

A peer-reviewed version of this preprint was published in PeerJ
on 19 August 2019.

View the peer-reviewed version (peerj.com/articles/cs-212), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Elsayed EK, ElDahshan KA, El-Sharawy EE, Ghannam NE. 2019. Reverse
engineering approach for improving the quality of mobile applications.
PeerJ Computer Science 5:e212 https://doi.org/10.7717/peerj-cs.212

https://doi.org/10.7717/peerj-cs.212
https://doi.org/10.7717/peerj-cs.212

Reverse engineering approach for improving the quality of
mobile applications
Eman K. Elsayed 1 , Kamal A. ElDahshan 1 , Enas E. El-Sharawy 1 , Naglaa E. Ghannam Corresp. 1

1 Mathematical and Computer science Department, Al Azhar University, Cairo, Egypt

Corresponding Author: Naglaa E. Ghannam
Email address: naglaasaeed@azhar.edu.eg

Background: Portable applications (Android applications) are becoming increasingly complicated by
mind-boggling programming frameworks. Applications must be produced rapidly and advance
persistently in order to ût new client requirements and execution settings. However, catering to these
imperatives may bring about poor outline decisions on design choices, known as anti-patterns, which
may possibly corrupt programming quality and execution. Thus, the automatic detection of anti-patterns
is a vital process that facilitates both maintenance and evolution tasks. Additionally, it guides developers
to refactor their applications and consequently enhance their quality.

Methods: We propose a reverse-engineering approach to analyze Android applications and detect the
anti-patterns from mobile apps. We validate the eûectiveness of our approach on a set of popular mobile
apps such as YouTube, Whats App, Play Store and Twitter. The result of our approach produced an
Android app with fewer anti-patterns, leading the way for perfect long-time apps and ensuring that these
applications are purely valid.

Results: The proposed method is a general detection method. It detected a set of semantic and
structural design anti-patterns which have appeared 1262 times in mobile apps. The results showed that
there was a correlation between the anti-patterns detected by an ontology editor and OntoUML editor.
The results also showed that using ontology increases the detection percentage approximately 11.3%,
guarantees consistency and decreases accuracy of anti-patterns in the new ontology.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

1 Reverse engineering approach for improving Mobile

2 Applications' Quality
3

4 Eman K. Elsayed1, Kamal A. ElDahshan1, Enas E. El-Sharawy1, Naglaa E. Ghannam1
5 1 Mathematical and Computer science Dept., Faculty of Science, Al-Azhar University, Cairo,
6 Egypt
7

8 Corresponding Author:
9 Naglaa Ghannam1

10 Cairo, Egypt
11 Email address: naglaasaeed@azhar.edu.eg
12

13 Abstract

14 Background: Portable applications (Android applications) are becoming increasingly
15 complicated by mind-boggling programming frameworks. Applications must be produced
16 rapidly and advance persistently in order to fit new client requirements and execution settings.
17 However, catering to these imperatives may bring about poor outline decisions on design
18 choices, known as anti-patterns, which may possibly corrupt programming quality and execution.
19 Thus, the automatic detection of anti-patterns is a vital process that facilitates both maintenance
20 and evolution tasks. Additionally, it guides developers to refactor their applications and
21 consequently enhance their quality.
22 Methods: We propose a reverse-engineering approach to analyze Android applications and
23 detect the anti-patterns from mobile apps. We validate the effectiveness of our approach on a set
24 of popular mobile apps such as YouTube, Whats App, Play Store and Twitter. The result of our
25 approach produced an Android app with fewer anti-patterns, leading the way for perfect long-
26 time apps and ensuring that these applications are purely valid.
27 Results: The proposed method is a general detection method. It detected a set of semantic and
28 structural design anti-patterns which have appeared 1262 times in mobile apps. The results
29 showed that there was a correlation between the anti-patterns detected by an ontology editor and
30 OntoUML editor. The results also showed that using ontology increases the detection percentage
31 approximately 11.3%, guarantees consistency and decreases accuracy of anti-patterns in the new
32 ontology.
33

34 Introduction

35 Mobile applications take center stage in our lives today. We utilize them anywhere, at any time
36 and for everything. We use them to peruse websites, shop, search for everything we need and for
37 basic administration such as banking. However, the dependability and quality of mobile
38 applications are basic. Like any other applications, the initial design of mobile apps is affected
39 by bug-settling and the introduction of new properties, which change results. All of these

Abstract

÷
÷

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

40 elements can occasionally affect the quality of design (Parnas D. L, 1994). This aspect is known
41 as software degeneration, which can exist in the form of design flaws or anti-patterns (Eick S. G.
42 et al. 2001).
43 One of the most important factors in the development of software systems is improving software
44 quality. The success of software design depends on the availability of quality elements such as
45 maintainability, manageability, testability, and performance. These elements are adversely
46 affected by anti-patterns. Anti-patterns are bad practice in software design that impede
47 maintenance and degrade performance. Many tools and methods have been introduced for
48 measuring the quality of software products. The automatic detection of anti-patterns is a good
49 way to support maintenance, uncomplicate evolution tasks and improve usability and software
50 quality. We noted many other approaches were interested in detecting code smell or other code
51 anti-patterns. although it has been noted that anti-pattern detection at the design level reduces
52 many code anti-patterns and is more general.
53 According to Raja, V. (2008), engineering is the process of designing, manufacturing,
54 assembling, and maintaining products and systems. Engineering has two types, forward
55 engineering and reverse engineering. The term Reverse Engineering (RE) according to our
56 approach, refers to the process of generating UML diagrams followed by generating OWL
57 ontologies of mobile apps through importing and analyzing the source code.
58 Generally, we can use ontology re-engineering for direct incorporation as an ontology
59 development method (Obrst et al., 2014) by allowing the designer to analyze the common
60 components dependence. The low barriers between ontologies provide reusability.
61 Designing a high-quality mobile application pattern remains an ongoing research challenge. The
62 proposed approach aims to detect structure and semantic anti-patterns in the design of a high-
63 quality mobile application pattern, and to show which method is better for the integration of
64 apps.
65 Motivated by the research mentioned above, the major contributions of this paper are seven-fold:
66 � Presenting a new method for generating OWL Ontology of mobile apps.
67 � Presenting a general method for designing a high-quality mobile application pattern.
68 � Illustrating how the proposed method can detect both structure and semantic anti-patterns in the
69 design of mobile applications.
70 � Describing how we evaluate the proposed method in 29 publicly available mobile applications.
71 Showing how it detects and treats 15 designs9 semantic and structure anti-patterns that appeared
72 1262 times.
73 � Presenting the integration of mobile apps using two different scenarios to improve the contents
74 and quality of the apps.
75 � Showing how semantic integration among mobile apps decreases the accuracy of anti-patterns
76 in the generated OWL Ontology pattern when compared to the original apps.
77 � Analyzing the relationships among the object-oriented anti-patterns.
78 In the rest of the paper, we subsequently present the related work. Next, we present some basic
79 definitions, and the details of the proposed approach is described. After that, the empirical

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

80 validations of the proposed method are presented, followed by the results and discussion. And,
81 finally, the concluding remarks are given, along with scope for future work, in the last section.

82

83 Related Work

84 RE methodology is important because it offers good benefits. RE allows for the understanding of
85 the construction of the user interface and algorithms of applications. Additionally, we can know
86 all of the properties of the app, its activities, permissions and can read the Mainfest.xml of the
87 apps. RE methodology has been used in many approaches for many purposes. According to
88 Song, L. et al. (2017), the RE technique was used to improve the security of Android apps. They
89 introduced the AppIS system that can effectively enhance the app9s security and its strength
90 against repackaging and cumulative attack. Zhou, X. et al. (2018) used the RE technique to
91 detect logging classes, and to remove logging calls and unnecessary instructions. Arnatovich, Y.
92 L et al. (2018) used RE to perform a program analysis on a textual form of the executable source,
93 and to represent it with an intermediate language (IL). This (IL) has been introduced to represent
94 applications executable Dalvik (dex) bytecode in a human-readable form.
95 Many empirical studies have demonstrated the negative impact of anti-patterns on change-
96 proneness, fault-proneness, and energy efficiency (Romano et al., 2012; Khomh et al., 2012;
97 Morales et al., 2016). In addition to that, Hecht et al. (2015); Chatzigeorgiou & Manakos (2010);
98 Hecht et al. (2016) observed an improvement in the user interface and memory performance of
99 mobile apps when correcting Android anti-patterns. They found that anti-patterns were prevalent

100 in the evolution of mobile apps. They also confirmed that anti-patterns tend to remain in systems
101 through several releases, unless a major change is performed on the system. Many efficient
102 approaches have been proposed in the literature to detect mobile applications9 anti-patterns.
103 Alharbi et al. (2014) detected the inconsistency anti-patterns in mobile applications that were
104 only related to camera permissions and similarities. Joorabch et al. (2015) detected the
105 inconsistency anti-patterns in mobile applications using a tool called CHECKCAMP that was
106 able to detect 32 valid functional and data inconsistencies between app versions. Hecht et al.
107 (2015) used the Paprika approach to detect some popular object-oriented anti-patterns in mobile
108 applications. Linares-Vásquez et al. (2014) detected 18 OO anti-patterns in 1,343 java mobile
109 apps by using DÉCOR. This study focused on the relationship between smell anti-patterns and
110 application domain. Also, they showed that the presence of anti-patterns negatively impacts
111 software quality metrics, in particular, metrics related to fault-proneness. Yus, R., & Pappachan,
112 P. (2015) analyzed more than 400 semantic Web papers, and they found that more than 36
113 mobile apps are semantic mobile apps. They showed that the existence of semantic helps in
114 better local storage and battery consumption. So we believe that the detection of semantic anti-
115 patterns will support these factors in some way. Palomba et al. (2017) proposed an automated
116 tool called A DOCTOR. This tool can identify 15 Android code smells. They made an empirical
117 study conducted on the source code of 18 Android applications, and revealed that the proposed
118 tool reached 98% precision and 98% recall. A DOCTOR detected almost all the code smell
119 instances existing in Android apps. Hecht et al. (2015) introduced the PAPRIKA tool to monitor

