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Soil moisture content (SMC) is an important factor that aûects agricultural development in
arid regions. Compared with the spaceborne remote sensing system, the unmanned aerial
vehicle (UAV) has been widely used because of its stronger controllability and higher
resolution. It also provides a more convenient method for monitoring SMC than normal
measurement methods that includes ûeld sampling and oven-drying techniques. However,
research based on UAV hyperspectral data has not yet formed a standard procedure in
arid regions. Therefore, a universal processing scheme is required. We hypothesized that
combining pretreatments of UAV hyperspectral imagery under optimal indices and a set of
ûeld observations within a machine learning framework will yield a highly accurate
estimate of SMC. Optimal 2D spectral indices act as indispensable variables and allow us
to characterize a model9s SMC performance and spatial distribution. For this purpose, we
used hyperspectral imagery and a total of 70 topsoil samples (0310 cm) from the farmland
( 2.5 ×104 m2) of Fukang City, Xinjiang Uygur AutonomousRegion, China. The random
forest (RF) method and extreme learning machine (ELM) were used to estimate the SMC
using six methods of pretreatments combined with four optimal spectral indices. The
validation accuracy of the estimated method clearly increased compared with that of
linear models. The combination of pretreatments and indices by our assessment
eûectively eliminated the interference and the noises. Comparing two machine learning
algorithms showed that the RF models were superior to the ELM models, and the best
model was PIR (R2

val = 0.907, RMSEP = 1.477 and RPD = 3.396). The SMC map predicted
via the best scheme was highly similar to the SMC map measured. We conclude that
combining preprocessed spectral indices and machine learning algorithms allows
estimation of SMC with high accuracy (R2

val = 0.907) via UAV hyperspectral imagery on a
regional scale. Ultimately, our program might improve management and conservationPeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27630v1 | CC BY 4.0 Open Access | rec: 3 Apr 2019, publ: 3 Apr 2019



strategies for agroecosystem systems in arid regions.
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17 Combining UAV-based hyperspectral imagery and machine learning algorithms for soil 

18 moisture content monitoring

19
20 Abstract: Soil moisture content (SMC) is an important factor that affects agricultural development 
21 in arid regions. Compared with the spaceborne remote sensing system, the unmanned aerial vehicle 
22 (UAV) has been widely used because of its stronger controllability and higher resolution. It also 
23 provides a more convenient method for monitoring SMC than normal measurement methods that 
24 includes field sampling and oven-drying techniques. However, research based on UAV 
25 hyperspectral data has not yet formed a standard procedure in arid regions. Therefore, a universal 
26 processing scheme is required. We hypothesized that combining pretreatments of UAV 
27 hyperspectral imagery under optimal indices and a set of field observations within a machine 
28 learning framework will yield a highly accurate estimate of SMC. Optimal 2D spectral indices act 
29 as indispensable variables and allow us to characterize a model9s SMC performance and spatial 
30 distribution. For this purpose, we used hyperspectral imagery and a total of 70 topsoil samples (03
31 10/cm) from the farmland (2.5×104 m2) of Fukang City, Xinjiang Uygur Autonomous Region, 
32 China. The random forest (RF) method and extreme learning machine (ELM) were used to 
33 estimate the SMC using six methods of pretreatments combined with four optimal spectral indices. 
34 The validation accuracy of the estimated method clearly increased compared with that of linear 
35 models. The combination of pretreatments and indices by our assessment effectively eliminated 
36 the interference and the noises. Comparing two machine learning algorithms showed that the RF 
37 models were superior to the ELM models, and the best model was PIR (R2

val = 0.907, RMSEP = 
38 1.477 and RPD = 3.396). The SMC map predicted via the best scheme was highly similar to the 
39 SMC map measured. We conclude that combining preprocessed spectral indices and machine 
40 learning algorithms allows estimation of SMC with high accuracy (R2

val = 0.907) via UAV 
41 hyperspectral imagery on a regional scale. Ultimately, our program might improve management 
42 and conservation strategies for agroecosystem systems in arid regions.
43

44 1. Introduction

45 The soil moisture content (SMC) is a significant physical parameter of soil and a key 
46 constraint of soil aggregate structure and nutrient status (Amani et al. 2017; Sadeghi et al. 2017; 
47 Wang et al. 2018c). SMC not only affects the physical and chemical processes of soil but also 
48 influences the global ecological environment and hydrological and climate change patterns (Badía 
49 et al. 2017; Kumar et al. 2018). Additionally, farmland SMC is an essential parameter for the 
50 development of irrigated agriculture. A farmland irrigation system can be more effectively 
51 managed when the exact soil moisture status of the farmland is known; moreover, information on 
52 farmland SMC can also help improve the soil moisture status at the critical stage of crop growth 
53 to improve crop yield and quality (Holzman et al. 2018; Kang et al. 2017; Park et al. 2017). The 
54 Xinjiang Uygur Autonomous Region is one of the principal grain producing areas in northwest 
55 China. SMC is the main factor that limits the growth of crops to an oasis in this region. 
56 Furthermore, increasing human activities in recent years have led to regional SMC imbalances and 
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57 increased soil salinization within the oasis (Ma et al. 2018; Wu et al. 2015). During the 
58 implementation of sustainable soil management practices and precision agriculture, understanding 
59 the spatial distribution of SMC is essential for determining the regional drought situation and 
60 measuring water and salt transport in soils. Therefore, obtaining accurate SMC information has 
61 important functional significance for the monitoring of crop growth, estimation of production, 
62 guidance for rational irrigation decisions and monitoring of soil drought degree.
63 The sampling of soils in the field and the oven-drying of soils in the lab are well recognized 
64 as conventional soil moisture measurement techniques and have been employed as the standard 
65 reference for determining SMC (S.U et al. 2014). Nevertheless, these methods can be high cost, 
66 low efficiency, and relatively destructive. Compared to common thermogravimetric methods, the 
67 rapid development of remote sensing over the last decade, especially of hyperspectral technology, 
68 has made it possible to obtain SMC information on a larger scale and with higher efficiency. 
69 Researchers have also carried out many constructive explorations (Fabre et al. 2015; Hassan-
70 Esfahani et al. 2015; Mouazen & Al-Asadi 2018; Sadeghi et al. 2017). For example, the spectrum 
71 of a vegetation canopy can reflect the growth status and health of vegetation, and its spectral 
72 characteristics will change under different soil moisture stress conditions (Holzman et al. 2014). 
73 Therefore, unmanned aerial vehicle (UAV)-derived hyperspectral vegetation data could be applied 
74 to estimate SMC as an alternative for the accurate assessment of soil moisture.
75 The spectral index, which is a simple composition of different wavebands, can be used to 
76 establish the correlation between spectral data and specific targets to quantitatively estimate 
77 hyperspectral information and has become a research hotspot in recent years (Jin et al. 2017b; 
78 Marshall & Thenkabail 2015; Mu et al. 2018). The spectral index of vegetation has two advantages, 
79 sensitivity to target parameters and insensitivity to interference factors; thus, the estimation 
80 accuracies for specific targets are improved because the effects of interference factors are reduced 
81 (Liang et al. 2015). All of the parameters obtained by the canopy spectral index model, including 
82 biophysical and biochemical parameters, were found to be strongly correlated with the SMC 
83 during an episode of water stress (Bayat et al. 2018). Moreover, different spectral indices are 
84 utilized for UAV-based precision farming applications, substantiating the great potential of 
85 applying high-resolution UAV data to the agriculture framework to collect and evaluate 
86 multispectral images (G, R, near infrared [NIR]) (Jay et al. 2018). However, these types of studies 
87 may be more comprehensive if the pretreatment of data is considered. These spectral indices are 
88 based mainly on the original spectral reflectance. Unpretreated data are a combination of several 
89 composite signals with various overlapping data. This type of data reflects only specific spectral 
90 information and is difficult to data-mine effectively and efficiently. To rectify this problem, 
91 pretreated data are introduced to eliminate external noise, enhance spectral features, boost 
92 nonlinear relations and improve the accuracy of specific target estimation models (Ding et al. 2018; 
93 Gobrecht et al. 2016; Nawar et al. 2016). Furthermore, simple spectral indices consider only the 
94 interaction between the spectrum and object, without regarding the interaction between the 
95 reflectance spectrum. Hence, the optimization of spectral indices using the 2D correlation 
96 coefficient could detect more feature wavelengths and further enhance the correlations between 
97 specific properties and spectral characteristics of a target.
98 Mathematical models are a common strategy used to estimate SMC via hyperspectral 
99 reflectance data, particularly linear regression models that includes partial least squares regression 

