
 

A peer-reviewed version of this preprint was published in PeerJ
on 25 July 2017.

View the peer-reviewed version (peerj.com/articles/3569), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Kadlec M, Bellstedt DU, Le Maitre NC, Pirie MD. 2017. Targeted NGS for
species level phylogenomics: “made to measure” or “one size fits all”?
PeerJ 5:e3569 https://doi.org/10.7717/peerj.3569

https://doi.org/10.7717/peerj.3569
https://doi.org/10.7717/peerj.3569


1 

Targeted NGS for species level phylogenomics: <made to measure= or <one size fits all=? 1 

 2 

Malvina Kadlec1,3, Dirk U. Bellstedt2, Nicholas C. Le Maitre2, and Michael D. Pirie1,2 3 

 4 

1Institut für Organismische und Molekulare Evolutionsbiologie, Johannes Gutenberg-5 

Universität, Anselm-Franz-von-Bentzelweg 9a, 55099 Mainz, Germany 6 

2Department of Biochemistry, University of Stellenbosch, Private Bag X1, Matieland 7602, 7 

South Africa 8 

3Author for correspondence: mkadlec@uni-mainz.de 9 

 10 

Abstract 11 

Targeted high-throughput sequencing using hybrid-enrichment offers a promising source of 12 

data for inferring multiple, meaningfully resolved, independent gene trees suitable to address 13 

challenging phylogenetic problems in species complexes and rapid radiations. The targets in 14 

question can either be adopted directly from more or less universal tools, or custom made for 15 

particular clades at considerably greater effort. We applied custom made scripts to select sets 16 

of homologous sequence markers from transcriptome and WGS data for use in the flowering 17 

plant genus Erica (Ericaceae). We compared the resulting targets to those that would be 18 

selected both using different available tools (Hyb-Seq; MarkerMiner), and when optimising 19 

for broader clades of more distantly related taxa (Ericales; eudicots). Approaches comparing 20 

more divergent genomes (including MarkerMiner, irrespective of input data) delivered fewer 21 

and shorter potential markers than those targeted for Erica. The latter may nevertheless be 22 

effective for sequence capture across the wider family Ericaceae. We tested the targets 23 

delivered by our scripts by obtaining an empirical dataset. The resulting sequence variation 24 

was lower than that of standard nuclear ribosomal markers (that in Erica fail to deliver a well 25 

resolved gene tree), confirming the importance of maximising the lengths of individual 26 

markers. We conclude that rather than searching for <one size fits all= universal markers, we 27 

should improve and make more accessible the tools necessary for developing <made to 28 

measure= ones.  29 

Keywords: Ericaceae; hybridization enrichment; marker development, next-generation 30 

sequencing; phylogeny; targeted sequence capture; target enrichment; transcriptome 31 
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Introduction 32 

DNA sequence data is the cornerstone of comparative and evolutionary research, invaluable 33 

for inference of population-level processes and species delimitation through to higher level 34 

relationships. Sanger sequencing (Sanger, Nicklen & Coulson, 1977) and Polymerase Chain 35 

Reaction (PCR) amplification (Saiki et al., 1985) have been standard tools for decades, aided 36 

by the development of protocols that can be applied across closely and distantly related 37 

organisms. In plants, universal primers such as for plastid (Taberlet et al., 1991), nuclear 38 

ribosomal (White et al., 1990) and even single or low copy nuclear (Blattner, 2016) sequences 39 

have been widely applied to infer evolutionary histories. Many empirical studies are still 40 

limited to these few independent markers, the phylogenetic signal of which may not reflect 41 

the true sequence of speciation events (Kingman, 1982; White et al., 1990). Additionally, the 42 

resulting gene trees are often poorly resolved, particularly when divergence of lineages was 43 

rapid. When it is not possible to generate a robust and unambiguous phylogenetic hypothesis 44 

using standard universal markers, protocols for alternative low copy genes are highly 45 

desirable (Sang, 2002; Hughes, