significantly, the exclusion in HybSeq of all sequences

449 450	approach the problem of short exon/probe mismatch is avoided simply by ignoring such
451	exons during probe design. The net result is that while both approaches deliver long target
452	sequences, ours can deliver those including more introns (which can therefore be captured
453	using fewer baits).
454	
455	Selecting optimal markers from within a pool of potential candidates
456	Our approach includes not just a means to select potentially appropriate markers
457	(AllMarkers.py; as is the case with the other approaches compared) but also a second step
458	(BestMarkers.py) that selects putatively optimal markers from amongst that pool. Obviously,
459	it is possible to capture and sequence the entire pool (following Ilves & Lopez-Fernandez,
460	2014; Mandel et al., 2014; Weitemier et al., 2014). However, by targeting the most
461	appropriate markers, more samples can be analysed less expensively (by dilution of the baits),
462	whilst avoiding expending sequencing effort on a potentially large number of less informative
463	(or perhaps even entirely uninformative) markers.
464	Optimising for intron numbers/length, as implemented in BestMarkers.py would seem
465	appropriate for the purpose of identifying regions that are likely to be both longer and more
466	variable (Folk, Mandel & Freudenstein, 2015): hybrid capture can result in sequencing of
467	potentially long stretches of flanking regions (Tsangaras et al., 2014) without requiring
468	matching baits, and introns should be less constrained, possibly with informative length
469	variation too. Hence, taking into account the additional length of introns in marker selection
470	can result in greater numbers of longer (and likely more variable) obtained sequences. Our
471	empirical results support this approach: sequences showed intron capture of up to 1,000 bp,
472	including regions in which multiple introns are interspersed with short (<120 bp) exons for
473	which no probes were used. Alternatively, if the problem to be addressed represents older
474	divergences (e.g. phylogenetic uncertainty within Ericaceae; Freudenstein, Broe &
475	Feldenkris, 2016) for which length variation in introns would be unhelpful, BestMarkers.py
476	can be used to optimise the length of exons alone.
477	An alternative to optimising for sequence length (with or without taking introns into account)
478	would be to optimise for variability (or combined length and variability). We included this
479	option in BestMarkers.py, but in the absence of data with which to compare within our
480	ingroup, decided <i>a priori</i> that we would be more likely to optimise total per sequence

Peer Preprints

481	variation by selecting on the basis of length alone. This decision was supported by the
482	empirical results: as might be expected, there was no obvious relationship between sequence
483	length and variability (Fig. 5) and the numbers of informative characters provided by a given
484	target could not be predicted from the similarity of the Vaccinium and Rhododendron
485	transcriptomes (Appendix 1).
486	The variability of the data we obtained can be compared to that of nrDNA, plastid and
487	mitochondrial sequences (and which were also obtained here without the need for matching
488	baits due to their high copy number) and to two generally single copy nuclear genes,
489	topoisomerase B and rpb2 (Fig. 5). Consistent with the results presented by Nichols et al.
490	(2015), the variability of the nrDNA spacer regions (ITS and ETS) that are frequently used in
491	empirical studies of plants is at the upper end of that observed in the sequences we obtained
492	(of which topoisomerase B and rpb2 were fairly typical); plastid (and mitochondrial)
493	sequences at the lower end. Given the comparably modest variability of most alternative
494	nuclear markers, this suggests that even in cases where ITS/ETS present sufficient
495	information to infer a well resolved nrDNA gene tree (not the case in Cape Erica, Pirie et al.,
496	2011; Fig. 6), considerably longer sequences will be needed to infer comparably resolved
497	independent gene trees. Difficult phylogenetic problems arise when gene trees can be
498	expected to differ, but those inferred from standard markers are not sufficiently resolved to
499	actually reveal it. These are the cases for which targeted capture approaches offer the greatest
500	potential. However, even large numbers of independent markers, if insufficiently variable,
501	may be dominated in phylogenomic analyses by the signal of relatively few (Lanier, Huang &
502	Knowles, 2014). We need to target markers that might deliver a forest of trees, rather than just
503	more bushes, and not all targeted enrichment strategies are optimised to deliver this kind of
504	data.
505	

505

506

507

508

509

510

511

512

Conclusions

When sequence variation is appropriate and gene trees are consistent, standard Sanger sequencing of a small number of markers may be all that is required to infer robust and meaningful phylogenetic trees. For species complexes and rapid radiations (either ancient or recent) where this is not the case, the usefulness of sequence datasets will inevitably be limited by the resolution of individual gene trees. Our results suggest that under these circumstances, where the need for NGS and targeted sequence capture, such as hybrid