100 (PLSR) (Nawar et al. 2014; Xu et al. 2016; Yu et al. 2016). However, linear regression models 
101 also need improvement because the relationship between spectral parameters and soil attributes is 
102 rarely linear in nature. Machine learning algorithms are alternative approaches to this problem 
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103 (Nawar & Mouazen 2017). The neural network algorithm is a widely implemented machine 
104 learning algorithm. The precision of the extreme learning machine (ELM) developed by Huang 
105 (Huang et al. 2006) was estimated in forecasting SM-derived data. The ELM is a relatively novel 

106 algorithm among neural network algorithms. Compared to other neural network algorithms, ELM 
107 is a simple and fast algorithm with outstanding generalization and migration (Khosravi et al. 2018). 
108 ELM has gradually gained popularity in quantitative remote sensing studies, especially in solving 
109 regression and classification problems (Huang et al. 2015; Maimaitijiang et al. 2017; Morellos et 
110 al. 2016). Meanwhile, numerous studies have reported that the random forest (RF) method is more 
111 likely to provide spectral estimations than are methods via PLSR (Douglas et al. 2018; Wang et 
112 al. 2018a). The RF method is an outstanding ensemble learning algorithm. It has been proven to 
113 be superior to Cubist, artificial neural networks and support vector machines in modeling 
114 performance(Gomes et al. 2019; Nawar & Mouazen 2017; Zeraatpisheh et al. 2019). Its advantages 
115 are to overcoming redundant information while implemented on high-dimensional data (Belgiu & 
116 Dr�guc 2016) and presenting generally improved precision, accuracy and efficiency (Ding et al. 
117 2018). Furthermore, the RF algorithm is a robust method for building an estimation model with a 
118 small sample size (Lindner et al. 2015). It is obvious that the RF approach can better process many 
119 input variables as well as nonsymmetrical datasets.
120 Technical advancements in the field of remote sensing have ignited prosperity in the UAV 
121 field, which provide images with high spatial resolution. Moreover, the flexibility of UAV allows 
122 them to contribute to data collection in a variety of fields rather than being constrained to fields 
123 with specific soil conditions (Jin et al. 2017a). UAVs are generally utilized as a remote sensing 
124 platform in a series of environmental resource applications. The images collected from various 
125 sensors have been widely applied to collect agricultural information (Adão et al. 2017; Gevaert et 
126 al. 2015), such as biophysical and biochemical vegetation parameters (Schirrmann et al. 2016) and 
127 soil physical and chemical properties (Guo et al. 2019). Although several studies have predicted 
128 the attributes of vegetation or soil based on UAV images, estimations of SMC via vegetation 
129 canopy data are not often reported.
130 The major objectives of this study are to (1) explore the relationship between the SMC and 
131 various hyperspectral 2D indices based on different pretreatment methods, (2) develop a 
132 hyperspectral quantitative estimation model of SMC in oasis farmland in arid area through two 
133 machine learning algorithms based on 2D spectral indices, and (3) attempt to digitally map UAV 
134 hyperspectral imagery to predict SMC in topsoil of arid agriculture areas.

135 2. MATERIALS AND METHODS

136 2.1 Study area

137 The field selected in this study was in Fukang City, Xinjiang Uygur Autonomous Region, 
138 China (87°51'15"E, 44°21'14"N). This area is located in the transition zone of the Gurban Tongut 
139 Desert along the northern margin of the Fukang Oasis (Figure 1). The study area has a typical 
140 temperate continental desert climate with an average annual precipitation of less than 200 mm with 
141 uneven distribution. The annual average temperature is approximately 7.1 °C. The annual frost-
142 free period can reach 175 days, and the harvest principle is one harvest per year. The crops grown 
143 in the field are winter wheat.

