

Use of the Journal Impact Factor in academic review, promotion, and tenure evaluations

Erin C. McKiernan^{1,*}, Lesley A. Schimanski², Carol Muñoz Nieves², Lisa Matthias³, Meredith T. Niles⁴, and Juan Pablo Alperin^{2,5**}

¹Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México

²Scholarly Communications Lab, Simon Fraser University

³John F. Kennedy Institute, Freie Universität Berlin

⁴Department of Nutrition and Food Sciences, Food Systems Program, University of Vermont

⁵School of Publishing, Simon Fraser University

*Corresponding author: emckiernan@ciencias.unam.mx

**Corresponding author: juan@alperin.ca

Abstract

The Journal Impact Factor (JIF) was originally designed to aid libraries in deciding which journals to index and purchase for their collections. Over the past few decades, however, it has become a relied upon metric used to evaluate research articles based on journal rank. Surveyed faculty often report feeling pressure to publish in journals with high JIFs and mention reliance on the JIF as one problem with current academic evaluation systems. While faculty reports are useful, information is lacking on how often and in what ways the JIF is currently used for review, promotion, and tenure (RPT). We therefore collected and analyzed RPT documents from a representative sample of 129 universities from the United States and Canada and 381 of their academic units. We found that 40% of doctoral, research-intensive (R-type) institutions and 18% of master's, or comprehensive (M-type) institutions explicitly mentioned the JIF, or closely related terms, in their RPT documents. Undergraduate, or baccalaureate (B-type) institutions did not mention it at all. A detailed reading of these documents suggests that institutions may also be using a variety of terms to indirectly refer to the JIF. Our qualitative analysis shows that 87% of the institutions that mentioned the JIF supported the metric's use in at least one of their RPT documents, while 13% of institutions expressed caution about the JIF's use in evaluations. None of the RPT documents we analyzed heavily criticized the JIF or prohibited its use in evaluations. Of the institutions that mentioned the JIF, 63% associated it with quality, 40% with impact, importance, or significance, and 20% with prestige, reputation, or status. In sum, our results show that the use of the JIF is encouraged in RPT evaluations, especially at research-intensive universities, and indicates there is work to be done to improve evaluation processes to avoid the potential misuse of metrics like the JIF.

23 Introduction

24 Originally developed to help libraries make indexing and purchasing decisions for their journal
25 collections (Archambault & Larivière, 2009; Garfield, 2006; Haustein & Larivière, 2015), the Journal
26 Impact Factor (JIF) has moved beyond libraries and into the realm of research evaluation, despite
27 the wide criticisms and well-documented limitations of the metric (e.g., Brems et al., 2013; Haustein
28 & Larivière, 2015; Kurmis, 2003; Moustafa, 2015; PLoS Medicine Editors, 2006; Seglen, 1997;
29 Sugimoto & Larivière, 2018; The Analogue University, 2019). Even the metric's own creator, Eugene
30 Garfield, made it clear that the JIF is not appropriate for evaluating individuals or for assessing
31 the importance and significance of individual works (Garfield, 1963). Yet, substantial increases in
32 publication rates and the number of academics competing for grants, jobs, and promotions over the
33 past few decades (i.e., 'hypercompetition') have in part led academics to rely on the JIF as a proxy
34 measure to quickly rank journals and, by extension, the articles published in these journals and the
35 individuals authoring them (Casadevall & Fang, 2014). The association between the JIF, journal
36 prestige, and selectivity is strong, and has led academics to covet publications in journals with high
37 JIFs (Harley et al., 2010). Publishers, in turn, promote their JIF to attract academic authors (Hecht
38 et al., 1998; SpringerNature, 2018; Sugimoto & Larivière, 2018).

39 In some academic disciplines, it is considered necessary to have publications in journals with high
40 JIFs to succeed, especially for those on the tenure track (for review see Schimanski & Alperin, 2018).
41 There are even institutions in some countries that financially reward their faculty for publishing in
42 journals with high JIFs (Fuyuno & Cyranoski, 2006; Quan et al., 2017), demonstrating an extreme
43 but important example of how reliance on this metric may be distorting academic incentives. Even
44 when the incentives are not so clear-cut, faculty still often report intense pressure to publish in
45 these venues (Harley et al., 2010; Tijdink et al., 2016; Walker et al., 2010). Faculty also report
46 that concerns about the JIF and journals' perceived prestige are limiting factors in their adoption
47 of open access publishing (of California Libraries; Schroter et al., 2005; Swan & Brown, 2004),
48 indicating how the effects of the JIF permeate to the broader scholarly publishing ecosystem.

49 This use — and potential misuse — of the JIF to evaluate research and researchers is often raised
50 in broader discussions about the many problems with current academic evaluation systems (Moher
51 et al., 2018). However, while anecdotal information or even formal surveys of faculty are useful in
52 gauging its effect on the academic system, there is still a lot we do not know about the extent to
53 which the JIF is used in formal academic evaluations. To our knowledge, there have been no studies
54 analyzing the content of university review, promotion, and tenure (RPT) guidelines to determine
55 the extent to which the JIF is being used to evaluate faculty, or in what ways. We therefore sought
56 to answer the following questions: (1) How often is the JIF, and closely related terms, mentioned
57 in RPT documents? (2) Are the JIF mentions supportive or cautionary? and (3) What do RPT
58 documents assume the JIF measures? In the process of answering these questions, our study
59 offered an opportunity to explore the context surrounding mentions of the JIF to qualitatively assess
60 its use in the documents that guide formal evaluation.