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

120 the evolution of mobile app quality based on anti-patterns. They detected the common anti-
121 patterns in the code of the analyzed apps. They detected seven anti-patterns, three of them were
122 OO anti-patterns and four were mobile anti-patterns.
123

124 Ontology and Software Engineering

125 According to the IEEE Standard Glossary (1990), software engineering is defined as "the
126 application of a systematic, disciplined, quantifiable approach to the development, operation, and
127 maintenance of software".
128 Also, from the knowledge engineering community perspective, computational ontology is
129 defined as "explicit specifications of a conceptualization". According to Calero et al. (2006);
130 Happel. J., & Seedorf, S. (2006), the importance of sharing knowledge to move software to more
131 advanced levels requires a explicit definition to help machines interpret this knowledge. So they
132 decided that ontology is the most promising way to address software engineering problems.
133 El-sayed et al., 2016 proofed the similarities in infrastructures between UML and ontology
134 components. They proposed checking some UML quality features using ontology and ontology
135 reasoning services in order to check consistency and redundancies over UML models. This
136 would lead to a strong relationship between software design and ontology development.
137 In software engineering, ontologies have a wide range of applications, including model
138 transformations, cloud security engineering, decision support, search and semantic integration
139 (Kappel et al., 2006; Aljawarneh et al., 2017; Maurice et al., 2017; Bartussek et al., 2018; De
140 Giacomo et al. 2018). Semantic integration is the process of merging the semantic contents of
141 multiple ontologies. The integration may be between applications that have the same domain or
142 have different domains in order to take the properties of both applications. We make ontology
143 integration for many reasons: to reuse the existing semantic content of applications, to reduce
144 effort and cost, to improve the quality of the source content or the content itself, and to fulfill
145 user requirements that the original ontology does not satisfy.

146

147 Proposed Method

148 In this section, we introduce the key components of the proposed method for analyzing the
149 design of mobile apps to detect design anti-patterns, and for making semantic integration
150 between mobile apps via ontology reengineering.
151 Anti-pattern Detection

152 The proposed method for anti-pattern detection consists of three phases and is summarized in
153 'Fig. 1'.
154 1. The ûrst phase presents the process of reformatting the mobile application to Java format.
155 2. The second phase presents the reverse-engineering process. In this phase, we used RE to
156 reverse the Java code of the mobile apps generating UML class diagram models. Additionally, a
157 lot of design anti-patterns are detected.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

158 3. The third phase completes the anti-pattern detection and correction processes. We detect and
159 correct semantic anti-patterns to reverse the high-quality code again, that is, to get high-quality
160 Android patterns.
161 The Integration of Mobile Apps

162 Merging mobile apps is a good step in mobile app development. The proposed method
163 introduces two ways of integrating mobile apps. The first way begins after decompiling the APK
164 of the apps. We use reverse engineering methodology for generating one UML class diagram of
165 both apps and then start the detection of the anti-patterns process for the integrated app (Fig. 2).
166 The second way to integrate mobile apps is through merging the OWL ontologies of both apps,
167 generating one OWL ontology for the two apps (Fig. 3).
168 The Implementation

169 In this section, we propose the implementation of the proposed detection method and determine
170 which packages are suitable for each phase. The Android Application Package (APK) file is
171 required for starting the reverse process.
172 � The First Phase: APK files are zip files used for the installation of mobile apps. We used the
173 unzip utility for extracting the files stored inside the APK. It contained the AndroidManifest.xml,
174 classes.dex containing the java classes we used in the reverse process, and resources.arsc
175 containing the meta-information. We de-compiled the APK files using apktool or Android de-
176 compiler. Android de-compiler is a script that combines different tools to successfully de-
177 compile any (APK) to its java source code and resources. Finally, we used a java de-compiler
178 tool such as JD-GUI to de-compile the java classes. JD-GUI is a standalone graphical utility that
179 displays the Java source codes of ".class" files. So, the input of the first phase was the APK file
180 of the mobile app and the output was the java classes of the APK app.
181 � The Second Phase: We used the RE approach for generating the UML class diagram model of
182 the mobile app. Using different modeling tools of the UML, we found Modelio 3.6 to be a
183 suitable one for our proposed method. The UML class diagram was generated by reversing the
184 java binaries of the mobile app. Detecting the anti-patterns in the UML model is the first step in
185 the detection process. So, the input of the second phase was classes.java of the app and the
186 output was the UML class diagram model of the app with a list of the detected anti-patterns.
187 � The Third Phase: By converting the model to XML format, we could generate it as an
188 OntoUML model in OLED, which is the editor of OntoUML for detecting semantic anti-
189 patterns. OntoUML is a pattern-based and ontologically well-founded version of UML. Its meta-
190 model has been designed in compliance with the ontological distinctions of a well-grounded
191 theory named the Unified Foundational Ontology (UFO). OLED editor also supports the
192 transformation of the OLED file to the OWL ontology of the mobile app, allowing the detection
193 of inconsistency and semantic anti-patterns using the 'reasoner' ontology in Protégé. Protégé is
194 the broad ontology editor commonly used by many users.