144
145 Figure 1. Geographical location of Fukang City (Map credit: Xiangyu Ge) and the distribution of 

146 sampling sites.
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147 2.2 UAV remote sensing data acquisition

148 The flight platform selected in this study was the DJI Matrice 600 Pro® (Shenzhen Dajiang 
149 Innovation Technology Co., Ltd., China), which is a six-rotor UAV equipped with the Headwall 
150 Nano-Hyperspec® hyperspectral sensor (Headwall Photonics Inc., Bolton, MA, USA) (Figure 2). 
151 The Nano-Hyperspec airborne hyperspectral imaging spectrometer has a band range of 400-1000 
152 nm, a spectral resolution of 6 nm, a resampling interval of 2.2 nm, 270 spectral bands and 640 
153 spatial bands in the visible and near infrared (VIS-NIR). The feature of full-frame imaging in the 
154 interval, combined with the GPS and inertial measurement unit (IMU) module, can simultaneously 
155 acquire the real-time altitude information of the UAV. At a height of 100 m, the Nano-Hyperspec 
156 sensor with a focal length of 12 mm captures 640 x 480 pixels of hyperspectral imagery with a 
157 spatial resolution of approximately 4 cm. In this study, there was no precipitation or artificial 
158 interference within 5 days before field work to ensure the objectivity of the data. UAV remote 
159 sensing data were acquired on April 17, 2018 (the reviving period of winter wheat). Hyperspectral 
160 images were collected over the field at 15:00 Beijing time. The weather was clear and windless, 
161 and the field of vision was good. Dark current correction and whiteboard calibration were 
162 performed on the sensor before take-off. After data acquisition, data postprocessing and 
163 orthorectification were performed using Hyperspec III and Headwall SpectralView software.

164
165 Figure 2. UAV platform and airborne imaging hyperspectral sensor. (Photograph credit: Xiangyu Ge)

166 2.3 SMC data acquisition

167 The soil samples were collected simultaneously with the UAV air operations, and 70 sampling 
168 cells (0.5 m × 0.5 m) (Figure 3) were uniformly collected from the farmland; the position of each 
169 sampling area was recorded by GPS. The soil samples of each point were collected by using the 
170 four-point method around wheat plants. The sampling depth was 0~10 cm, and the soil samples 
171 were sealed and stored in an aluminum box. During laboratory processing, the samples from the 
172 aluminum box were oven-dried indoors (105 °C incubator, 48 h) to obtain 70 SMC data samples 
173 to construct the SMC hyperspectral quantitative estimation model and verify its accuracy.

174
175 Figure 3. Application scene of UAV over the cropland and sampling cells. (Photograph credit: 

176 Xiangyu Ge)

177

178 2.4 Data processing

179 Hyperspectral data preprocessing is essential for deep mining of spectral data and thus 
180 improved modeling accuracy (Li et al. 2015). A spectrometer consists mainly of photoelectric 
181 conversion, transmission and processing systems. Each module inside it generates noise to varying 
182 degrees, and the real spectral information of the ground object is inevitably affected by noise, 
183 which needs to be detected and removed (Jin et al. 2016). Therefore, this study smoothed the 
184 hyperspectral images based on the Savitzky-Golay (SG) filter (second order polynomial smoothing 
185 and 5-band window widths). The SG in this study was performed in MATLAB software version 
186 R2016b (MathWorks, Natick, MA, USA).
187 First-derivative (FD), second-derivative (SD), absorbance (A), continuum-removal (CR) are 
188 effective preprocessing methods that are important spectral significance in the field of spectral 
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189 analysis because they can eliminate background noise to some extent (Cheng et al. 2019). These 
190 methods enhance spectral absorption and reflection characteristics (Liu & Han 2017; }í�ala et al. 
191 2017). Effective pretreatment helps capture subtle differences in spectral data and improves the 
192 estimation accuracy of surface parameters. In this paper, the SG filtered image was used as the 
193 pretreated base image (R), and six preprocessing methods were performed: first-derivative R 
194 (FDR), second-derivative R (SDR), CR, A, first-derivative absorbance (FDA) and second-
195 derivative absorbance (SDA). These methods were conducted based on the ENVI/IDL 5.3 
196 platform (Harris Geospatial, Melbourne, FL, USA). The average of the spectral data in each 
197 sampling cell were extracted to prepare for the construction of spectral indices and modeling.

198 2.5 spectral Indices construction

199 2.5.1 Common spectral indices

200 The spectral index method has advantages of both eliminating the environmental background 
201 noise and having more obvious sensitivity than a single band. To ensure an optimal band 
202 combination in the hyperspectral data when utilizing the vegetation canopy spectral information, 
203 this study selected 30 widely applied spectral indices to represent the SMC, as shown in Table 1. 
204 Difference indices, ratio indices, normalized indices and perpendicular indices, as well as some 
205 modified indices, enhanced indices and red edge indices, were included among the selected 
206 indices.
207 Table 1. Common spectral indices

208 2.5.2 Construction of 2D spectral indices

209 To fully exploit the spectral data, this study selected the difference index (DI), the ratio index 
210 (RI), the normalized difference index (NDI) (Hong et al. 2018; Wang et al. 2018b) and the 
211 perpendicular index (PI) based on previous studies. Four spectral indices were used to estimate the 
212 optimal band for SMC. The mathematical expression of these indices were as follows:ÿý(ýÿ, ýÿ) = ýÿ 2 ýÿ (1)ýý(ýÿ, ýÿ) = ýÿ/ýÿ (2)ýÿý(ýÿ, ýÿ) = (ýÿ 2 ýÿ)/(ýÿ + ýÿ) (3)ÿý(ýÿ, ýÿ) = (ýÿ 2 0.4401ýÿ 2 0.3308)/( 1 + 0.4401

2) (4)

213 where Ri and Rj are the spectral reflectance of i and j, which were arbitrarily acquired within the 
214 operating range of the hyperspectral sensor (400-1000 nm). The constant term in the PI calculate 
215 was based on the soil line coefficient of the UAV imagery (In this study, the two-dimensional 
216 spectral space of red-NIR from pure soil pixels was selected to extract the soil line in which the 
217 red band was R655, NIR band was R866. The soil line was: ). The correlation ÿ = 0.4401ý + 0.3308
218 between the two and the optimal index was determined using MATLAB R2016b.

219 2.6 Model calibration, evaluation, and comparison

220 In this study, sample partitioning was based on the joint x-y distance (SPXY) algorithm (Ulissi 
221 et al. 2011). And 50 samples were selected as the calibration set and 20 samples were used as the 
222 prediction set. The SPXY algorithm was conducted via MATLAB R2016b. To compare the 
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223 common spectral indices, the linear fit between several spectral indices and SMC was calculated. 
224 The calibration set was used as the source for the fitting equation and the validation set is used to 
225 assess the precision of the fitting result. The estimated SMC was modeled based on the RF and 
226 ELM algorithms, and seven optimal spectral indices and measured SMC values were used as the 
227 independent and response variables, respectively.