61 Methods

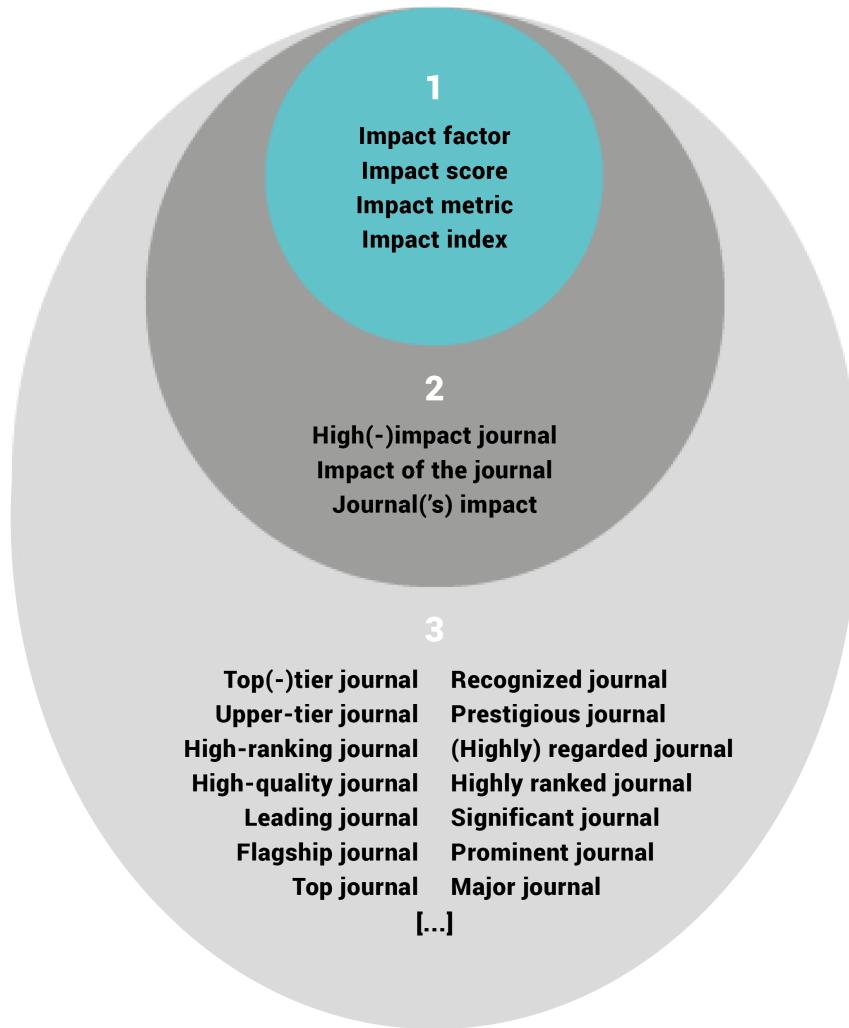
62 Document collection

63 This paper reports a set of findings from a larger study (Alperin et al., 2019) for which we collected
64 documents related to the RPT process from a representative sample of universities in the United
65 States and Canada and many of their academic units. A detailed description of the methods
66 for selecting institutions to include in our sample, how we classified them, how we collected
67 documents, and the analysis approach is included in Alperin et al. (2019) and in the methodological
68 note accompanying the public dataset Alperin et al. (2018). Briefly, we used the 2015 edition
69 of the Carnegie Classification of Institutions of Higher Education (Carnegie Foundation for the
70 Advancement of Teaching, 2015) and the 2016 edition of the Maclean's University Rankings
71 (Rogers Digital Media, 2016), which respectively group U.S. and Canadian universities into those
72 focused on doctoral programs (i.e., research intensive; R-type), those that predominantly grant
73 master's degrees (M-type), and those that focus on undergraduate programs (i.e., baccalaureate;
74 B-type). We classified academic units (e.g., department, school, or faculty) within an institution
75 by discipline using the National Academies Taxonomy (The National Academies of Sciences,
76 Engineering, and Medicine, 2006) into three major areas: Life Sciences (LS); Physical Sciences
77 and Mathematics (PSM); and Social Sciences and Humanities (SSH). Additional units that could
78 not be classified as belonging to a single area (e.g., a College of Arts & Sciences) were designated
79 as multidisciplinary. We then used a combination of web searches, crowdsourcing, and targeted
80 emailing to request documents related to the RPT process, including but not limited to collective
81 agreements, faculty handbooks, guidelines, and forms. Some of these documents applied to the
82 institution as a whole, while others applied only to specific academic units.

83 In the end, we obtained 864 documents related to the RPT process of 129 universities and of 381
84 academic units. These included documents from 57 R-type, 39 M-type, and 33 B-type institutions.
85 The documents from the 381 academic units came from 60 of the 129 universities in the sample
86 and included documents from 98 (25.7%) LS units, 69 (18.1%) PSM units, 187 (49.1%) SSH units,
87 and 27 (7.1%) multidisciplinary units. However, to avoid pooling academic units from different
88 institution types, and based on sample size considerations, we limited our disciplinary analysis to
89 academic units from R-type institutions: 33 (28%) LS units, 21 (18%) PSM units, 39 (34%) SSH
90 units, and 23 (20%) multidisciplinary units.

91 Document analysis and coding terminology

92 The RPT documents were loaded into QSR International's NVivo 12 qualitative data analysis
93 software, where text queries were used to identify documents that mention specific terms. Because
94 the language in RPT documents varies, we first searched all the documents for the words "impact"
95 and "journal", and read each mention to identify terms that may be referencing the JIF. We classified
96 these terms into three groups: (1) direct references to the JIF as a metric; (2) those that reference


97 journal impact in some way; and (3) indirect but possible references to the JIF. In the first group,
98 we included the terms “impact factor”, “impact score”, “impact metric”, and “impact index”. In the
99 second group, we included the terms “high-impact journal”, “impact of the journal”, and “journal(’s)
100 impact”. The third group contains a larger number and variety of terms, such as “high-ranking
101 journal”, “top-tier journal”, and “prestigious journal”. For all terms, we considered both singular and
102 plural equivalents. A map of the terms we found and their grouping into the three categories can
103 be seen in Fig. 1. In our analysis, we looked at only the first two groups of terms, as we considered
104 them to be unambiguously about the JIF (group 1) or sufficiently close to the notion of JIF (group
105 2). The terms in the third group, however, may or may not refer to the JIF. So while these terms
106 could represent examples of ways in which the idea of the JIF is invoked without being explicit,
107 their mentions were not analyzed further for this study.

108 The results of each text query for the terms in groups 1 and 2 were placed in an NVivo “node” that
109 contained the text surrounding each of the mentions. We then performed a “matrix coding query”
110 to produce a table with institutions and academic units as rows, terms of interests as columns, and
111 a 1 or a 0 indicating whether the institution or academic unit made mention of the term or not, with
112 the ability to distinguish if the mention appeared in documents that pertain to the whole institution,
113 to one or more academic units, or both. We considered an institution as making mention of a term
114 if the term was present in at least one document from that institution or any of its academic units.
115 More details on this process can be found in Alperin et al. (2019).

116 Qualitative analysis

117 We also exported the content of each node for a qualitative analysis of the JIF mentions. In some
118 cases, the software extracted complete sentences, while in other cases it pulled only fragments
119 and we retrieved the rest of the text manually to provide better context. Based on a detailed reading
120 of the text, we classified each of the JIF mentions along two dimensions. First, we classified
121 each mention as either: (1) *supportive* of the JIF’s use in evaluations; (2) *cautious*, meaning the
122 document expresses some reservations about the use of the JIF in evaluations; or (3) *neutral*,
123 meaning the mention was neither supportive nor cautious, or not enough information was present
124 in the document to make a judgement. In addition, we read each mention to determine what
125 aspects of research were being measured with the JIF, if specified. Using categories we arrived
126 at inductively, we classified each mention of the JIF as associating the metric with one or more
127 of the following: (i) quality of the research and/or journal; (ii) impact, importance, or significance
128 of the research or publication; (iii) prestige, reputation, or status of the journal or publication; or
129 (iv) left unspecified, meaning the document mentions the JIF, but does not state what the metric is
130 intended to measure. If an institution contained multiple mentions (for example, in two different
131 academic units), it was counted under all the relevant categories.