195 Empirical Validations

196 We assessed our approach by reporting on the results we obtained for the detection of 15 anti-
197 patterns on 29 popular Android apps downloaded from the APK Mirror.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

198 Applications under Analysis

199 We downloaded the mobile apps in Table 1 from APK Mirror. We selected some popular apps
200 such as YouTube, WhatsApp, Play Store and Twitter. The size of the apps included the resources
201 of the application, as well as images and data ûles (Table 1). The research study included the
202 identification and repeating of anti-patterns across different domains and different sizes.
203 Case Study

204 To explain the proposed method, we presented a snapshot of it in a different case study "Avast
205 Android Mobile Security". Using the reverse technique, we generated the UML class diagram
206 model of the java classes in Modelio, and included its classes, subclasses, class attributes,
207 operations, and the associations between them (Fig. 4).
208 After generating the UML class diagram of the app in Modelio, we detected 229 anti-patterns
209 using the 'Avast Android Mobile Security'. The anti-patterns are shown in Fig. 5. The number
210 and the location of the anti-patterns were determined.
211 There were 10 detected anti-patterns (without repeat): "NameSpaces have the same name
212 (NHSN)", "NameSpace is Leaf and is derived (NLAD)", "NameSpace is Leaf and is abstract
213 (NLAA)", "Generalization between two un-compatible elements (GBUE)", "A public
214 association between two Classifiers one of them is public and the other is privet (PACPP)",
215 "Classifier has several operations with the same signature (CHSO)", "Classifier has attributes
216 with the same name (CHSA)", "The status of an Attribute is abstract and class(SAAC)", "A
217 destructor has two parameters (ADHPS)" and finally "MultiplicityMin must be inferior to
218 MultiplicityMax (MMITMM)". Figure 6 shows a sample of them.
219 For correcting the detected anti-patterns, we introduce the anti-pattern and the correction method
220 in Table 2.
221 To convert the UML model to XML format, we converted it into an enterprise architecture file
222 (EA) then converted it to an OLED file. In the "Avast Android Mobile Security' OLED file, we
223 validated the model for detecting the anti-patterns. The detected anti-patterns in the different
224 apps were: Association Cycle anti-patterns (AC), Binary relations with Overlapping Ends anti-
225 patterns (BinOver), Imprecise Abstraction (ImpAbs) anti-patterns and Relation Composition
226 anti-patterns (RC)). For correcting the detected anti-patterns via OntoUML and the correct
227 method for each one, we introduce 'Table 3'.
228 After anti-pattern detection using OntoUML editor, OLED supports the transformation of OLED
229 file to the OWL Ontology. We checked the inconsistency anti-patterns using the reasoner of
230 Ontology editor (Protégé). The reasoner detected the inconsistency anti-patterns.
231 We detected the anti-patterns NameSpaces have the same name, Classifier has several operations
232 with the same signature, Classifier has attributes with the same name, and MultiplicityMin must
233 be inferior to MultiplicityMax, which we detected after generating the class diagram in Modelio,
234 and detected the anti-pattern (Association Cyclic) which was detected via OntoUML.
235 Integration of Mobile Applications

236 In this section, we apply two different methods for integration between mobile apps to compare
237 which method reduces the outcome of anti-patterns in the mobile app results.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

238 In order to explain that, we took the integration of "Viber= and <Whatsapp" apps as a case study
239 for the integration of social mobile apps. In the first integration method, we reformatted the APK
240 of the apps to Java format, using RE methodology to generate one UML class diagram for both
241 apps. After that, we did all the steps of the proposed detection method to generate a pattern of the
242 new app.
243 For the second method of integration, we already had the OWL ontologies for all apps from the
244 first part of the proposed method. We merged the OWL ontologies of both apps using a Prompt
245 Protégé plugin to generate one OWL ontology pattern. Figure 7 and Figure 8 show the
246 integration input and output. Finally, we used "Reasoner in Protégé" to check the consistency
247 after integration.