228 2.6.1 ELM

229 ELM is a new effective neural network algorithm that was developed from the feed-forward 
230 neural network (Guang-Bin et al. 2004). Technically, ELM is an ordinal neural network algorithm 
231 with single-hidden-layer feed-forward features and was designed by Huang for regression and 
232 classification (Huang et al. 2012). Unlike a general neural network, ELM avoids the need to 
233 manually set many parameters. The only required parameter is the number of hidden nodes (Huang 
234 et al. 2006). With its rapid learning ability, outstanding generalization and convenient parameter 
235 setting, ELM overcomes the defects of traditional neural networks, including inappropriate 
236 learning rates and local optimal solutions. During the training process, the input weights of the 
237 iterative network and the offset of the hidden elements are avoided, and the optimal solution can 
238 be obtained. In this study, the ELM algorithm was conducted via MATLAB R2016b. The hidden 
239 layer nodes were set to 30, and the sigmoid function was selected as the activation function.

240 2.6.2 RF

241 RF regression is a popular machine learning algorithm that possesses ideal estimation 
242 capability, especially for high-dimensional datasets (Belgiu & Dr�guc 2016; Mutanga et al. 2012). 
243 RF regression is also an ensemble-learning algorithm based on a classification and regression tree 
244 (CART) (Ließ et al. 2012). RF regression is good at fitting data through a set of decision tree 
245 models(Hong et al. 2019). The trees are built using a subset of samples from the training samples 
246 that are replaced. The design of such an algorithm makes full use of the samples, and some samples 
247 will even be selected multiple times, so it unlikely that data will remain. For each tree node and 
248 split point, the data are recursively divided into nodes, and the split points are based on the values 
249 of the predictors, which improve the predictability of the response variables. The major parameters 
250 in this study were set as follows: the number of trees (ntree) was 500, the minimum number of 
251 nodes (nodesize) was 5, and the number of features tried at each node (mtry) depended on the 
252 lowest out-of-bag error. The RF algorithm was conducted via MATLAB R2016b

253 2.6.3 Model evaluation and comparison

254 To quantify the performance of spectroscopic models based on RF and ELM, the effect of the 
255 models was assessed utilizing the determination coefficients (R2), the root mean squared error 
256 (RMSE) and the relative percent deviation (RPD). The formulas and definitions were given by 
257 Nocita et al. (Nocita et al. 2013). In our research, R2 included estimated values against the SMC 
258 values in the calibration set (R2

cal) and estimated values against the SMC values in the validation 
259 set (R2

val). RMSE included the RMSE of calibration (RMSEC) and the RMSE of validation 
260 (RMSEP). According to Qi et al. (Qi et al. 2018), it is feasible to adopt three categories of criteria 
261 to assess model predictability: category I (RPD > 2.0) with excellent predictability; category II 
262 (1.4 < RPD < 2.0) with moderate predictability; and category III (RPD < 1.4) with poor 
263 predictability.
264 The steps of SMC estimation are illustrated in Figure 4.
265
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266 Figure 4. Flowchart of the study procedure: (A) data collection and pretreatments (Photograph credit: 

267 Xiangyu Ge); (B) construction of 2D spectral indices based on DI, RI, NDI and PI; (C) comparison of 

268 model and determination of SMC based on the optimal model and spatial distribution map using PIR.

269 3. RESULT

270 3.1 Descriptive statistical analysis

271 Descriptive statistical results were presented for the entire dataset as well as the calibration 
272 and validation sets (Figure 5). The average SMC in the entire set was 24.45%, with a standard 
273 deviation (SD) of 5.37%. The surface soil moisture was affected by the environment in the area 
274 where the same crop was planted. The average SMCs of the calibration (12.23-36.63%) and 
275 validation (14.95-34.83%) sets were 24.87% and 23.39%, respectively. The similar SD and mean 
276 values indicated that the distribution of the SMC of all datasets was the standardized normal 
277 distribution with similar statistical characteristics. The calibration and validation sets via the SPXY 
278 algorithm maintained a statistical distribution analogous to the entire set of SMC. To ensure 
279 representative samples, potentially biased estimates in the calibration and validation set were 
280 excluded.

281
282 Figure 5. The descriptive statistical results of SMC. Box plot and distribution of SMC for the whole, 

283 calibration, and validation datasets

284 In this study, pretreatments had different effects on the hyperspectral imageries (Figure 6). As 
285 the order of the derivative increased, the intensity of the processed spectrum decreased, 
286 considering the y-axis scales from FDR to SDR. A and CR enhanced the spectral intensity of some 
287 bands and especially highlighted blue band and red edge information.
288
289 Figure 6. The hyperspectral imageries and spectral curves based on different pretreatments (the red 

290 line represents the average spectrum and the gray region represents the standard deviation). The 

291 images are RGB images, where the red, green and blue bands are R659, R550, and R479, respectively.

292 3.2 Appropriate spectral indices for SMC estimation

293 In the SMC estimation model based on these 30 spectral indices, the model calibration set 
294 yielded higher RMSE and lower R2 values than did the validation set (Table 2). This result 
295 indicated that the estimated model fit was poor and that the independent variables in the model 
296 were inadequate for explaining the dependent variable. In addition, collinearity of the independent 
297 variables would also yield this result. To more intuitively display the SMC estimation accuracy of 
298 the indices, the indices were sorted in accordance with R2 in descending order. The order of the 
299 sorting was basically the same as when sorted by the correlation coefficients (r) of the spectral 
300 index and the SMC. NDVI (R2 = 0.664), NDVI705 (R2 = 0.663) and RVI (R2=0.662) presented the 
301 three highest rankings, demonstrating that these three spectral indices were highly correlated with 
302 SMC. The normalized indices were ranked in the top row, followed by the RI. However, the 
303 predictability of the model indicated that the index models with higher R2 values had lower RPD 
304 values. NDVI possessed poor predictability (RPD = 0.871), but similar to MCARI (R2 = 0.153, 
305 RPD = 5.366) and TCAR1 (R2 = 0.153, RPD = 5.366), this index model yielded lower R2 with 
306 higher RPD values. Technically, the R2 values indicated that all models had difficulty meeting the 
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307 needs of model estimation. Therefore, the estimation of SMC by hyperspectral indices was 
308 ambiguous in this study area.
309 Table 2. The fitting equations and their accuracies estimated by common spectral indices