$\Delta \Delta r$	Dra	nrinto
CCIU	rie	prints

513	enrichment, is greatest, "made to measure" markers identified using both transcriptome and
514	WGS data of related taxa will deliver results that are superior to those that might be obtained
515	using a more universal "one size fits all" approach. Once available, such markers may
516	nevertheless be useful across a fairly wide range of related taxa: e.g. those presented here,
517	targeted for use in Erica, fall within the range of sequence variation that would in principle be
518	applicable across the family Ericaceae. Transcriptome data for many flowering plant groups
519	are now available; these would ideally be complemented with WGS or genome skimming
520	data of one or more focal taxa for use in marker selection. With such data to hand, biologists
521	are still reliant on bioinformatics skills or user-friendly tools (such as MarkerMiner). In either
522	case, the full potential of the techniques will only be harnessed if comparisons to distantly
523	related genomes and generalisations of single/low copy genes across wide taxonomic groups
524	are avoided. We would conclude that rather than searching for "one size fits all" universal
525	markers, we should be improving and making more accessible the tools necessary for
526	developing our own "made to measure" ones.
527	
528	References
529 530	Bellstedt DU., Pirie MD., Visser JC., de Villiers MJ., Gehrke B. 2010. A rapid and
531	inexpensive method for the direct PCR amplification of DNA from plants. <i>American</i>
532	Journal of Botany. DOI: 10.3732/ajb.1000181.
533	Blattner FR. 2016. TOPO6: a nuclear single-copy gene for plant phylogenetic inference. <i>Plant</i>
534	Systematics and Evolution. DOI: 10.1007/s00606-015-1259-1.
535	Budenhagen C., Lemmon AR., Lemmon EM., Bruhl J., Cappa J., Clement WL., Donoghue
536	M., Edwards EJ., Hipp AL., Kortyna M., Mitchell N., Moore A., Prychid CJ., Segovia-
537	Salcedo MC., Simmons MP., Soltis PS., Wanke S., Mast A. 2016. Anchored
538	Phylogenomics of Angiosperms I: Assessing the Robustness of Phylogenetic Estimates.
539	bioRxiv:86298. DOI: 10.1101/086298.
540	Chamala S., García N., Godden GT., Krishnakumar V., Jordon-Thaden IE., De Smet R.,
541	Barbazuk WB., Soltis DE., Soltis PS. 2015. MarkerMiner 1.0: A new application for
542	phylogenetic marker development using angiosperm transcriptomes. Applications in
	phylogenetic market development using angiosperm transcriptomes. Applications in
543	plant sciences 3:1400115. DOI: 10.3732/apps.1400115.

Peer Preprints 545 Additional Sequence Information. Computer Science and Biology: Proceedings of the

J -1 J	Additional Sequence information. Computer Science and Biology. Proceedings of the
546	German Conference on Bioinformatics (GCB) '99, GCB, Hannover, Germany.:45–56.
547	DOI: 10.1.1.23/7465.
548	Comer JR., Zomlefer WB., Barrett CF., Stevenson DW., Heyduk K., Leebens-Mack JH.
549	2016. Nuclear phylogenomics of the palm subfamily Arecoideae (Arecaceae). Molecula
550	Phylogenetics and Evolution 97:32–42. DOI: 10.1016/j.ympev.2015.12.015.
551	Elshire RJ., Glaubitz JC., Sun Q., Poland JA., Kawamoto K., Buckler ES., Mitchell SE.,
552	Orban L. 2011. A Robust, Simple Genotyping-by-Sequencing (GBS) Approach for High
553	Diversity Species. Plos One 6. DOI: 10.1371/journal.pone.0019379.
554	Faircloth BC., McCormack JE., Crawford NG., Harvey MG., Brumfield RT., Glenn TC.
555	2012. Ultraconserved elements anchor thousands of genetic markers spanning multiple
556	evolutionary timescales. <i>Systematic Biology</i> 61:717–726. DOI: 10.1093/sysbio/sys004.
557	Folk RA., Mandel JR., Freudenstein J V. 2015. A protocol for targeted enrichment of intron-
558	containing sequence markers for recent radiations: a phylogenomic example from
559	Heuchera (Saxifragaceae). Applications in Plant Sciences 3:1500039. DOI:
560	10.3732/apps.1500039.
561	Freudenstein J V., Broe MB., Feldenkris ER. 2016. Phylogenetic relationships at the base of
562	Ericaceae: Implications for vegetative and mycorrhizal evolution. Taxon 65:1–11. DOI:
563	10.12705/654.7.
564	Goetsch L., Eckert AJ., Hall BD. 2005. The Molecular Systematics of <i>Rhododendron</i>
565	(Ericaceae): A Phylogeny Based Upon <i>RPB2</i> Gene Sequences. Systematic
566	Botany 30:616-626. DOI: 10.1600/0363644054782170.
567	Hamilton CA., Lemmon AR., Lemmon EM., Bond JE. 2016. Expanding anchored hybrid
568	enrichment to resolve both deep and shallow relationships within the spider tree of life.
569	BMC Evolutionary Biology 16:212. DOI: 10.1186/s12862-016-0769-y.
570	Hart ML., Forrest LL., Nicholls JA., Kidner CA. 2016. Retrieval of hundreds of nuclear loci
571	from herbarium specimens. Taxon 65:1081–1092. DOI: 10.12705/655.9.
572	Heyduk K., Trapnell DW., Barrett CF., Leebens-Mack J. 2016. Phylogenomic analyses of
573	species relationships in the genus Sabal (Arecaceae) using targeted sequence capture.
574	Biological Journal of the Linnean Society 117:106–120. DOI: 10.1111/bij.12551.
575	Hughes C., Eastwood R. 2006. Island radiation on a continental scale: exceptional rates of