248 Results and Discussion

249 Anti-pattern Detection

250 We applied our proposed method on a sample of 29 Android applications, which we downloaded
251 from the APK Mirror. The proposed method detected 15 anti-patterns. The total number of anti-
252 patterns that appeared in the 29 apps was 1262 anti-patterns. We classified the anti-patterns
253 according to their existence in the UML class diagram components. The occurrences of the anti-
254 patterns are given in Table 4.
255 Table 5 shows the detected anti-patterns in each app using the proposed methodology and the
256 total number of anti-patterns in the 39 mobile apps.
257 We found that the "Anti-patterns in the class" group is the most commonly detected anti-pattern
258 in Android apps. The "Anti-patterns in Operation" is the least commonly appeared anti-pattern
259 (Fig. 9).
260 We used SPSS (Statistical Package for the Social Sciences) to analyze the correlation between
261 the five groups of anti-patterns, and the correlation between the detection tools of the proposed
262 method. A negative correlation means a reverse correlation between them, and a positive
263 correlation means there is a direct correlation between them (Table 6 and Table 7). The greatest
264 correlations were between attributes and operations groups, and between Modelio and Protégé.
265 We used a one-way ANOVA test among the three tools and the anti-patterns of the five groups
266 to find the relationship between the used tools and the detected anti-patterns. From the ANOVA
267 test, we found a significant difference of 0.578 in Protégé detection, while in Modlio detection it
268 was 0.464, and finally in OLED, it was 0.926. This implies they are all necessary and we cannot
269 ignore any one of them in our proposed method to get a high-quality mobile app pattern (Fig.
270 10).
271 Comparing the Mobile App integration methods

272 Although there are similarities between Viber and Whatsapp apps, when we applied the two
273 integration methods in section 6.3, we found that the number of detected anti-patterns in the new
274 app was not the same. The detected anti-patterns using the second method (Ontology Integration)
275 was less than the number detected by using the first method (UML). This indicates that semantic
276 integration decreases the accuracy of anti-patterns in apps. Table 8 shows the number of anti-
277 patterns in each app and the number of them in the mobile app pattern after merging. The

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

278 enhancement using ontology is approximately 11.3% in addition to a consistency check.
279 Additionally, using ontology to separately refine Viber or Whatsapp as a pattern enhanced them
280 approximately 4.04 % and 89%, respectively, in addition to a consistency check.
281

282 Conclusions

283 In this paper, we focused on improving mobile applications' quality. Our method is distinct from
284 other methods. We introduced a general method to automatically detect anti-patterns not by
285 using specific queries, but by using Modelio, OntoUML, and Protégé in a specific order to get
286 positive results. Also, concerning the related work section, our proposed method is more general
287 than other methods as the proposed method supports semantic and structural anti-pattern
288 detection at the levels of both design and code.
289 For evaluation of the proposed method, we applied it on a sample of 29 mobile applications, and
290 it detected 15 semantic and structural anti-patterns. According to the proposed classification of
291 anti-patterns, ''the anti-patterns in the class group'' was the most frequent anti-pattern, and ''the
292 anti-patterns in the attribute group'' was the least frequent. The results also showed that there is a
293 correlation between the Modelio and Protégé platforms. Additionally, there is a correlation
294 between OLED and Protégé while there is no correlation between Modelio and OLED.
295 For evaluating and analyzing which integration method was better, we applied the two methods
296 on similar mobile apps. We found that using ontology increases the detection percentage
297 approximately 11.3%, and guarantees consistency. In addition to that, it decreased the accuracy
298 of the anti-patterns in the new ontology. Accordingly, semantic ontology integration has a
299 positive effect on the quality of the new app. It helps to develop a correct, consistent and
300 coherent integrated model that has few anti-patterns.
301

302 In the future, we will analyze the relationship between design and code anti-patterns before and
303 after the integration of mobile apps.

304

305 References

306 Alharbi, K., Blackshear, S., Kowalczyk, E., Memon, A. M., Chang, B. Y. E., & Yeh, T. (2014,
307 April). Android apps consistency scrutinized. In CHI'14 Extended Abstracts on Human Factors
308 in Computing Systems, 26 April 3 01 May 2014; Toronto, Ontario, Canada. New York, NY,
309 USA: ACM. pp. 2347-2352. ACM.
310 Aljawarneh, S. A., Alawneh, A., & Jaradat, R. (2017). Cloud security engineering. Future
311 Generation Computer Systems, 74(C), 385-392.
312 Arnatovich, Y. L., Wang, L., Ngo, N. M., & Soh, C. (2018). A Comparison of Android Reverse
313 Engineering Tools via Program Behaviors Validation Based on Intermediate Languages
314 Transformation. IEEE Access, 6, 12382-12394.
315 Bartussek, W., Weiland, T., Meese, S., Schurr, M. O., Leenen, M., Uciteli, A., ... & Lauer, W.
316 (2018, April). Ontology-based search for risk-relevant PMS data. In Biomedical Engineering
317 Conference (SAIBMEC), 1-4. IEEE.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