310
311
312 Figure 7. r2 maps of 2D optimal spectral indices based on different pretreatments. The colorbar illustrates 
313 the value of the square of the correlation coefficient (r2) between SMC and spectral indices, and the x- axes and 
314 y-axes indicate the wavebands of 40031000/nm. Dark red portrays a high r2 between SMC and the spectral 
315 indices. To improve the comparison, r2 was converted into the absolute value of the correlation coefficient (|r|) 
316 to evaluate its validity.
317 The correlativity between SMC and 2D spectral indices (DIs, RIs, NDIs and PIs) for varying 
318 spectral transformations in the calibration set was further explored (Figure 7), and detailed results 
319 are provided in Figure S1-S7. The results substantiate that the 28 spectral indices established in 
320 this study with SMC all passed the significance test at the 0.01 level (threshold value was ±0.306) 
321 (Table 3). For the unpretreated spectral data, which had strong sensitivity compared to traditional 
322 indices, the |r| distribution of the constructed DI, RI, NDI, and PI ranged from 0.724 to 0.772 
323 (greater than 0.664). Nonetheless, the SMC was more sensitive to spectral indices of different 
324 pretreatments than to unpretreated spectral data. Thereinto, the |r| of the A-DI, A-PI, CR-NDI and 
325 CR-RI was above 0.748, which was optimal. Different pretreatment schemes improved the 
326 correlation between spectral indices and SMC to varying degrees, and the optimal index was A-PI 
327 (r = 0.788).
328 Table 3. |r| between SMC and spectral indices based on different pretreatments

329

330 3.3 Construction of estimation models

331 The indices (DIs, RIs, NDIs, and PIs) used for modeling in the paper were the most relevant 
332 in different pretreatments. The models constructed by the two algorithms were compared (Table 
333 4), which indicated that the prediction model based on RF performed better and possessed superior 
334 R2

val (0.847-0.907) and RPD (2.867-3.396) and inferior RMSEP (1.477-1.665) values did than the 
335 model based on ELM, no matter which spectral indices were used. For the RF model, the PI had 
336 the highest R2

val (0.907) and RPD (3.396) and the lowest RMSEP (1.477). The worst RF predicting 
337 model had an R2

val of 0.847, but the best ELM model had an R2
val of only 0.820. Additionally, the 

338 values from the ELM calibration set were higher than those from the validation set, ranging 
339 between 0.781 and 0.823. This result indicated that the modeling effect was improper.
340 Table 4. Calibration and validation results for SMC estimation based on different modeling 

341 strategies

342 To better explain the model prediction effect, this study introduced a Taylor diagram (Guevara 
343 et al. 2018). The closer the pentagram was to this line, the closer the model prediction was to the 
344 measured SMC and the more similar statistical characteristics that is possessed (Figure 8). Overall, 
345 the RF model was closer to the red line than the ELM model, while the PIR was the closest and 
346 the DIE was the farthest. A comparison of the closeness illustrated that the ranking of the predictive 
347 performance was PIR > DIR > NDIR > PIE > NDIE > DIE > RIE > RIR. The RMSE values of the 
348 RF model were all smaller than those of the ELM model. NDIE was dark red to indicate that its 
349 RMSE value was the largest, and PIR was dark blue to indicate that its value was the smallest. 
350 Moreover, all the RF models were closer to the horizontal black line indicating that they possess 
351 R2 close to 1. Therefore, the models constructed with PI performed the best, and the models 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27630v1 | CC BY 4.0 Open Access | rec: 3 Apr 2019, publ: 3 Apr 2019



352 constructed with RI performed the worst. The best two-dimensional spectral index model in this 
353 study was PIR.

354
355 Figure 8. Taylor diagram showing the performance of the evaluated models. The black line indicates 

356 R2
val, the blue line indicates the SD, and the colorful pentagrams represent the eight models, whose 

357 colors from dark blue to deep red indicate small to large RMSEP values. The red line represents the 

358 measured SMC.

359 3.4 Digital mapping

360 The SMC value in the experimental field was higher in the west than in the east and lower in 
361 the south than in the north (Figure 9). Except for the obvious overestimation in the northern region, 
362 the other regions exhibited different degrees of underestimation. The reason for the 
363 underestimation in the north might be the fact that the adjacent drainage channel would affect the 
364 local SMC. Near the wasteland in the west and south, the lack of vegetation cover might have 
365 caused the actual SMC to be low, thereby allowing the possibility of overestimation. Moreover, 
366 the maximum residual value was only 2.323%, which indicated that the estimation of SMC via 
367 PIR was reasonable at the spatial scale. Therefore, such results confirmed that the PIR model 
368 exhibited good performance in spatial simulation.
369

370 Figure 9. Spatial distribution maps of (A) the measured SMC, (B) the SMC based on PIR prediction, 
371 and (C) residuals calculated with PIR for prediction of the SMC

372 4. Discussion

373 The sensitive bands were mainly concentrated in the blue region and the red edge (Figure 10). 
374 There was a certain correlation between SMC and the water content of overlying vegetation leaves. 
375 The high and low SMC would affect the water contents of the leaves to different extents and 
376 eventually led to changes in the spectral characteristics (Fernández-Novales et al. 2018). 
377 Quantitative estimation of SMC based on spectral information on vegetation was feasible when 
378 using remote sensing and spectral mechanisms. The bands were concentrated at approximately 
379 420 nm, 440 nm, 460 nm, 700 nm, and 750 nm (Figures S1-S7). The strong absorption bands of 
380 chlorophyll and water in the plants were between 420 nm and 460 nm (Steidle Neto et al. 2017) 
381 and were due to the strong absorption of carotenoids; the strong absorption of chlorophyll in plants 
382 near 700 nm, as well as the red edge information of plants and the weak absorption of water, was 
383 due to a trough of most vegetation reflectivity (Haboudane et al. 2002). The plant red edge 
384 information was near 750 nm, which was the point of strong water and oxygen absorption (Okin 
385 et al. 2001). This result suggested the rationality of the index construction. Because the agricultural 
386 plants in the arid area had different degrees of water stress, the chlorophyll of the crop canopy 
387 fluctuated with the degree of drought, so there was a strong positive correlation between SMC and 
388 chlorophyll. Therefore, the developed indices utilized the chlorophyll and moisture response 
389 regions (green and red edges) to meet empirical models for estimating SMC from hyperspectral 
390 data. The quantitative estimation of SMC based on spectral information of vegetation was feasible 
391 when using remote sensing and spectral mechanisms. These results provided a scientific basis for 
392 further research on precision agriculture in combination with phenological information. In 
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393 addition, the results of this study would be conducive to the design of a multiband space-borne 
394 remote sensing system for detecting SMC in arid and semiarid regions.
395