F	Ре€	Preprints NOT PEER-REV
	576	plant diversification after uplift of the Andes. Proceedings of the National Academy of
	577	Sciences of the United States of America 103:10334–10339. DOI:
	578	10.1073/pnas.0601928103.
	579	Hughes CE., Eastwood RJ., Bailey CD. 2006. From famine to feast? Selecting nuclear DNA
	580	sequence loci for plant species-level phylogeny reconstruction. Philosophical
	581	transactions of the Royal Society of London. Series B, Biological sciences 361:211–225.
	582	DOI: 10.1098/rstb.2005.1735.
	583	Ilves KL., López-Fernández H. 2014. A targeted next-generation sequencing toolkit for exon-
	584	based cichlid phylogenomics. Molecular Ecology Resources 14:802-811. DOI:
	585	10.1111/1755-0998.12222.
	586	Johnson MTJ., Carpenter EJ., Tian Z., Bruskiewich R., Burris JN., Carrigan CT., Chase MW.,
	587	Clarke ND., Covshoff S., Depamphilis CW., Edger PP., Goh F., Graham S., Greiner S.,
	588	Hibberd JM., Jordon-Thaden I., Kutchan TM., Leebens-Mack J., Melkonian M., Miles
	589	N., Myburg H., Patterson J., Pires JC., Ralph P., Rolf M., Sage RF., Soltis D., Soltis P.,
	590	Stevenson D., Stewart CN., Surek B., Thomsen CJM., Villarreal JC., Wu X., Zhang Y.,
	591	Deyholos MK., Wong GK-S. 2012. Evaluating methods for isolating total RNA and
	592	predicting the success of sequencing phylogenetically diverse plant transcriptomes. PloS
	593	one 7:e50226. DOI: 10.1371/journal.pone.0050226.
	594	Jones MR., Good JM. 2016. Targeted capture in evolutionary and ecological genomics.
	595	Molecular Ecology 25:185–202. DOI: 10.1111/mec.13304.
	596	Katoh K., Misawa K., Kuma K., Miyata T. 2002. MAFFT: a novel method for rapid multiple
	597	sequence alignment based on fast Fourier transform. Nucleic acids research 30:3059-
	598	3066. DOI: 10.1093/nar/gkf436.
	599	Kingman J. 1982. On the Genealogy of Large Populations. <i>Journal of applied probability</i>
	600	19:27–43. DOI: 10.2307/3213548.
	601	Kron KA., Powell EA., Luteyn JL. 2002. Phylogenetic relationships within the blueberry tribe
	602	(Vaccinieae, Ericaceae) based on sequence data from matK and nuclear ribosomal ITS
	603	regions, with comments on the placement of Satyria. American Journal of Botany
	604	89:327–336. DOI: 10.3732/ajb.89.2.327.
	605	Lanier HC., Huang H., Knowles LL. 2014. Molecular Phylogenetics and Evolution How low
	606	can you go? The effects of mutation rate on the accuracy of species-tree estimation.

- Molecular Phylogenetics and Evolution 70:112–119. DOI: 607 10.1016/j.ympev.2013.09.006. 608 609 Leaché AD., Wagner P., Linkem CW., Böhme W., Papenfuss TJ., Chong RA., Lavin BR., Bauer AM., Nielsen S V., Greenbaum E., Rödel MO., Schmitz A., LeBreton M., Ineich 610 611 I., Chirio L., Ofori-Boateng C., Eniang EA., Baha El Din S., Lemmon AR., Burbrink FT. 612 2014. A hybrid phylogenetic-phylogenomic approach for species tree estimation in 613 african agama lizards with applications to biogeography, character evolution, and 614 diversification. *Molecular Phylogenetics and Evolution* 79:215–230. DOI: 615 10.1016/j.ympev.2014.06.013. 616 Lemmon AR., Emme SA., Lemmon EM. 2012. Anchored Hybrid Enrichment for Massively 617 High-Throughput Phylogenomics. Systematic Biology 61:727–744. DOI: 618 10.1093/sysbio/sys049. 619 Linder HP. 2003. The radiation of the Cape flora, southern Africa. Biological Reviews 620 78:597–638. DOI: 10.1017/S1464793103006171. 621 Mamanova L., Coffey AJ., Scott CE., Kozarewa I., Turner EH., Kumar A., Howard E., 622 Shendure J., Turner DJ. 2010. Target-enrichment strategies for next-generation 623 sequencing. Nature methods 7:111–8. DOI: 10.1038/nmeth.1419. 624 Mandel JR., Dikow RB., Funk V a., Masalia RR., Staton SE., Kozik A., Michelmore RW., 625 Rieseberg LH., Burke JM. 2014. A Target Enrichment Method for Gathering 626 Phylogenetic Information from Hundreds of Loci: An Example from the Compositae. 627 Applications in Plant Sciences 2:1300085. DOI: 10.3732/apps.1300085. 628 Matasci N., Hung L-HL., Yan Z., Carpenter EEJ., Wickett NJ., Mirarab S., Nguyen N., 629 Warnow T., Ayyampalayam S., Barker M., Burleigh JG., Gitzendanner MA., Wafula E.,
- 630 Der JP., DePamphilis CW., Roure B., Philippe H., Ruhfel BR., Miles NW., Graham
- 631 SW., Mathews S., Surek B., Melkonian M., Soltis DE., Soltis PS., Rothfels C., Pokorny
- L., Shaw JA., DeGironimo L., Stevenson DW., Villarreal JC., Chen T., Kutchan TM., 632
- 633 Rolf M., Baucom RS., Deyholos MK., Samudrala R., Tian Z., Wu X., Sun X., Zhang Y.,
- 634 Wang J., Leebens-Mack J., Wong GK-S. 2014. Data access for the 1,000 Plants (1KP)
- 635 project. GigaScience 3:17.
- 636 Mayer C., Sann M., Donath A., Meixner M., Podsiadlowski L., Peters RS., Petersen M.,
- Meusemann K., Liere K., Wägele J-W., Misof B., Bleidorn C., Ohl M., Niehuis O. 2016. 637
- 638 BaitFisher: A software package for multi-species target DNA enrichment probe design.