318 Chatzigeorgiou, A., & Manakos, A. (2010, September). Investigating the evolution of bad smells
319 in object-oriented code. In Seventh International Conference on the Quality of Information and
320 Communications Technology (QUATIC), 10, 106-115. IEEE.
321 Calero, C., Ruiz, F., & Piattini, M. (Eds.). (2006). Ontologies for software engineering and
322 software technology. Springer Science & Business Media.
323 De Giacomo, G., Lembo, D., Lenzerini, M., Poggi, A., & Rosati, R. (2018). Using ontologies for
324 semantic data integration. In A Comprehensive Guide Through the Italian Database Research
325 Over the Last 25 Years, 187-202. Springer, Cham.
326 Eick, S. G., Graves, T. L., Karr, A. F., Marron, J. S., & Mockus, A. (2001). Does code decay?
327 assessing the evidence from change management data. IEEE Transactions on Software
328 Engineering, 27(1), pp. 1-12.
329 Elsayed, E., El-Dahshan, K., El-Sharawy, E., & Ghannam, N. (2016). Semantic Anti-patterns
330 Detection in UML Models based on Ontology Catalogue. Artificial Intelligence and Machine
331 Learning Journal, 16, 1687-4846.
332 Happel, H. J., & Seedorf, S. (2006, November). Applications of ontologies in software
333 engineering. In Proc. of Workshop on Semantic Web Enabled Software Engineering"(SWESE)
334 on the ISWC, 5-9.
335 Hecht, G., Benomar, O., Rouvoy, R., Moha, N., & Duchien, L. (2015, November). Tracking the
336 software quality of Android applications along their evolution (t). In 30th IEEE/ACM
337 International Conference on Automated Software Engineering (ASE), 9-13 Nov. 2015; Lincoln,
338 NE, USA. Washington, DC, USA: IEEE, pp. 236-247.
339 Hecht, G., Moha, N., & Rouvoy, R. (2016, May). An empirical study of the performance impacts
340 of android code smells. In Proceedings of the International Conference on Mobile Software
341 Engineering and Systems, 14-22 May; Austin, Texas. New York, NY, USA: ACM. pp. 59-69.
342 ACM.
343 Hecht, G., Rouvoy, R., Moha, N., & Duchien, L. (2015, May). Detecting antipatterns in android
344 apps. In 2nd ACM International Conference on Mobile Software Engineering and Systems
345 (MOBILESoft), 16 3 17 May 2015; Florence, Italy. Piscataway, NJ, USA: IEEE. pp. 148-149.
346 IEEE Standard Glossary of Software Engineering Terminology-Description, (1990).
347 http://ieeexplore.ieee.org/servlet/opac?punumber=2238. Accessed in January 2019.
348 Joorabchi, M. E., Ali, M., & Mesbah, A. (2015, November). Detecting inconsistencies in multi-
349 platform mobile apps. In IEEE 26th International Symposium on Software Reliability
350 Engineering (ISSRE), 02 - 05 Nov. 2015; Gaithersbury, MD, USA. IEEE. pp. 450-460.
351 Kappel, G., Kapsammer, E., Kargl, H., Kramler, G., Reiter, T., Retschitzegger, W.,& Wimmer,
352 M. (2006). Lifting metamodels to ontologies: A step to the semantic integration of modeling
353 languages. In Proceeding of International Conference on Model Driven Engineering Languages
354 and Systems (MODELS), .528-542. Springer.
355 Khomh, F., Di Penta, M., Guéhéneuc, Y. G., & Antoniol, G. (2012). An exploratory study of the
356 impact of antipatterns on class change-and fault-proneness. Empirical Software Engineering,
357 17(3), 243-275.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

358 Linares-Vásquez, M., Klock, S., McMillan, C., Sabané, A., Poshyvanyk, D., & Guéhéneuc, Y.
359 G. (2014, June). Domain matters: bringing further evidence of the relationships among anti-
360 patterns, application domains, and quality-related metrics in Java mobile apps. In Proceedings of
361 the 22nd International Conference on Program Comprehension02 3 03 June 2014, Hyderabad,
362 India. New York, NY, USA: ACM. pp. 232-243.
363 Maurice, P., Dhombres, F., Blondiaux, E., Friszer, S., Guilbaud, L., Lelong, N., ... & Jurkovic,
364 D. (2017). Towards ontology-based decision support systems for complex ultrasound diagnosis
365 in obstetrics and gynecology. Journal of gynecology obstetrics and human reproduction, 46(5),
366 423-429.
367 Morales, R., Saborido, R., Khomh, F., Chicano, F., & Antoniol, G. (2016). Anti-patterns and the
368 energy efficiency of Android applications. arXiv preprint arXiv:1610.05711.
369 Obrst, L., Grüninger, M., Baclawski, K., Bennett, M., Brickley, D., Berg-Cross, G., & Lange, C.
370 (2014). Semantic web and big data meet applied ontology. In Applied Ontology, 9(2), pp. 155-
371 170.
372 Parnas, D. L. (1994, May). Software aging. In Proceedings. Of 16th International Conference on
373 Software Engineering ICSE-16., 16-21 May; Sorrento, Italy. Los Alamitos, CA, USA: IEEE. pp.
374 279-287.
375 Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A., & De Lucia, A. (2017, February).
376 Lightweight detection of Android-specific code smells: The a Doctor project. In IEEE 24th
377 International Conference on Software Analysis, Evolution and Reengineering (SANER), 20-24
378 Feb. 2017, Klagenfurt, Austria. IEEE. pp. 487-491.
379 Raja, V. (2008). Introduction to reverse engineering. In Reverse Engineering, 1-9. Springer,
380 London.
381 Romano, D., Raila, P., Pinzger, M., & Khomh, F. (2012, October). Analyzing the impact of
382 antipatterns on change-proneness using fine-grained source code changes. In 19th Working
383 Conference on Reverse Engineering (WCRE), 15-18 Oct.; Kingston, ON, Canada. Washington,
384 DC, USA: IEEE. pp. 437-446.
385 Song, L., Tang, Z., Li, Z., Gong, X., Chen, X., Fang, D., & Wang, Z. (2017, December). AppIS:
386 Protect Android Apps Against Runtime Repackaging Attacks. In 2017 IEEE 23rd International
387 Conference on Parallel and Distributed Systems (ICPADS), 25-32. IEEE.
388 Yus, R., & Pappachan, P. (2015, October). Are Apps Going Semantic? A Systematic Review of
389 Semantic Mobile Applications. In Mobile Deployment of Semantic International Workshop
390 MoDeST@ ISWC, Bethlehem, PA, USA. pp. 2-13.
391 Zhou, X., Wu, K., Cai, H., Lou, S., Zhang, Y., & Huang, G. (2018). LogPruner: detect, analyze
392 and prune logging calls in Android apps. Science China Information Sciences, 61, pp. 1-3.
393

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 1(on next page)

The description of the mobile apps under analysis

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Mobile App Name Size(MB) Downloads

Test DPC 4.0.5 3.14 MB 1.076.791

Avast 6.5.3 Security 20.71 MB 1.364

Free-Calls-Messages 31.59 MB 1.537

Beautiful Gallery 2.3 11.31 MB 497

Play Store 9.3.4 14.17 MB 6.950

Wall Paper 1.2.166 2.29 MB 9.730

Oasis-Feng/Island 2.5 2.34 MB 822

Netflix-5-4-0-Build 18.81 MB 22.043

Remainder 1.4.02 9.36 MB 3.612

Sound-Picker 8.0.0 3.9 MB 2.142

Air-Command 2.5.15 0.82 MB 1.747

Lifesum-Healthy-Lifestyle 31.4 MB 3.594

Background-Defocus 2.2.9 3.45 MB 2.960

Gasbuddy-Find-Cheap-Gas 29.64 MB 334

Soundcloud -Music-Audio.03.03 33.2 MB 2,066

Network-Monitor-Mini 1.0.197 2.88 MB 307

Casper Android 1.5.6.6 18.77 MB 383.765

Line 8.4.0 70.25 MB 260

Diagnosises 6.96 MB 36

Viber 7.7.0.21 38.4 MB 1.628

Whats App 2.17.235 35.81 MB 28.978

Firefox 56.0 40.62 MB 20.423

Blue- Email And Calendar 1.9.3.21 43.2.4 MB 203

Google Camera 5.1.011.17 36.48 MB 211.822

You Tube 13.07 24.13 MB 23.667

True Caller 8.84.12 23.09 MB 609

Samsung Gallery 5.4.01 17.61 MB 10.712

Twitter 7.48.0 35.82 MB 694

Chrome Browser 66.0.3359 41.51 MB 29.129

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 2(on next page)

Ten Modelio anti-patterns and their correction way

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

The anti-pattern Correction way

NameSpaces have the same name.

Change the name of the conflicting

NameSpaces

NameSpace is Leaf and is derived. Make the NameSpace non-final.

NameSpace is Leaf and is abstract. Make the NameSpace non-final.

Generalization between two un-

compatible elements.

Change the source or the target in order to

link two compatible elements.

A public association between two

Classifiers one of them is public and

the other has different visibility.

Change the visibility of the target class to

public.

Classifier has several operations with

the same signature.

Rename one of the Operations or change

their parameters.

Classifier has attributes with the same

name.

Rename the Classifiers Attributes.

MultiplicityMin must be inferior to

MultiplicityMax.

Change the value of the minimum

multiplicity to be less than the maximum

multiplicity.

The status of an Attribute is abstract

and class at the same time.

Set only one of the statuses to true.

A destructor has parameters.

Remove these parameters, or remove the

destructor stereotype from the method.

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 3(on next page)

OntoUML anti-patterns and the correction way

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

The Anti-pattern The Correction Way

Association Cycle.
Chang the cycle to be closed or open cycle.

Binary relation with

Overlapping Ends.
Declare the relation as anti-reflexive, asymmetric and anti-transitive.

Imprecise Abstraction.
Add domain-specific constraints to refer to which subtypes of the

association end to be an instance of the other end may be related.