396 Figure 10. Distribution of sensitive bands

397 In this study, six pretreatments (FDR, SDR, CR, A, FDA, SDA) were used to process the 
398 hyperspectral imagery from the UAV and yielded better results than those obtained without 
399 pretreatment. However, the one-dimensional spectral information had a deficiency in the 
400 expression of spectral information. To discuss and visualize the results of different preprocessing 
401 methods, two-dimensional synchronous correlation spectroscopy is introduced in Figure 11 (Noda 
402 2016). Two-dimensional synchronous correlation spectroscopy is a correlation intensity map 
403 defined by converting one-dimensional spectral data into two independent spectral variables. This 
404 process increases the spectral resolution, which allows for the detection of additional spectral 
405 information that is difficult to detect in one-dimensional spectra. Obviously, in this study, there 
406 were some autocorrelation peaks on the diagonal lines in these two-dimensional synchronous 
407 spectrograms. This result suggested the corresponding sensitivity of each functional group to 
408 external disturbance and the presence of a synergistic response between the spectra (Hong et al. 
409 2017). The autocorrelation peaks under different preprocessing methods were compared, and this 
410 comparison indicated that the FD and SD methods could eliminate a large amount of irrelevant 
411 information. These methods result in a narrow range of autocorrelation peaks, but the spectral 
412 information of more responses was lost. The performances of R, CR and A were ranked as A > 
413 CR > R. In the two-dimensional synchronous spectrum of A, four autocorrelation peaks appeard, 
414 which were located near 450 nm, 670 nm, 740 nm, and 980 nm. This result was similar to the 
415 previous discussion on the rationality of the spectral indices. While demonstrating the pretreatment 
416 effect, it proved the response mechanisms of the spectral indices.
417

418 Figure 11. 2D synchronized correlation spectrum under different pretreatments

419 In general, full-spectrum VIS3NIR data were affected to varying degrees by noises and other 
420 factors (Zheng et al. 2016). In arid and semiarid agricultural areas, soil background effects were a 
421 major issue for green vegetation property estimates (Ren & Feng 2014). In theory, soil-adjusted 
422 vegetation indices should estimate the aboveground green biomass in our study area better than 
423 soil unadjusted vegetation indices; thus, SMC should be estimated with less interference than 
424 normal. The four spectral indices based on the R-spectrum data performed best with PI(446,471) (|r|= 
425 0.772) (Table 3). Of the four spectral indices based on optimal pretreatment A, the PI(446,471) 
426 correlation was still the best (|r| = 0.773). These results indicated that the PI used in this study 
427 minimized the influence of soil and atmosphere on remote sensing data, dynamically called the 
428 reflectivity of each band and better characterized vegetation information.
429 Machine learning algorithms have been widely used to estimate soil properties (Ding et al. 
430 2018; Ma et al. 2018; Nawar & Mouazen 2017). The models in this study yielded different 
431 precisions according to different 2D spectral indices. These eight models could achieve excellent 
432 modeling results because the spectral indices included in the models utilized the green, red, and 
433 red edge information. After pretreatment, the spectral information was effectively extracted, and 
434 the model exhibited robust extrapolation ability. However, the calibration set R2 of the ELM model 
435 was higher than that of the validation set, which might result in some defects caused by the 
436 randomness of the ELM model (Li et al. 2018); therefore, the fitting effect of the ELM model was 
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437 not as good as that of the RF model. The validation results of the eight models (Figure 12) indicated 
438 that the scatter points of all models were well distributed along the 1:1 line and the PIR model 
439 outperformed the other models. In addition, most models had a scatter line below the 1:1 line. In 
440 the arid region, the spatial heterogeneity of soil was significant, which might result in the 
441 underestimation of SMC (Thevs et al. 2015; Zhang et al. 2017). Studies on the soil properties in 
442 arid areas have achieved similar results (Ding et al. 2018; Ma et al. 2018). In recent years, the 
443 uncertainties of the ELM method were reviewed by Liu and Lin (Lin et al. 2015; Liu et al. 2015), 
444 especially for the different activation functions and subsequent robustness. In general, RF tended 
445 to be versatile and flexible, suitable for mining a small subset of features for a small number of 
446 samples, and produced unbiased estimates that limited generalization errors (Belgiu & Dr�guc 
447 2016; Lindner et al. 2015; Ma et al. 2016). During the training process, the interaction between 
448 features could be detected, and the data did not need to be normalized. The RF algorithm has 
449 become an effective predictive tool in soil property research because of its high generalization 
450 ability. Related studies could provide new ideas for remote sensing monitoring of soil moisture 
451 status and a scientific reference for the further development of precision agriculture in arid areas 
452 (Belgiu & Dr�guc 2016).
453

454 Figure 12. Scatter plots of the measured and predicted SMC based on different modeling methods. 
455 The red and black lines in each figure represent the 1:1 and fitted lines, respectively.

456
457 In this study, the high accuracy of this method provides a new perspective and solution for the 
458 integration of remote sensing with the monitoring of soil moisture conditions. Although machine 
459 learning algorithms provide improved accuracy, algorithms with many parameters or 
460 hyperparameters usually require complex training. The ideal algorithm should have high 
461 simulation accuracy and include simple training parameters and low training time requirements 
462 (Ding et al. 2018). While unified research on SMC remote sensing estimations based on vegetation 
463 spectra has not been established, vegetation spectra would also be affected by factors such as 
464 variety, growth period and soil nutrient status (Casas et al. 2014). However, due to the limitations 
465 of weather and means, this study failed to obtain image data from multiple periods, although 
466 different growth cycles were considered. Moreover, the migration and generalization abilities of 
467 the established SMC machine learning estimation model need to be further improved. Therefore, 
468 subsequent research should further explore the intrinsic link between SMC and vegetation 
469 hyperspectral reflectance. We thus further developed a large sample of vegetation spectral 
470 databases to establish a scientific basis for the quantitative estimation and remote sensing 
471 monitoring of precision agricultural parameters such as crop growth, pests and diseases.