037	Molecular Biology and Evolution.1 27. DOI: 10.1075/molocv/msw050.
640	Miller MR., Dunham JP., Amores A., Cresko WA., Johnson EA. 2007. Rapid and cost-
641	effective polymorphism identification and genotyping using restriction site associated
642	DNA (RAD) markers. <i>Genome Research</i> 17:240–248. DOI: 10.1101/gr.5681207.
643	Mitchell N., Lewis PO., Lemmon EM., Lemmon AR., Holsinger KE. 2017. Anchored
644	phylogenomics improves the resolution of evolutionary relationships in the rapid
645	radiation of Protea L. American Journal of Botany 104:102–115. DOI:
646	10.3732/ajb.1600227.
647	Moriarty Lemmon E., Lemmon AR. 2013. High-Throughput Genomic Data in Systematics
648	and Phylogenetics. Annu. Rev. Ecol. Evol. Syst 44:99-121. DOI: 10.1146/annurev-
649	ecolsys-110512-135822.
650	Nicholls JA., Pennington RT., Koenen EJM., Hughes CE., Hearn J., Bunnefeld L., Dexter
651	KG., Stone GN., Kidner CA. 2015. Using targeted enrichment of nuclear genes to
652	increase phylogenetic resolution in the neotropical rain forest genus Inga (Leguminosae:
653	Mimosoideae). Frontiers in plant science 6:710. DOI: 10.3389/fpls.2015.00710.
654	Peloso PL V., Frost DR., Richards SJ., Rodrigues MT., Donnellan S., Matsui M., Raxworthy
655	CJ., Biju SD., Lemmon EM., Lemmon AR., Wheeler WC. 2016. The impact of anchored
656	phylogenomics and taxon sampling on phylogenetic inference in narrow-mouthed frogs
657	(Anura, Microhylidae). <i>Cladistics</i> 32:113–140. DOI: 10.1111/cla.12118.
658	Pirie MD., Oliver EGH., Bellstedt DU. 2011. A densely sampled ITS phylogeny of the Cape
659	flagship genus Erica L. suggests numerous shifts in floral macro-morphology. Molecular
660	Phylogenetics and Evolution 61:593–601. DOI: 10.1016/j.ympev.2011.06.007.
661	Pirie MD., Oliver EGH., Mugrabi de Kuppler A., Gehrke B., Le Maitre N., Kandziora M.,
662	Bellstedt DU. 2016. The biodiversity hotspot as evolutionary hot-bed: spectacular
663	radiation of Erica in the Cape Floristic Region. BMC Evolutionary Biology 16:190. DOI:
664	10.1186/s12862-016-0764-3.
665	Pyron RA., Hendry CR., Chou VM., Lemmon EM., Lemmon AR., Burbrink FT. 2014.
666	Effectiveness of phylogenomic data and coalescent species-tree methods for resolving
667	difficult nodes in the phylogeny of advanced snakes (Serpentes: Caenophidia).
668	Molecular Phylogenetics and Evolution 81:221–231. DOI:
669	10.1016/j.ympev.2014.08.023.

670 671 672	amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. <i>Science</i> 230:1350–1354. DOI: 10.1126/science.2999980.
673 674 675	Sang T. 2002. Utility of low-copy nuclear gene sequences in plant phylogenetics. <i>Critical reviews in biochemistry and molecular biology</i> 37:121–147. DOI: 10.1080/10409230290771474.
676 677 678	Sanger F., Nicklen S., Coulson a R. 1977. DNA sequencing with chain-terminating inhibitors. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 74:5463–7. DOI: 10.1073/pnas.74.12.5463.
679 680	Santos ME., Salzburger W. 2012. How Cichlids Diversify. <i>Science</i> 338:619–621. DOI: 10.1126/science.1224818.
681 682 683 684 685	Schmickl R., Liston A., Zeisek V., Oberlander K., Weitemier K., Straub SCK., Cronn RC., Dreyer LL., Suda J. 2016. Phylogenetic marker development for target enrichment from transcriptome and genome skim data: the pipeline and its application in southern African Oxalis (Oxalidaceae). <i>Molecular Ecology Resources</i> 16:1124–1135. DOI: 10.1111/1755-0998.12487.
686 687 688 689	De Smet R., Adams KL., Vandepoele K., Van Montagu MCE., Maere S., Van de Peer Y. 2013. Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. <i>Proceedings of the National Academy of Sciences of the United States of America</i> 110:2898–903. DOI: 10.1073/pnas.1300127110.
690 691 692 693	De Sousa F., Bertrand YJK., Nylinder S., Oxelman B., Eriksson JS., Pfeil BE. 2014. Phylogenetic properties of 50 nuclear loci in Medicago (Leguminosae) generated using multiplexed sequence capture and next-generation sequencing. <i>PLoS ONE</i> 9. DOI: 10.1371/journal.pone.0109704.
694 695	Stamatakis A. 2014. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. <i>Bioinformatics</i> 30:1312–1313. DOI: 10.1093/bioinformatics/btu033.
696 697 698 699	Stephens JD., Rogers WL., Heyduk K., Cruse-Sanders JM., Determann RO., Glenn TC., Malmberg RL. 2015. Resolving phylogenetic relationships of the recently radiated carnivorous plant genus Sarracenia using target enrichment. <i>Molecular Phylogenetics and Evolution</i> 85:76–87. DOI: 10.1016/j.ympev.2015.01.015.
700	Stevens PF. 2001. Angiosperm Phylogeny Website, Version 12, July 2012