132 To arrive at the classification, each mention was independently coded by two of the authors (EM
133 and LM) using the definitions above. After an initial pass, the two coders agreed on all of the

Figure 1: Grouping of terms related to the JIF. Terms found in RPT documents were classified as either: (1) referring directly to the JIF (inner ring); (2) referring in some way to journal impact (middle ring); or (3) indirect but probable references to the JIF. For simplicity, singular versions of each term are shown, but searches included their plural equivalents. Our analysis is based only on those terms found in groups 1 and 2 (the two innermost rings).

¹³⁴ classifications for 86% of all mentions. The remaining mentions were independently coded by a
¹³⁵ third author (LS). In all instances, the third coder agreed with one of the previous two, and this
¹³⁶ agreement was taken as the final code.

137 Data availability

138 We have shared the data on which this paper is based in two different formats: (1) a spreadsheet
139 with all the JIF-related mentions (including repetitions) extracted from the RPT documents, available
140 as part of the larger public dataset (Alperin et al., 2018), and (2) a text document containing the
141 mentions (minus repetitions), with terms of interest color coded and a qualitative assessment of
142 each quote, available as supplemental information. We are not able to share the original RPT
143 documents collected for this study, since the copyrights are held by the universities and academic
144 units that created them. However, for publicly available documents, we included Wayback Machine
145 web archive links to them in the shared spreadsheet.

146 Results**147 How often is the JIF mentioned in RPT documents?**

148 While citation metrics in general are found in RPT documents from over 90% of institutions and
149 academic units in our sample (Alperin et al., 2019), only 23% (30 of 129) of the institutions
150 mentioned the JIF explicitly or used one of the JIF-related terms (see groups 1 and 2 in Fig. 1) in
151 their RPT documents. The percentage was higher for R-type institutions (23 of 57; 40%) than for
152 either M-type (7 of 39: 18%) or B-type (0 of 33; 0%) institutions (Table 1). Some mentions were
153 found in the institutional-level documents, while others were found at the level of the academic unit
154 (e.g., college, school, or department). Many of the mentions were from different academic units
155 within the same university. Within the R-type institutions, the percentage of academic units that
156 mention JIF-related terms was higher for LS (11 of 33; 33%) and PSM (6 of 21; 29%) than for SSH
157 (8 of 39; 21%) or multidisciplinary units (4 of 23; 17%).

158 Are the JIF mentions supportive or cautionary?

159 The majority of mentions of the JIF were supportive of the metric's use in evaluations. Overall,
160 87% (26 of 30) of institutions that mentioned the JIF did so supportively in at least one of their
161 RPT documents from our sample. Breaking down by institution type, 83% (19 of 23) of R-type and
162 100% (7 of 7) of M-type institutions had supportive mentions (Table 1). In contrast, just 13% (4
163 of 30) of institutions overall had at least one mention which expressed caution about using the
164 JIF in evaluations (13% R-type; 14% M-type). Two institutions (University of Central Florida and
165 University of Guelph) had both supportive and cautious mentions of the JIF, but originating from
166 different academic units. Overall, 17% (5 of 30) of institutions had at least one neutral mention
167 (17% R-type; 14% M-type). Examples of supportive and cautious mentions can be found in the
168 following two sections. Examples of neutral mentions are in the supplemental information.

Table 1: Mentions of the JIF in RPT documents, overall and by institution type

		All	R-type	M-type	B-type
How many institutions mention the JIF?					
	n	129	57	39	33
	JIF mentioned	30 (23%)	23 (40%)	7 (18%)	0 (0%)
Are the JIF mentions supportive or cautionary?					
	n	30	23	7	0
	supportive	26 (87%)	19 (83%)	7 (100%)	-
	cautious	4 (13%)	3 (13%)	1 (14%)	-
	neutral	5 (17%)	4 (17%)	1 (14%)	-
What do institutions measure with the JIF?					
	n	30	23	7	0
	quality	19 (63%)	14 (61%)	5 (71%)	-
	impact/importance/significance	12 (40%)	8 (35%)	4 (57%)	-
	prestige/reputation/status	6 (20%)	5 (22%)	1 (14%)	-
	unspecified	23 (77%)	17 (74%)	6 (86%)	-

*Note: Percentages do not sum to one hundred in any given column, since many institutions had more than one JIF mention that could be classified differently. For example, an institution was marked as having a supportive mention if at least one RPT document from that institution, or any of its academic units, had a supportive mention. The same institution could also be counted under 'cautious' if a different academic unit within that institution had such a mention.

¹⁶⁹ **What do RPT documents assume the JIF measures?**

¹⁷⁰ **Associating the JIF with quality**

¹⁷¹ The most common specified association we observed in these RPT documents was between the JIF and quality. Overall, 61% (14 of 23) of R-type and 71% (5 of 7) of M-type institutions that mention the JIF in our sample associate the metric with quality (Table 1). This association can be seen clearly in the guidelines from the Faculty of Science at the University of Alberta ([University of Alberta, 2012](#)) that state:

“ Of all the criteria listed, the one used most extensively, and generally the most reliable, is the quality and quantity of published work in refereed venues of international stature. Impact factors and/or acceptance rates of refereed venues are useful measures of venue quality... ”

176

177 While some RPT documents recommend using the JIF to determine the quality of a journal, others
178 suggest that this metric can be used to indicate the quality of individual publications. An example
179 of the latter comes from the College of Health Sciences and Professions at Ohio University ([Ohio](#)
180 [University, 2014](#)):

“ Markers of quality of publications may include impact factors of journals, number of
citations of published work, and audience of journal. ”

181

182 Other guidelines create their own metrics using the JIF in their calculations and suggest this will in-
183 centivize high quality research, as seen in the following example from the Institute of Environmental
184 Sustainability at Loyola University ([Loyola University Chicago, 2015](#)):

“ For promotion to Professor, the candidate must have an average publication rate of at
least one article per year published in peer-reviewed journals in the five-year period
preceding the application for promotion. These articles should be regularly cited by other
researchers in the field. We will consider both the quality of the journal (as measured by
the journal's impact factor, or JIF) as well as the number of citations of each publication.
We will employ the metric: Article Impact Factor (AIF) = (JIF * citations) where “citations”
represents the number of citations for the particular publication. Employing this metric,
faculty have incentive to publish in the highest quality journals (which will increase the
JIF) and simultaneously produce the highest quality research manuscripts, potentially
increasing the number of citations, and increasing the AIF. ”

185

186 In sum, there are repeated links made in the sampled RPT documents between the JIF, and
187 research, publication, or journal quality.