472 5. Conclusion

473 This research investigated a method that effectively identifies the SMC of agricultural topsoil 
474 via UAV hyperspectral imaging in arid regions. Our work proposed a strategy that utilized 2D 
475 spectral indices that were more adaptive to special environmental conditions than were traditional 
476 spectral indices. Moreover, an effective SMC estimation model was constructed using a machine 
477 learning algorithm built on 2D spectral indices. UAV images were processed using different 
478 pretreatments to achieve deeper mining of information. Pretreatment A had a strong effect on 
479 improving the correlations. The PI technique exhibited the optimum result (r = 0.773) because 
480 interference and noise were effectively eliminated. Overall, RF models yielded better predictions 
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481 than did ELM models. The PIR model possessed the optimal precision for SMC estimation 
482 (R2

val/=/0.907, RMSEP = 1.477 and RPD/=/3.396). The data set that was estimated via PIR 
483 maintained the closest statistical characteristics and morphology to the measured data set. The 
484 SMC estimated via the PIR model resulted in a digital mapping distribution that was similar to the 
485 measured SMC distribution. The optimal model was used to extend the SMC from a single point 
486 scale to the area scale to realize remote sensing monitoring of the SMC. The UAV hyperspectral 
487 imaging approach described in this study utilizes optimal 2D spectral indices, and the prediction 
488 models can supply efficient means to the local environment and agriculture management divisions.
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Common spectral indices
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Indices Formulations References

NDVI (R800-R680)/(R800+R680) (Haboudane et al. 2004)

NDVI705 (R750-R705)/(R750+R705) (Sims & Gamon 2002)

RVI R800/R680 (Sims & Gamon 2002)

NDCI (R762-R527)/(R762+R527) (Liang et al. 2015)

GNDVI (R750-R550)/(R750+R550) (Yao et al. 2017)

OSAVI [(1+0.16)(R800-R670)]/(R800+R670+0.16) (Haboudane et al. 2002)

NDRE (R740-R705)/(R740+R705) (Broge & Leblanc 2001)

mNDVI705 (R750-R705)/(R750+R705+2R445) (Liang et al. 2015)

VOG1 R740/R720 (Vogelmann et al. 1993)

VOG3 (R734-R747)/(R715+R720) (Vogelmann et al. 1993)

VOG2 (R734-R747)/(R715+R726) (Vogelmann et al. 1993)

CARI (R700-R670)/0.2(R700+R670) (Main et al. 2011)

MTVI1 1.2[1.2(R800-R550)-2.5(R670-R550)] (Haboudane et al. 2004)

TVI 0.5[120(R750-R550)-2.5(R670-R550)] (Broge & Leblanc 2001)

DVI R800-R680 (Tian et al. 2011)

RDVI (R800-R670)/(R800+R670)0.5 (Yao et al. 2017)

SPVI 1.48(R800-R670)-1.2|R530-R670| (Main et al. 2011)

WI/NDVI (R900/R970)/[(R800-R680)/(R800+R680)] (McCall et al. 2017)

EVI 2.5(R800-R670)/(R800-6R670-7.5R475+1) (Huete et al. 1997)

NVI (R777-R747)/R673 (Rodriguez et al. 2006)

MSAVI 0.5(2R800+1-[(2R800+1)2-8(R800-R670)]0.5) (Tian et al. 2011)

WI R900/R970 (PeÑUelas et al. 1993)

REP 700+[40(R670+R780)/2-R700]/(R740-R700) (Rodriguez et al. 2006)

PRI (R531-R570)/(R531+R570) (Sims & Gamon 2002)

MTVI2

1.5[1.2(ý800 2 ý550) 2 2.5(ý670 2 ý550)]

[(2ý800 + 1)2 2 (6ý800 2 5 ý670) 2 0.5]0.5 (Yao et al. 2017)

TCARI2 3[R750-R705-0.2(R750-R550)(R750/R705)] (Wu et al. 2008)

TCARI/OSAVI TCARI/OSAVI (Wu et al. 2008)

MCARI/OSAVI MCARI/OSAVI (McCall et al. 2017)

TCAR1 3[(R700-R670)-0.2(R700-R550)(R700/R670)] (Haboudane et al. 2002)

MCARI [(R700-R670)-0.2(R700-R550)(R700/R670)] (Haboudane et al. 2002)
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The ûtting equations and their accuracies estimated by common spectral indices
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Indices r Fitting equation R2
cal RMSEC R2