	NOT PEER-NEV
701	Taberlet P., Gielly L., Pautou G., Bouvet J. 1991. Universal primers for amplification of
702	three non-coding regions of chloroplast DNA. <i>Plant molecular biology</i> 17:1105–1109.
703	Tsangaras K., Wales N., Sicheritz-Pontén T., Rasmussen S., Michaux J., Ishida Y., Morand
704	S., Kampmann ML., Gilbert MTP., Greenwood AD. 2014. Hybridization capture using
705	short PCR products enriches small genomes by capturing flanking sequences
706	(CapFlank). PLoS ONE. DOI: 10.1371/journal.pone.0109101.
707	Uribe-Convers S., Settles ML., Tank DC. 2016. A phylogenomic approach based on PCR
708	target enrichment and high throughput sequencing: Resolving the diversity within the
709	south American species of Bartsia L. (Orobanchaceae). PLoS ONE 11. DOI:
710	10.1371/journal.pone.0148203.
711	Wang Z., Gerstein M., Snyder M. 2009. RNA-Seq: a revolutionary tool for transcriptomics.
712	Nature Reviews Genetics 10:57-63. DOI: 10.1038/nrg2484.
713	Weitemier K., Straub SCK., Cronn RC., Fishbein M., Schmickl R., McDonnell A., Liston A.
714	2014. Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant
715	Phylogenomics. Applications in Plant Sciences 2:1400042. DOI: 10.3732/apps.1400042.
716	White TJ., Bruns S., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal
717	ribosomal RNA genes for phylogenetics. In: PCR Protocols: A Guide to Methods and
718	Applications. 315–322. DOI: citeulike-article-id:671166.
719	Wickett NJ., Mirarab S., Nguyen N., Warnow T., Carpenter E., Matasci N., Ayyampalayam
720	S., Barker MS., Burleigh JG., Gitzendanner MA., Ruhfel BR., Wafula E., Der JP.,
721	Graham SW., Mathews S., Melkonian M., Soltis DE., Soltis PS., Miles NW., Rothfels
722	CJ., Pokorny L., Shaw AJ., DeGironimo L., Stevenson DW., Surek B., Villarreal JC.,
723	Roure B., Philippe H., dePamphilis CW., Chen T., Deyholos MK., Baucom RS.,
724	Kutchan TM., Augustin MM., Wang J., Zhang Y., Tian Z., Yan Z., Wu X., Sun X.,
725	Wong GK-S., Leebens-Mack J. 2014. Phylotranscriptomic analysis of the origin and
726	early diversification of land plants. Proceedings of the National Academy of Sciences of
727	the United States of America 111:E4859-68. DOI: 10.1073/pnas.1323926111.
728	Zimmer EA., Wen J. 2015. Using nuclear gene data for plant phylogenetics: Progress and

731

729

730

DOI: 10.1111/jse.12174.

prospects II. Next-gen approaches. *Journal of Systematics and Evolution* 53:371–379.

732 Acknowledgements

- 733 The authors thank Cape Nature and South Africa National Parks for assistance with permits
- 734 (Cape Nature: 0028-AAA008-00134; South Africa National Parks: CRC-2009/007-2014);
- 735 Mark Chase and the 1,000 Plants (1KP) project for access to *Rhododendron* transcriptome
- 736 data; and Kai Hauschulz (Agilent), Abigail Moore (University of Oklahoma), and Frank
- 737 Blattner, Nadine Bernhardt and Katja Herrmann (IPK Gatersleben) for help and advice with
- 738 lab protocols.

739

740 Tables:

741

- Table 1: Samples used for DNA extraction and their collection localities. Vouchers were 742
- 743 lodged at herbarium NBG (MP: Pirie).

Voucher	Sample #	Species	Locality (unless specified, within the Western Cape, South Africa)
MP1320	78	E. abietina L. ssp. aurantiaca	Du Toit's Pass
MP1330	74	E. coccinea L.	RZE, Greyton
MP1336	81	E. coccinea L.	Groot Hagelkraal
MP1318	72	E. imbricata L.	Flouhoogte
MP1319	73	E. imbricata L.	Stellenbosch
MP1334	74	E. imbricata L.	Groot Hagelkraal
MP1311	69	E. imbricata L.	Boskloof
MP1312	80	E. lasciva Salisb.	Boskloof
MP1325	83	E. lasciva Salisb.	Albertinia
MP1309	71	E. penicilliformis Salisb.	Boskloof
MP1339	75	E. placentiflora Salisb.	Cape Hangklip
MP1333	82	E. plukenetii L.	Groot Hagelkraal
	68	R. camtschaticum Pall.	Oldenburg Botanical Garden, Germany (cultivated)

744

745

Peer Preprints

746 Table 2: Range, median, average, length and similarity of selected loci and range, median and

747 average of predicted length of selected gene (taking introns into account) in *Rhododendron*.