188 **Associating the JIF with impact, importance, or significance**

189 The second most common specified association we observed in these RPT documents was
190 between the JIF and the impact, importance, or significance of faculty research or publications,

191 found in 40% (12 of 30) of institutions in our sample. By institution type, 35% (8 of 23) of R-type
192 and 57% (4 of 7) of M-type institutions made this association (Table 1). For example, guidelines
193 from the Department of Psychology at Simon Fraser University ([Simon Fraser University, 2015](#))
194 link the JIF with impact:

“ The TPC [Tenure and Promotion Committee] may additionally consider metrics such as citation figures, impact factors, or other such measures of the reach and impact of the candidate’s scholarship.”

195
196 Promotion and tenure criteria from the University of Windsor ([University of Windsor, 2016](#)) link the
197 JIF to publication importance:

“ Candidates will be encouraged to submit a statement that explains the importance of their publications, which may include factors such as journal impact factors, citation rates, publication in journals with low acceptance rates, high levels of readership, demonstrated importance to their field.”

198
199 Guidelines from the Institute of Environmental Sustainability at Loyola University ([Loyola University
200 Chicago, 2015](#)) associate the JIF with scientific significance:

“ Candidates should have at least four manuscripts in peer-reviewed journals published or in-press in the five years preceding application for tenure and promotion to Associate Professor. The length of articles and scientific significance, as measured by citations and journal impact factor, will also be considered, as will authorship on contributions to other scholarly works (e.g., reference and text books).”

201
202 In all of the above cases, the value of faculty research or individual publications is being evaluated,
203 at least in part, based on the JIF.

204 **Associating the JIF with prestige, reputation, or status**

205 A third set of mentions of the JIF associated the metric with prestige, reputation, or status, typically
206 referring to the publication venue. Overall, 20% (6 of 30) of institutions in our sample that mentioned
207 the JIF made such an association. As with other concepts, there was variability by institution type,
208 with 22% (5 of 23) of the R-type and 14% (1 of 7) of the M-type having at least one instance of this

209 association (Table 1). For example, guidelines from the Department of Sociology at the University
210 of Central Florida (University of Central Florida, 2015) link the JIF with prestige:

“ It is also true that some refereed journal outlets count for more than others. Publication in respected, highly cited journals, that is, counts for more than publication in unranked journals. The top journals in sociology and all other social sciences are ranked in the Thompson/ISI citation data base (which generates the well-known Impact Factors), in the Scopus data base, and in certain other citation data bases. In general, it behooves faculty to be aware of the prestige rankings of the field’s journals and to publish in the highest-ranked journals possible. It is also advisable to include in one’s tenure and promotion file information about the Impact Factors or related metrics for the journals where one’s papers appear.

”

211

212 An evaluation rubric from the University of Windsor (University of Windsor, 2016) links the JIF with
213 journal reputation:

“ a) Publishes in journals or with publishing houses with a strong academic reputation²

²Departments may wish to provide quantitative metrics such as journal impact factors as an element of their standards. Factors such as low acceptance rates, high levels of readership, importance to the field are also suggestive indicators in assessing quality and reputation.

”

214

215 Similarly, promotion and tenure forms from the University of Vermont (University of Vermont, 2016)
216 associate the JIF with journal status:

“ List all works reviewed prior to publication by peers / editorial boards in the field, such as journal articles in refereed journals, juried presentations, books, etc. Indicate up to five of the most important contributions with a double asterisk and briefly explain why these choices have been made. Include a description of the stature of journals and other scholarly venues and how this is known (e.g., impact factors, percentage of submitted work that is accepted, together with an explanation of the interpretation of these measures).

”

217

218 Overall, these documents show a focus on publication venue and use the JIF as a proxy measure
219 for determining how much individual publications should count in evaluations based on where they

220 are published.

221 **Many mentions do not specify what is measured with the JIF**

222 Lastly, we were left with many instances where the JIF was mentioned without additional information
223 on what it is intended to measure. Such unspecified mentions were found in the RPT documents of
224 77% (23 of 30) of institutions that mentioned the JIF. These correspond to 74% (17 of 23) of the R-
225 type institutions and 86% (6 of 7) of the M-type institutions with mentions (Table 1). These mentions
226 were often found in research and scholarship sections that ask faculty to list their publications and
227 accompanying information about the publication venues, such as the JIF or journal rank. Some
228 of these documents simply suggest the JIF be included, while others make it a requirement. For
229 example, guidelines from the Russ College of Engineering and Technology at Ohio University ([Ohio](#)
230 [University, 2015](#)) request the JIF in the following way:

“ 231 List relevant peer-reviewed journal and conference papers published over the last five
years (or since last promotion or initial appointment, whichever is less) related to ped-
agogy or other relevant areas of education. Include the journal’s impact factor (or
equivalent journal ranking data) and the number of citations of the article(s). ”

232 **Not all mentions of the JIF support its use**

233 While the majority of the mentions found in our sample of RPT documents were either neutral or
234 supportive of the JIF, we find that 13% of institutions had at least one mention which cautioned
235 against or discouraged use of the JIF in evaluations. We observed varying levels of caution in
236 these mentions. Some do not critique use of the JIF in general, but rather express concern that JIF
237 data are not as relevant for their discipline as for others. For example, criteria for promotion and
238 tenure from the School of Social Work at the University of Central Florida ([University of Central](#)
239 [Florida, 2014](#)) state:

“ 240 Journal impact factors will not be a primary criteria for the measurement of scholarly
activity and prominence as the academic depth and breadth of the profession requires
publication in a multitude of journals that may not have high impact factors, especially
when compared to the stem [sic] disciplines. ”

241 Similarly, guidelines from the Department of Human Health and Nutritional Sciences at the Univer-
242 sity of Guelph ([University of Guelph, 2008](#)) call the JIF a ‘problematic’ index and discourage its use
243 while again highlighting disciplinary differences:

“ Discussion of journal quality (by those familiar with the field) may be included in the assessment in addition to consideration of the quality of individual research contributions. However, citation analyses and impact factors are problematic indices, particularly in comparisons across fields, and their use in the review process is not encouraged. ”

244

245 Other guidelines, such as those from the Faculty of Veterinary Medicine at the University of Calgary
246 (University of Calgary, 2008), caution against relying solely on the JIF as a measure of quality, but
247 still allow it to be considered:

“ Special consideration is to be given to the quality of the publication and the nature of the authorship. Contributions of the applicant must be clearly documented. The reputation and impact of the journal or other publication format will be considered, but takes secondary consideration to the quality of the publication and the nature of the contributions. Impact factors of journals should not be used as the sole or deciding criteria in assessing quality. ”