val RMSEP RPD

NDVI 0.466 y=-30.66x+41.791 0.398 4.203 0.664 3.154 0.871

NDVI705 0.465 y=-33.709x+36.614 0.398 4.203 0.663 3.170 0.901

RVI 0.461 y=-2.984x+36.058 0.399 4.200 0.662 3.247 0.987

NDCI 0.466 y=-44.116x+49.425 0.401 4.195 0.659 3.181 0.847

GNDVI 0.452 y=-37.084x+42.524 0.382 4.258 0.654 3.196 0.897

OSAVI 0.437 y=-31.458x+40.177 0.368 4.308 0.652 3.280 0.986

NDRE 0.457 y=-38.105x+36.717 0.393 4.222 0.649 3.233 0.918

mNDVI705 0.477 y=-27.917x+41.049 0.418 4.132 0.643 3.188 0.830

VOG1 0.431 y=-19.775x+53.052 0.365 4.318 0.633 3.326 0.988

VOG3 0.422 y=79.265x+32.097 0.351 4.366 0.625 3.279 0.933

VOG2 0.424 y=69.876x+31.809 0.353 4.358 0.622 3.288 0.938

CARI 0.378 y=-21.331x+39.558 0.308 4.506 0.605 3.523 1.180

MTVI1 0.354 y=-24.908x+35.067 0.292 4.560 0.604 3.709 1.469

TVI 0.325 y=-0.799x+35.303 0.263 4.652 0.584 3.826 1.649

DVI 0.348 y=-40.556x+35.793 0.289 4.567 0.583 3.769 1.515

RDVI 0.355 y=-41.61x+46.336 0.293 4.556 0.580 3.705 1.388

SPVI 0.348 y=-27.198x+35.464 0.289 4.568 0.575 3.761 1.466

WI/NDVI 0.414 y=10.046x+7.791 0.371 4.297 0.540 3.623 0.870

EVI 0.062 y=-18.21x+31.547 0.372 4.292 0.524 3.759 1.206

NVI 0.406 y=-18.21x+31.547 0.372 4.292 0.524 3.759 1.206

MSAVI 0.273 y=-16.695x+21.407 0.227 4.764 0.509 4.156 2.170

WI 0.238 y=-45.663x+65.717 0.177 4.915 0.474 4.131 2.022

REP 0.343 y=0.162x+-98.259 0.305 4.516 0.460 3.936 0.987

PRI 0.364 y=-198.981x+16.402 0.332 4.427 0.449 3.898 1.157

MTVI2 0.018 y=-0.041x+24.633 0.021 5.360 0.432 5.222 0.889

TCAR2 0.253 y=-47.674x+35.662 0.201 4.842 0.430 4.141 1.782

TCARI/OSAVI 0.350 y=113.241x+5.231 0.336 4.414 0.419 4.204 0.910

MCARI/OSAVI 0.350 y=339.723x+5.231 0.336 4.414 0.419 4.204 0.910

TCAR1 0.068 y=-88.168x+31.782 0.052 5.275 0.153 4.969 1.366

MCARI 0.068 y=-264.505x+31.782 0.052 5.275 0.153 4.969 1.366
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|r| between SMC and spectral indices based on diûerent pretreatments
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Pretreatment method
Spectral indices

R FDR SDR CR A FDA SDA

DI 0.724 0.662 0.551 0.737 0.748 0.742 0.577

NDI 0.748 0.674 0.487 0.755 0.725 0.616 0.561

RI 0.747 0.668 0.475 0.755 0.720 0.624 0.424

PI 0.772 0.693 0.554 0.746 0.773 0.738 0.569
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Calibration and validation results for SMC estimation based on diûerent modeling
strategies
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Model R2
cal RMSEC R2

val RMSEP RPD Abbreviations

PI_RF 0.896 1.768 0.907 1.477 3.396 PIR

NDI_RF 0.856 2.104 0.872 1.479 3.245 NDIR

DI_RF 0.832 2.310 0.852 1.665 2.908 DIR

RI_RF 0.828 2.367 0.847 1.606 2.867 RIR

RI_ELM 0.823 2.301 0.820 1.984 2.322 RIE

PI_ELM 0.823 2.351 0.817 2.196 2.435 PIE

NDI_ELM 0.824 2.302 0.815 2.277 2.389 NDIE

DI_ELM 0.781 2.566 0.774 2.087 2.220 DIE
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Figure 1
Geographical location of Fukang City and the distribution of sampling sites

(A) Xinjiang's position in China. (B) Fukang City. (C) Sampling point schematic. (Map credit:
Xiangyu Ge)
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Figure 2
UAV platform and airborne imaging hyperspectral sensor.

(A) UAV. (B) Hyperspectral sensor. (Photograph credit: Xiangyu Ge)
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Figure 3
Application scene of UAV over the cropland and sampling cells.

(A) Application scene of UAV. (B) Four-point method of sampling (Photograph credit: Xiangyu
Ge)
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Figure 4
Flowchart of the study procedure

Flowchart of the study procedure: (A) data collection and pretreatments (Photograph credit:
Xiangyu Ge); (B) construction of 2D spectral indices based on DI, RI, NDI and PI; (C)
comparison of model and determination of SMC based on the optimal model and spatial
distribution map using PIR.
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Figure 5
The descriptive statistical results of SMC. Box plot and distribution of SMC for the whole,
calibration, and validation datasets

S.D. indicates standard deviation.
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Figure 6
The hyperspectral imageries and spectral curves based on diûerent pretreatments

(A) Hyperspectral image cube. (B) Image based on R. (C) Spectral curve based on R. (D)
Image based on FDR. (E) Spectral curve based on FDR. (F) Image based on SDR. (G) Spectral
curve based on SDR. (H) Image based on CR. (I) Spectral curve based on CR. (J) Image based
on A. (K) Spectral curve based on A. (L) Image based on FDA. (M) Spectral curve based on
FDA. (N) Image based on SDA. (O) Spectral curve based on SDA. The hyperspectral images
and spectral curves based on diûerent pretreatments (the red line represents the average
spectrum and the gray region represents the standard deviation). The images are RGB
images, where the red, green and blue bands are R659, R550, and R479, respectively.
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Figure 7

r2 maps of 2D optimal spectral indices based on diûerent pretreatments.

(A) r2 maps of A_DI(431,446). (B) r2 maps of CR_NDI(431,446). (C) r2 maps of CR_RI(431,446). (D) r2 maps

of A_PI(446,471). The colorbar illustrates the value of the square of the correlation coeûcient (r2)

between SMC and spectral indices, and the x- axes and y-axes indicate the wavebands of

40031000 nm. Dark red portrays a high r2 between SMC and the spectral indices. To improve

the comparison, r2 was converted into the absolute value of the correlation coeûcient (|r|) to
evaluate its validity.
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Figure 8
Taylor diagram showing the performance of the evaluated models.

The black line indicates R2
val, the blue line indicates the SD, and the colorful pentagrams

represent the eight models, whose colors from dark blue to deep red indicate small to large
RMSEP values. The red line represents the measured SMC.
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Figure 9
Spatial distribution maps

(A) the measured SMC, (B) the SMC based on PIR prediction, (C) residuals calculated with PIR
for prediction of the SMC
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Figure 10
Distribution of sensitive bands

Red lines denote spectral reûectance and blue bars denote distribution frequencies.
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Figure 11
2D synchronized correlation spectrum under diûerent pretreatments

(A) 2D synchronized correlation spectrum based on R. (B) 2D synchronized correlation
spectrum based on FDR. (C) 2D synchronized correlation spectrum based on SDR. (D) 2D
synchronized correlation spectrum based on CR. (E) 2D synchronized correlation spectrum
based on FDA. (F) 2D synchronized correlation spectrum based on SDA. (G) 2D synchronized
correlation spectrum based on A.
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Figure 12
Scatter plots of the measured and predicted SMC based on diûerent modeling methods.

(A) The model based on PIR. (B) The model based on RIE. (C) The model based on NDIR. (D)
The model based on PIE. (E) The model based on DIR. (F) The model based on NDIE. (G) The
model based on RIR. (H) The model based on DIE. The red and black lines in each ûgure
represent the 1:1 and ûtted lines, respectively.
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