Relation Composition.
Add OCL constraints which guarantee that if there is a relation between two

types and one of them has subtypes, there must be constraints says that the

subtypes are also in a relation with the other type.

Relation Specialization
Add constraints on the relation between the type and the super-type,

declaring that the type is to be either a specialization, a subset, a redefinition

or disjoint with relation SR

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 4(on next page)

Occurrences of the anti-patterns in the mobile apps

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

The Group

%of

occurrences

across models

Total # of

occurrenc

es

Anti-patterns in Attributes 0.7% 9

Anti-patterns in

Namespaces

7.21% 91

Anti-patterns in

Operations

%0.3 5

Anti-patterns in

Associations

%44.89 554

Anti-patterns in the Class %47.7 603

 Total 1262

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 5(on next page)

The anti-patterns in each app

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Mobile

App

C
H

S
O

N
H

S
N

N
L

A
D

N
L

A
A

G
B

U
E

C
H

S
A

M
M

IT
M

M P
A

C
P

P

S
A

A
C

T
D

H
P

S

B
in

O
v
er

A
C

R
S

R
el

C
o
m

p

Im
p

A
b

s

T
o
ta

l

1
Test

DPC 4.0.5
7 2 1 2 1 10 6 1 30

2

Avast

Android

Mobile

Security

149 15 2 58 3 2 6 2 3 240

3
Free-Calls-

Messages
4 1 2 2 1 1 3 2 16

4
Beautiful

Gallery 2.1
5 2 1 8

5
Play

 Store
8 1 1 1 1 2 3 1 6 16 41 2 82

6
Wall

Paper
1 1 1 4 7

7
Oasis-

Feng/Island
17 2 4 3 26

8
Netflix-5-

4-0-Build
60 7 2 5 5 79

9
Remainder

11 4 1 2 4 7 5 34

10
Sound-

picker
9 1 2 12

11
Air-

Command
8 1 1 10

12

Lifesum-

Healthy-

Lifestyle

5 1 1 4 5 1 2 2 21

13
Backgroun

d-Defocus
10 4 4 1 10 6 35

14

Gasbuddy-

Find-

Cheap-Gas

11 4 1 2 1 7 2 3 31

15

Soundclou

d -Music-

Audio

6 4 2 8 1 2 23

16

Network-

Monitor-

Mini

7 2 1 2 3 15

17
Casper

Android
6 4 3 20 6 39

18
Line

15 1 1 1 6 2 1 27

19
Diagnoses

1 2 1 4

20
Viber

42 4 1 1 1 9 7 5 69

21
Whats

App
5 1 2 30 2 2 42

22
Firefox

40 4 1 1 4 8 1 59

23
Email And

Calendar
15 2 1 108 2 128

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

24
Google

Camera
9 1 1 15 8 1 1 36

25
You

 Tube
21 4 3 3 3 3 2 39

26 True Caller 31 2 2 17 5 1 58

27
Samsung

Gallery
12 1 9 3 1 26

28 Twitter 6 2 1 15 6 1 1 32

29
Chrome

Browser
1 4 1 9 5 12 32

#of appearance 522 81 5 5 5 81 20 16 9 5 270 92 45 81 25 1262

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 6(on next page)

The correlation among anti-patterns groups

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Anti-patterns

Correlation

Coefficient(r)

Attributes & Namespaces -0.049

Attributes & Operations 0.884

Attributes & Associations 0.196

Attributes & Classes 0.342

Namespaces & Operations -0.060

Namespaces & Associations -0.121

Namespaces & Classes 0.010

Operations & Associations 0.345

Operations & Classes 0.267

Associations & Classes 0.070

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 7(on next page)

The correlation among the three tools

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Systems
Correlation

Coefficient(r)
Specification

Modelio & OntoUml -0.032

There is a reverse correlation

between Modelio and

OntoUml.

Modelio & Protégé 0.966
There is a direct correlation

between Modelio and Protégé.

Protégé & OntoUML -0.060

There is a reverse correlation

between Protégé and OntoUml

editor.

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Table 8(on next page)

Anti-patterns number before and after merging

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Mobile Apps Viber
Whats

App

The integrated

app
 Total

(Merging UML designs)

of detected anti-patterns

in first method using Modelio

49 8 58 115

(Merging Ontologies)

of detected anti-patterns

in second method using

Protégé

51 64 13 128

1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 1
The proposed method phases

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 2
Merging UML class diagrams of the mobile apps

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 3
OWL Ontology merging

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 4
The generated UML class diagram of the case study

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 5
Modelio anti-patterns

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 6
The anti-pattern " Classiûer has several operations with the same signature"

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 7
"Viber and Whatsapp" Ontologies before integration in Protégé

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 8
The result slots of the Ontology after integration in Protégé

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 9
The occurrences of the detected anti-patterns' groups

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

Figure 10
The one way ANOVA between the tools and the anti-patterns

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27633v1 | CC BY 4.0 Open Access | rec: 4 Apr 2019, publ: 4 Apr 2019