248

249 Some RPT documents even seem to show disagreement within evaluation committees on the use
250 of the JIF. For example, a document from the Committee on Academic Personnel at the University
251 of California, San Diego (University of California, San Diego, 2015-2016) reads:

“ CAP [Committee on Academic Personnel] welcomes data on journal acceptance rates and impact factors, citation rates and H-index, but some CAP members (as do senior staff of scholarly societies) retain various degrees of skepticism about such measures. ”

252

253 None of the RPT documents we analyzed heavily criticize the JIF or prohibit its use in evaluations.

255

Discussion

256 To our knowledge, this is the first large-scale study of RPT documents from a representative sample
257 of U.S. and Canadian universities to analyze the use of the JIF in academic evaluations. We found
258 that 23% of institutions in our sample mentioned the JIF or related terms in their RPT documents.
259 The percentage was highest for R-type institutions at 40%, versus either M-type (18%) or B-type
260 (0%) institutions. Mentions were largely supportive of JIF use, with 87% of institutions having at
261 least one supportive mention. In contrast, just 13% of institutions had mentions which expressed

262 caution about use of the JIF in evaluations. None of the RPT documents we analyzed prohibit its
263 use. With respect to what is being measured with the JIF, the most common positive association
264 we observed was between the JIF and quality, with 63% of institutions making this link. Less
265 common though still observed were associations made between the JIF and impact, importance,
266 or significance (40% of institutions), and prestige, reputation, or status (20%).

267 How prevalent is the use of the JIF in evaluations?

268 Mentions of the JIF and related terms in RPT documents are not as ubiquitous as the amount of
269 discussion of current evaluation systems would suggest – 23% of institutions in our sample used
270 these terms explicitly. However, the results differ depending on institution type, which might suggest
271 that the experiences at R-type universities (where mentions of the JIF were most prevalent) play
272 an outsized role in discussions about evaluation. Furthermore, the analysis we present on the
273 terms in groups 1 and 2 of our coding terminology (see Fig. 1) may represent only the tip of the
274 iceberg. That is, while we analyzed only those terms that were very closely related to the JIF,
275 we also observed (but did not analyze) terms such as ‘major’, ‘prestigious’, ‘prominent’, ‘highly
276 respected’, ‘highly ranked’, and ‘top tier’ that may be associated with high JIFs in the minds of
277 evaluators. It is impossible to know how RPT committee members interpret such phrases on the
278 basis of the documents alone, but we suspect that some of these additional terms serve to invoke
279 the JIF without explicitly naming it. Take the following examples that leave open for interpretation
280 what measure is used for determining a journal’s status (emphasis added):

281 From the Department of Health Management & Informatics at the University of Central Florida
282 ([University of Central Florida, 2014](#)):

“ Both quality and quantity of publications are important. Conventional evidence for quality
includes publications in **high-ranking journals** and citation by other scholars. ”

283

284 From the College of Arts and Sciences, University of Vermont ([University of Vermont, 2015](#)):

“ Excellence in scholarly research is often demonstrated by the presence of works pub-
lished in **top tier journals** and academic presses. ”

285

286 Both of these examples do not explicitly mention the JIF (and thus are not counted in our analysis),
287 but do imply the need for some measure for ranking journals. It seems likely, given the ubiquity
288 of the JIF, that some committee members will rely on this metric, at least in part, for such a
289 ranking. In short, counting mentions of a restricted set of terms, as we have done here, is likely

290 an underestimate of the extent of the use of the JIF in RPT processes. However, we believe
291 the in-depth analysis presented herein provides a glimpse into the current use of the JIF and
292 may indicate how faculty are considering the metric in evaluations, particularly with respect to
293 assessments of quality.

294 **The JIF does not measure quality**

295 The association between the JIF and quality was found in 63% of institutions in our sample. This
296 raises the question, is there evidence that the JIF is a good indicator of quality? Although quality
297 is hard to define, and even harder to measure, there are some aspects of methodological rigor
298 which could be considered indicative of quality, such as sample sizes, experimental design, and
299 reproducibility (Brembs, 2018). What is the relationship between these aspects of a study and the
300 JIF?

301 Evidence suggests that methodological indicators of quality are not always found in journals with
302 high JIFs. For example, Fraley & Vazire (2014) found that social and personality psychology journals
303 with the highest JIFs tend to publish studies with smaller sample sizes and lower statistical power.
304 Similarly, Munafò et al. (2009) report that higher-ranked journals tend to publish gene-association
305 studies with lower sample sizes and overestimate effect sizes. Analyses of neuroscience and/or
306 psychology studies show either no correlation (Brembs et al., 2013) or a negative correlation
307 (Szucs & Ioannidis, 2017) between statistical power and the JIF. Charles et al. (2009) found that
308 two thirds of a sample of clinical trial studies published in medical journals with high JIFs did not
309 report all the parameters necessary to justify sample size calculations, or had problems with their
310 calculations.

311 Several studies have also looked at different aspects of experimental design to assess method-
312 ological rigor and quality of a study. Chess & Gagnier (2013) analyzed clinical trial studies for ten
313 different indicators of quality, including randomization and blinding, and found that less than 1% of
314 studies met all ten quality criteria, while the JIF of the journals did not significantly predict whether
315 a larger number of quality criteria were met. Barbui et al. (2006) also looked at clinical trial studies
316 and used three different scales that take into account experimental design, bias, randomization,
317 and more to assess quality. The authors found no clear relationship between the JIF and study
318 quality (Barbui et al., 2006).

319 Others have suggested that reproducibility be used as a measure of quality, since it requires work
320 to provide sufficient methodological care and detail. For example, Bustin et al. (2013) analyzed
321 molecular biology studies and found key methodological details lacking, reporting a negative
322 correlation between the JIF of the journal where the study was published and the amount of
323 information provided in the work. Vasilevsky et al. (2013) analyzed articles from multiple disciplines
324 and found that many resources (e.g., antibodies, cell lines) were not 'uniquely identifiable', reporting
325 no relationship between the JIF and resource identifiability. Mobley et al. (2013) found that around

326 half of biomedical researchers surveyed reported they had been unable to reproduce a published
327 finding, some from journals with a JIF over 20. [Prinz et al. \(2011\)](#) found, “that the reproducibility of
328 published data did not significantly correlate with journal impact factors” (pg. 2).
329 Thus, at least as viewed through the aspects above, there is little to no evidence to justify a
330 relationship between the JIF and research quality. A more comprehensive review of these issues can
331 be found in [Brembs \(2018\)](#).