		Length of C	CR (bp)	Similar	ity (%)	Predicted ler	ngth (bp)
			Mean		Mean		Mean
		Range	Median	Range	Median	Range	Median
			sd		sd		sd
	AllMarkers.py		2834		90		3541
	(without	2316-4815	2631	82-96	90	2412-7425	3342
	intron length) - 79 seq	2010 1010	535	02 / 0	3,1	2112 / 120	998
	AllMarkers.py		2287		91		3579
	(with intron	1053-4815	2187	81-97	92	2847-7425	3339
	length) - 132 seq	1000 1010	736	01),	3,5	2017 7120	773
	HybSeq		2350		89	1839-9326	3285
	(without	1170-4146	2184	77-95	91		3013
Erica	intron length) - 66 seq	1170 1110	549	7775	5		1181
	HybSeq (with		2226		89		3835
	intron length)	993-4146	2157	77-95	91	2943-9326	3614
	- 55 seq		719		5		1032
	MarkerMiner	1293-4146	1726		93	1338-5849	2411
	(without		1596	85-97	94		2307
	intron length) - 207 seq		419		2		649
	MarkerMiner		1600		93		2329
	(with intron	1011-4146	1518	85-97	94	1665-5849	2210
	length) - 254 seq	1011 1110	454	05 77	2	1002 2017	611
	AllMarkers.py	1002-4146	1400	82-97	93	1014-8546	2389
	(without		1266		93		2121
Ericales	intron length) - 171 seq		460		2,6		1153
Efficales	AllMarkers.py		1014		93		1830
	(with intron	342-4146	924	82-97	93	1003-8546	1623
	length) - 408 seq		458	0_ / .	2,3		928
Eudicots	AllMarkers.py	1002-4146	1427	85-97	93	1014-7657	2379
	(without		1283		93		2093
	introns length)		487		2,4		1089
	- 130 seq						
	AllMarkers.py	369-4146	1112	85-97	93	1002-7647	1895
	(with introns		1017		94		1689
	length) - 249 seq		494		2,2		960
	l						

Figures:

750

779

751	Figure 1: Flowchart(s) illustrating the methods used for marker selection.
752	Figure 2: Summary of a) exon lengths and b) predicted exon plus intron lengths of markers
753	selected using AllMarkers.py (shades of green), Hyb-Seq (blue) and MarkerMiner (purple)
754	followed by BestMarkers.py. Each pair of plots represents the markers selected when
755	optimising for exon lengths (left) and predicted exon plus intron lengths (right). From left to
756	right, the first three pairs represent markers targeted for Erica/Ericoideae (comparing by
757	method); the final two for Ericales and eudicots respectively (using AllMarkers.py only).
758	Figure 3: Length versus variability of potential sequence markers (grey dots) and those
759	selected using BestMarkers.py from the pools generated by the different methods (coloured
760	symbols).
761	Figure 4: Venn diagrams produced using http://bioinformatics.psb.ugent.be/webtools/Venn/
762	comparing overlap in markers selected given the different methods, superimposed with their
763	numbers. a) The complete pools of potential markers; b) the subsets of markers selected using
764	BestMarkers.py, optimising for total predicted length (exons and introns).
765	Figure 5: Sequence variability observed in the empirical data plotted against predicted
766	sequence length. "Universal" markers rpb2 and topoisomerase B are indicated and plastid,
767	mitochondrial and nrDNA are included with indication of sequence lengths derived from the
768	literature.
769	Figure 6: Selected gene trees inferred under maximum likelihood with RAxML, presented
770	using Dendroscope 3.5.7 (http://dendroscope.org/). The four nuclear markers that showed the
771	highest numbers of variable characters are presented along with those based on ITS and
772	mitochondrial sequences. Terminals correspond to species names and collection codes (Table
773	1) appended by codes corresponding to one or more contigs that were merged using custom
774	scripts. Some taxa are represented twice in some trees due to the presence of alleles, including
775	two distinct copies of ITS in E. abietina ssp. aurantiaca (confirming previous work using
776	cloning; Pirie et al., submitted). Scale bars represent substitutions per site, branch labels
777	represent bootstrap support.
778	

791

780	Appendices:
781	Appendix 1: Plot of sequence similarity (transcriptome data; <i>Rhododendron</i> and <i>Vaccinium</i>)
782	against sequence similarity (empirical dataset generated here; Rhododendron and Erica spp.)
783	for individual markers.
784	
785	Supplementary data:
786	Supplementary data 1: Exon sequences corresponding to the 134 markers selected for the
787	empirical study.
788	Supplementary data 2: Sequence alignments
789	Supplementary data 3: Gene trees inferred under RAxML (excluding multiple copy markers
790	for which paralogues could not be distinguished).

Supplementary data 4: Table documenting markers as represented in Supplementary data 1-3.

AllMarkers.py

Orthologs identification Reciprocal Blastn (Transcriptome vs Transcriptome)

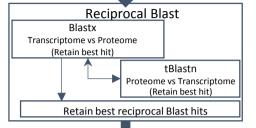
Retain orthologs sequences present in transcriptomes (default setting: 2)

Single copy identification Blastn vs WGS retain single copy with identity > 75% Single copy identification Database

(ex: Stricly|Mostly single copy by Smet et al. (2013)

Hyb-Seq

Single copy identification
BLAT - Transcriptome vs WGS
retain single copy with identity > 99


Isoform identification - CD-HIT-EST remove isoform and loci sharing >90% identity

(sequence > 960 bp)

Orthologs identification - BLAT (vs Transcriptome of related species or vs 4 nonasterid angiosperm)

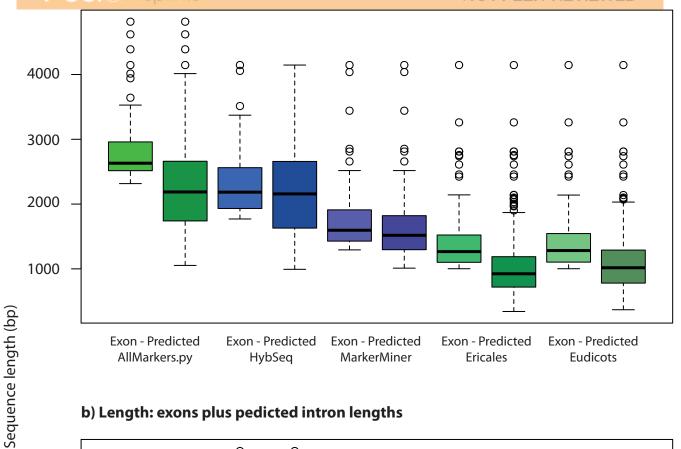
MarkerMiner

Filter by length (> 1000 bp)