332 **Improving academic evaluation**

333 The lack of evidence for linking the JIF with quality, along with the clearly prevalent association that
334 the academic community makes between the two, has given rise to a number of proposals and
335 initiatives to challenge the use of the JIF, promote the responsible use of metrics, and otherwise
336 improve academic evaluations. These include the Leiden Manifesto ([Hicks et al., 2015](#)), the Metric
337 Tide report ([Wilsdon et al., 2015](#)), the Next-Generation Metrics report ([Wildson et al., 2017](#)), and
338 HuMetricsHSS ([humetricshss.org](#)), among others (for a review, see [Moher et al. \(2018\)](#)). Inasmuch
339 as this project can be said to be contributing to these efforts by answering questions about the use
340 of the JIF, we provide a brief description of a few of these projects and efforts.

341 **Declaration on Research Assessment**

342 Probably the most well-known such project is the Declaration on Research Assessment (DORA;
343 [sfdora.org](#)). DORA outlines some of the limitations of the JIF, and puts forward a general recom-
344 mendation that those evaluating academics and their research not use it, especially as a “surrogate
345 measure of the quality of individual research articles” ([sfdora.org/read](#)). Particularly relevant to our
346 current research is the DORA recommendation that asks institutions to:

347 “Be explicit about the criteria used to reach hiring, tenure, and promotion decisions, clearly
348 highlighting, especially for early-stage investigators, that the scientific content of a paper
349 is much more important than publication metrics or the identity of the journal in which it
350 was published.”

351 In June of 2018, DORA released its two-year strategic plan to expand its work towards improving
352 academic evaluations ([DORA Steering Committee, 2018](#)). This work includes spreading awareness
353 of alternatives to the JIF and collecting examples of good evaluation practices from funders,
354 academic societies, and institutions ([sfdora.org/good-practices](#)).
355 To date, DORA has been signed by over 1,200 organizations and nearly 14,000 individuals
356 worldwide. None of the institutions in our sample are DORA signatories, so we were unable to do

354 any analysis on this, but it would be interesting to study if and how commitment to DORA might be
355 reflected in changes to an institution's RPT documents and evaluation processes.

356 **Libraries taking the lead on responsible metrics**

357 Libraries are at the forefront of promoting the responsible use of metrics. Academic libraries have
358 developed online guides to help faculty learn about the correct uses of different metrics, including
359 the JIF (e.g., [Duke University Medical Center Library & Archives](#); [University of Illinois at Urbana](#)
360 [Champaign Library](#); [University of Surrey Library](#); [University of York Library](#)). Libraries are also
361 providing in-person advising and training for faculty in publishing and bibliometrics.

362 There are also several larger-scale library-led efforts. For example, the Association of College &
363 Research Libraries (ACRL) has developed a Scholarly Communication Toolkit on evaluating journals
364 ([Association of College & Research Libraries](#)), which outlines several ways to assess journal quality
365 that go beyond metrics like the JIF. LIBER (Ligue des Bibliothèques Européennes de Recherche)
366 has established a Working Group on Metrics, and recently recommended increased training in
367 metrics and their responsible uses ([Coombs & Peters, 2017](#)). The Measuring your Research
368 Impact (MyRI) project (<http://myri.conul.ie/>) is a joint effort by three Irish academic libraries to
369 provide open educational resources on bibliometrics. The Metrics Toolkit is a collaborative project
370 by librarians and information professionals to provide educational information on a variety of
371 metrics, both traditional and alternative, that can be used to evaluate different aspects of research
372 ([www.metrics-toolkit.org](#)). In particular, their guide on the JIF outlines the metric's limitations,
373 along with appropriate and inappropriate use cases (<http://www.metrics-toolkit.org/journal-impact-factor/>).

375 **Conclusions**

376 Overall, our results support the claims of faculty that the JIF features in evaluations of their
377 research, though perhaps less prominently than previously thought, at least with respect to formal
378 RPT guidelines. Importantly, our analysis does not estimate use of the JIF beyond what is found in
379 formal RPT documents, e.g., faculty members who serve on review committees and pay attention to
380 this metric despite it not being explicitly mentioned in guidelines. Future work will include surveying
381 faculty members, particularly those who have served on RPT committees, to learn more about how
382 they interpret and apply RPT guidelines in evaluations and investigate some of the more subjective
383 issues not addressed in this study.

384 Our results also raise specific concerns that the JIF is being used to evaluate the quality and
385 significance of research, despite the numerous warnings against such use ([Brembs, 2018](#); [Brembs](#)
386 [et al., 2013](#); [Haustein & Larivière, 2015](#); [Kurmis, 2003](#); [Moustafa, 2015](#); [Seglen, 1997](#); [Sugimoto](#)
387 [& Larivière, 2018](#); [The Analogue University, 2019](#)). We hope our work will draw attention to this

388 issue, and that increased educational and outreach efforts, like DORA and the library-led initiatives
389 mentioned above, will help academics make better decisions regarding the use of metrics like the
390 JIF.

391 **Funding**

392 This study was supported by the Open Society Foundations [OR2016-29841].

393 **Acknowledgements**

394 We are grateful to SPARC, the OpenCon community, the DORA Steering Committee (especially
395 Catriona MacCallum and Anna Hatch), Chealsye Bowley, and Abigail Goben for discussions that
396 shaped and improved this work. We also thank Elizabeth Gadd and Erika Mias, who suggested
397 library guides and projects on responsible metrics to highlight in our Discussion.

398 **Competing interests and disclosures**

399 Erin McKiernan is a member of the DORA Steering Committee and an advisor for the Metrics
400 Toolkit, both volunteer positions. The authors declare they have no other competing interests.

401 **References**

- 402 [1] Alperin, J., Muñoz Nieves, C., Schimanski, L., McKiernan, E., and Niles, M. Terms and
403 Concepts found in Tenure and Promotion Guidelines from the US and Canada. Harvard Data-
404 verse, V3, 2018. <https://doi.org/10.7910/DVN/VY4TJE>, UNF:6:PQC7QoilohDrokzDPxxxyQ==
405 [fileUNF].
- 406 [2] Alperin, J., Muñoz Nieves, C., Schimanski, L., Fischman, G., Niles, M., and McKiernan, E.
407 How significant are the public dimensions of faculty work in review, promotion, and tenure
408 documents? *eLife*, 2019;8:e42254, 2019. <https://doi.org/10.7554/eLife.42254>.
- 409 [3] Archambault, E. and Larivière, V. History of the journal impact factor: Contingencies and
410 consequences. *Scientometrics*, 79(3):635–649, 2009.
411 <https://doi.org/10.1007/s11192-007-2036-x>.
- 412 [4] Association of College & Research Libraries. Scholarly Communication Toolkit: Evaluating
413 Journals. Accessed October 2018 <https://acrl.libguides.com/scholcomm/toolkit/evaluating>.

414 [5] Barbui, C., Cipriani, A., Malvini, L., and Tansella, M. Validity of the impact factor of journals as
415 a measure of randomized controlled trial quality. *Journal of Clinical Psychiatry*, 67(1):37–40,
416 2006. <https://doi.org/10.4088/JCP.v67n0106>.

417 [6] Brembs, B. Prestigious science journals struggle to reach even average reliability. *Frontiers in*
418 *Human Neuroscience*, 12:37, 2018. <https://doi.org/10.3389/fnhum.2018.00037>.

419 [7] Brembs, B., Button, K., and Munafò, M. Deep impact: unintended con-
420 sequences of journal rank. *Frontiers in Human Neuroscience*, 7:291, 2013.
421 <https://doi.org/10.3389/fnhum.2013.00291>.

422 [8] Bustin, S., Benes, V., Garson, J., Hellemans, J., Huggett, J., Kubista, M., Mueller, R., Nolan, R.,
423 Pfaffl, M., Shipley, G., et al. The need for transparency and good practices in the qPCR
424 literature. *Nature Methods*, 10(11):1063, 2013. <https://doi.org/10.1038/nmeth.2697>.

425 [9] Carnegie Foundation for the Advancement of Teaching. The Carnegie Classifications of
426 Institutions of Higher Education, 2015. <http://carnegieclassifications.iu.edu/>.

427 [10] Casadevall, A. and Fang, F. Causes for the persistence of impact factor mania. *mBio*, 5(2):
428 e00064–14, 2014. <https://doi.org/10.1128/mBio.00064-14>.

429 [11] Charles, P., Giraudeau, B., Dechartres, A., Baron, G., and Ravaud, P. Reporting
430 of sample size calculation in randomised controlled trials. *BMJ*, 338:b1732, 2009.
431 <https://doi.org/10.1136/bmj.b1732>.

432 [12] Chess, L. and Gagnier, J. Risk of bias of randomized controlled trials published in orthopaedic
433 journals. *BMC Medical Research Methodology*, 13(1):76, 2013. [https://doi.org/10.1186/1471-2288-13-76](https://doi.org/10.1186/1471-
434 2288-13-76).

435 [13] Coombs, S. and Peters, I. The Leiden Manifesto under review: what libraries can learn from it.
436 *Digital Library Perspectives*, 33(4):324–338, 2017. <https://doi.org/10.1108/DLP-01-2017-0004>.

437 [14] DORA Steering Committee. DORA Roadmap: A two-year strategic plan for advanc-
438 ing global research assessment reform at the institutional, national, and funder level,
439 2018. [https://sfdora.org/2018/06/27/dora-roadmap-a-two-year-strategic-plan-for-advancing-
global-research-assessment-reform-at-the-institutional-national-and-funder-level/](https://sfdora.org/2018/06/27/dora-roadmap-a-two-year-strategic-plan-for-advancing-
440 global-research-assessment-reform-at-the-institutional-national-and-funder-level/).

441 [15] Duke University Medical Center Library & Archives. Publication Metrics. Accessed October
442 2018 <https://guides.mclibrary.duke.edu/researchimpact/>.

443 [16] Fraley, R. and Vazire, S. The n-pact factor: Evaluating the quality of empirical jour-
444 nals with respect to sample size and statistical power. *PLoS ONE*, 9(10):e109019, 2014.
445 <https://doi.org/10.1371/journal.pone.0109019>.

446 [17] Fuyuno, I. and Cyranoski, D. Cash for papers: putting a premium on publication. *Nature*, 441
447 (792), 2006. <https://doi.org/10.1038/441792b>.

448 [18] Garfield, E. Citation indexes in sociological and historical research. *American Documentation*,
449 14(4):289–291, 1963. <https://doi.org/10.1002/asi.5090140405>.

450 [19] Garfield, E. The history and meaning of the journal impact factor. *JAMA*, 295(1):90–93, 2006.
451 <https://doi.org/10.1001/jama.295.1.90>.

452 [20] Harley, D., Acord, S., Earl-Novell, S., Lawrence, S., and King, C. Assessing the fu-
453 ture landscape of scholarly communication: An exploration of faculty values and needs
454 in seven disciplines. Center for Studies in Higher Education, UC Berkeley, 2010.
455 http://escholarship.org/uc/cshe_fsc.

456 [21] Haustein, S. and Larivière, V. The use of bibliometrics for assessing research: Possibilities,
457 limitations and adverse effects. In *Incentives and Performance*, pages 121–139. 2015.
458 Available at <https://ost.openum.ca/files/sites/132/2017/06/HausteinLariviereIncentives.pdf>.

459 [22] Hecht, F., Hecht, B., and Sandberg, A. The journal “impact factor”: a misnamed, mis-
460 leading, misused measure. *Cancer Genetics and Cytogenetics*, 104(2):77–81, 1998.
461 [https://doi.org/10.1016/S0165-4608\(97\)00459-7](https://doi.org/10.1016/S0165-4608(97)00459-7).

462 [23] Hicks, D., Wouters, P., Waltman, L., de Rijcke, S., and Rafols, I. The Leiden Manifesto for
463 research metrics. *Nature*, 520:429–431, 2015. <https://doi.org/10.1038/520429a>.

464 [24] Kurmis, A. Understanding the limitations of the journal impact factor. *Journal of Bone & Joint
465 Surgery*, 85(12):2449–2454, 2003. <https://bit.ly/2NrWxam>.

466 [25] Loyola University Chicago. The Institute of Environmental Sustainability: Tenure and Promotion
467 Guidelines, 2015.

468 [26] Mobley, A., Linder, S., Braeuer, R., Ellis, L., and Zwelling, L. A survey on data reproducibility in
469 cancer research provides insights into our limited ability to translate findings from the laboratory
470 to the clinic. *PLoS ONE*, 8(5):e63221, 2013. <https://doi.org/10.1371/journal.pone.0063221>.

471 [27] Moher, D., Naudet, F., Cristea, I., Miedema, F., Ioannidis, J., and Goodman, S. Assess-
472 ing scientists for hiring, promotion, and tenure. *PLoS Biology*, 16(3):e2004089, 2018.
473 <https://doi.org/10.1371/journal.pbio.2004089>.

474 [28] Moustafa, K. The disaster of the impact factor. *Science and Engineering Ethics*, 21(1):
475 139–142, 2015. <https://doi.org/10.1007/s11948-014-9517-0>.

476 [29] Munafò, M., Stothart, G., and Flint, J. Bias in genetic association studies and impact factor.
477 *Molecular Psychiatry*, 14(2):119, 2009. <https://doi.org/10.1038/mp.2008.77>.

478 [30] of California Libraries, U. Pay It Forward: Investigating a Sustainable Model of Open Access
479 Article Processing Charges for Large North American Research Institutions.

480 [31] Ohio University. College of Health Sciences and Professions: Promotion and Tenure Policy,
481 2014.

482 [32] Ohio University. Russ College of Engineering and Technology: Minimal Criteria for Promotion
483 and Tenure, 2015.

484 [33] PLoS Medicine Editors. The impact factor game. *PLoS Medicine*, 3(6):e291, 2006.
485 <https://doi.org/10.1371/journal.pmed.0030291>.

486 [34] Prinz, F., Schlange, T., and Asadullah, K. Believe it or not: how much can we rely on
487 published data on potential drug targets? *Nature Reviews Drug Discovery*, 10(9):712, 2011.
488 <https://doi.org/10.1038/nrd3439-c1>.

489 [35] Quan, W., Chen, B., and Shu, F. Publish or impoverish: An investigation of the monetary
490 reward system of science in China (1999-2016). *Aslib Journal of Information Management*,
491 69(5):486–502, 2017. <https://doi.org/10.1108/AJIM-01-2017-0014>.

492 [36] Rogers Digital Media. Maclean's University Rankings, 2016.
493 <https://www.macleans.ca/education/unirankings/>.

494 [37] Schimanski, L. and Alperin, J. The evaluation of scholarship in academic promotion and tenure
495 processes: Past, present, and future [version 1; referees: 2 approved]. *F1000Research*, 7:
496 1605, 2018. <https://doi.org/10.12688/f1000research.16493.1>.

497 [38] Schroter, S., Tite, L., and Smith, R. Perceptions of open access publishing: in-
498 terviews with journal authors. *BMJ: British Medical Journal*, 330(7494):756, 2005.
499 <https://doi.org/10.1136/bmj.38359.695220.82>.

500 [39] Seglen, P. Why the impact factor of journals should not be used for evaluating research. *BMJ: British Medical Journal*, 314(7079):498, 1997. <https://doi.org/10.1136/bmj.314.7079.497>.

502 [40] Simon Fraser University. Department of Psychology: Criteria for Promotion, 2015.

503 [41] SpringerNature. Prospectus for the public offering, 2018.
504 web.archive.org/web/20180507134223/http://proxy.dbagproject.de/mediacenter/ressourcen/pdf/emissionen/springernature_prospectus.pdf.

506 [42] Sugimoto, C. and Larivière, V. *Measuring Research: What Everyone Needs to Know*. Oxford
507 University Press, 2018.

508 [43] Swan, A. and Brown, S. JISC/OSI journal authors survey report, 2004. Accessed November
509 2018 <https://eprints.soton.ac.uk/261002/1/JISCOReport1.pdf>.

510 [44] Szucs, D. and Ioannidis, J. Empirical assessment of published effect sizes and power in
511 the recent cognitive neuroscience and psychology literature. *PLoS Biology*, 15(3):e2000797,
512 2017. <https://doi.org/10.1371/journal.pbio.2000797>.

513 [45] The Analogue University. Calling all journal editors: Bury the metrics pages! *Political
514 Geography*, 2019. <https://doi.org/10.1016/j.polgeo.2018.09.002>.

515 [46] The National Academies of Sciences, Engineering, and Medicine. Taxonomy of fields and
516 their subfields, 2006. http://sites.nationalacademies.org/pga/resdoc/pga_044522.

517 [47] Tijdink, J., Schipper, K., Bouter, L., Pont, P., De Jonge, J., and Smulders, Y. How do scientists
518 perceive the current publication culture? a qualitative focus group interview study among
519 dutch biomedical researchers. *BMJ Open*, 6(2):e008681, 2016.
520 <http://dx.doi.org/10.1136/bmjopen-2015-008681>.

521 [48] University of Alberta. Faculty of Science: Criteria for Merit Increments, Tenure and Promotion,
522 2012.

523 [49] University of Calgary. Faculty of Veterinary Medicine: Guidelines for Appointment, Promotion,
524 and Tenure of Academic Staff, 2008.

525 [50] University of California, San Diego. Where CAP Stood, 2015-16, 2015-2016.

526 [51] University of Central Florida. Department of Health Management & Informatics, College of
527 Health & Public Affairs: Criteria for Promotion and Tenure, 2014.

528 [52] University of Central Florida. School of Social Work: Criteria for Promotion and Tenure, 2014.

529 [53] University of Central Florida. Department of Sociology: Department Criteria for Tenure and
530 Promotion, 2015.

531 [54] University of Guelph. Department Human Health and Nutritiona Sciences: Guidelines for
532 Tenure, Promotion and Performance Assessment, 2008.

533 [55] University of Illinois at Urbana Champaign Library. Understanding
534 Impact Factor and Other Bibliometrics. Accessed October 2018
535 <http://guides.library.illinois.edu/c.php?g=621441&p=4328606>.

536 [56] University of Surrey Library. Responsible use of metrics. Accessed October 2018
537 [http://www.surrey.ac.uk/library/research/openresearch/understandingmetrics/
538 responsible_use_of_metrics.htm](http://www.surrey.ac.uk/library/research/openresearch/understandingmetrics/responsible_use_of_metrics.htm).

539 [57] University of Vermont. College of Arts and Sciences: Statement Regarding the Appointment,
540 Tenure, and Promotion of Tenure-Track Faculty, 2015.

541 [58] University of Vermont. Reappointment, promotion, and tenure (RPT) guidelines and forms –
542 Green sheet form, 2016.

543 [59] University of Windsor. Sample Research Evaluation Rubrich, 2016.

544 [60] University of Windsor. Working Session on Developing Promotion and Tenure Criteria for
545 Research, 2016.

546 [61] University of York Library. Bibliometrics: a Practical Guide. Accessed October 2018
547 <https://subjectguides.york.ac.uk/bibliometrics>.

548 [62] Vasilevsky, N., Brush, M., Paddock, H., Ponting, L., Tripathy, S., LaRocca, G., and Haendel, M.
549 On the reproducibility of science: unique identification of research resources in the biomedical
550 literature. *PeerJ*, 1:e148, 2013. <https://doi.org/10.7717/peerj.148>.

551 [63] Walker, R., Sykes, L., Hemmelgarn, B., and Quan, H. Authors' opinions on publication
552 in relation to annual performance assessment. *BMC Medical Education*, 10(1):21, 2010.
553 <https://doi.org/10.1186/1472-6920-10-21>.

554 [64] Wildson, J., Bar-Ilan, J., Frodeman, R., Lex, E., Peters, I., and Wouters, P. Next-
555 generation metrics: Responsible metrics and evaluation for open science. 2017.
556 <https://ec.europa.eu/research/openscience/pdf/report.pdf>.

557 [65] Wilsdon, J., Allen, L., Belfiore, E., Campbell, P., Curry, S., Hill, S., Jones, R., Kain, R., Kerridge,
558 S., Thelwall, M., Tinkler, J., Viney, I., Wouters, P., Hill, J., and Johnson, B. The metric
559 tide: Report of the independent review of the role of metrics in research assessment and
560 management, 2015. <https://doi.org/10.13140/RG.2.1.4929.1363>.