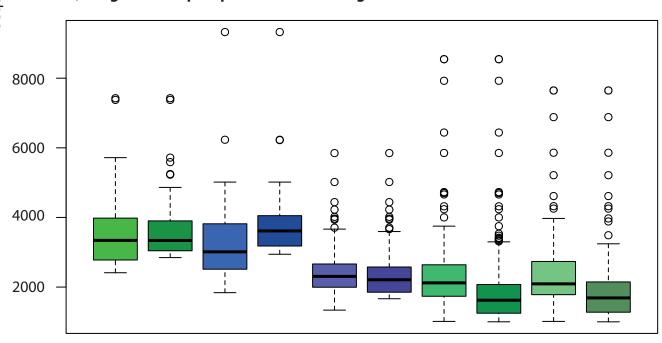
Putative single copy identification Stricly | Mostly single copy by Smet et al. (2013)

Selected Sequences for Targeted capture

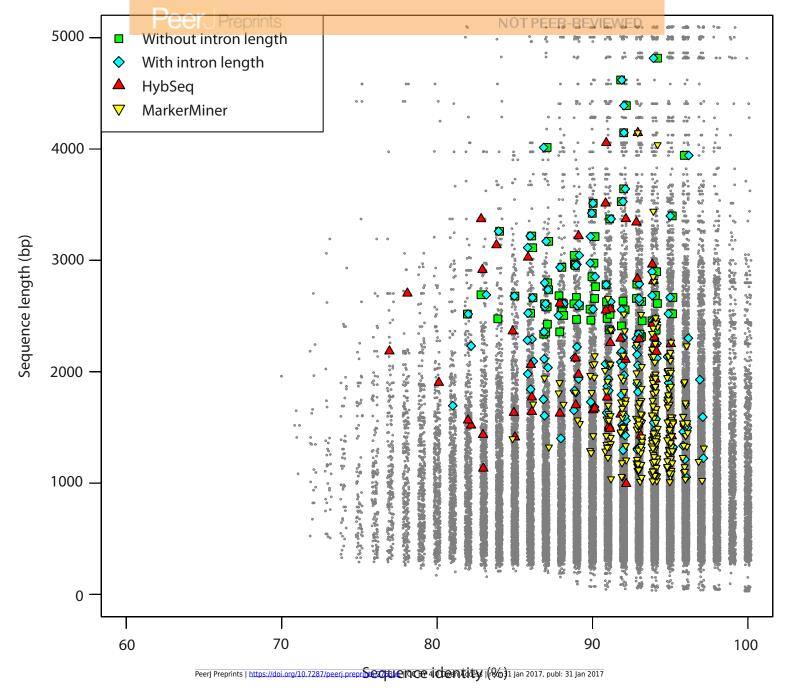
BestMarkers.py

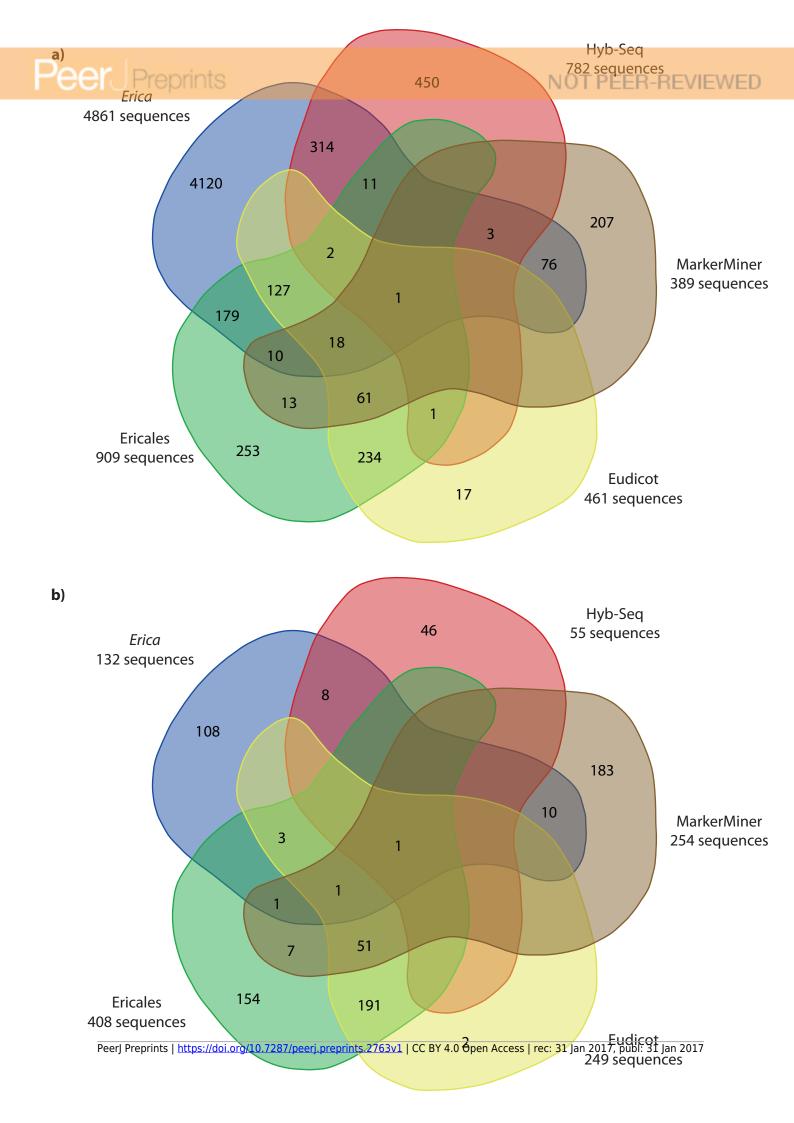

Sort selected sequences by length or similarity

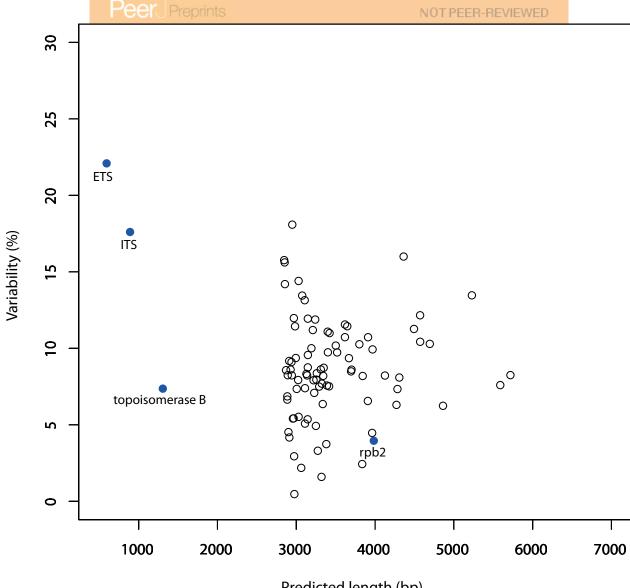
Add mean introns length

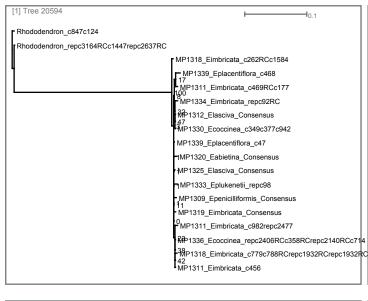

Filter selected sequences by length,

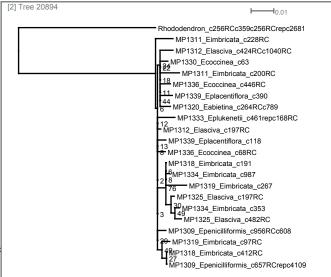
Keep longest sequences to reach X probes

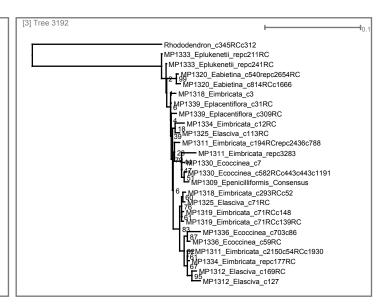

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2763v1 | CC BY 4.0 Open Access | rec: 31 Jan 2017, publ: 31 Jan 2017

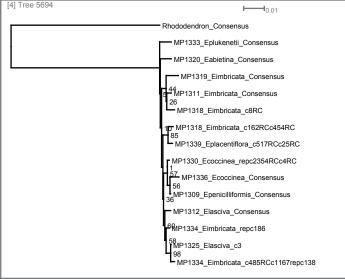


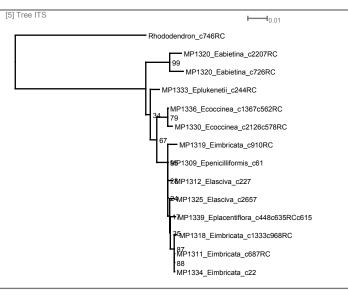

b) Length: exons plus pedicted intron lengths

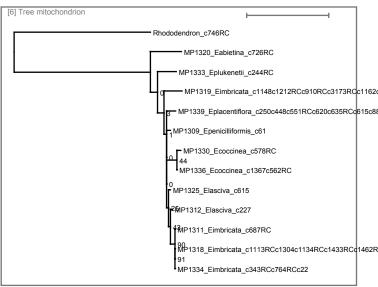


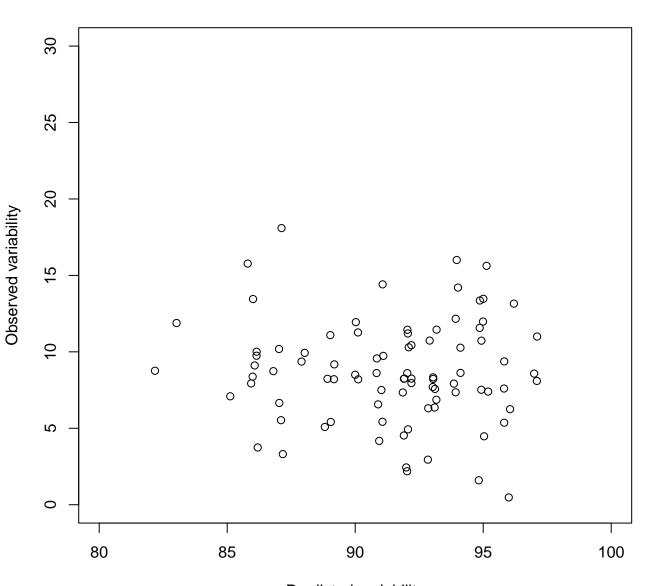

Exon - Predicted Exon -Exon - Predicted











Appendix 2

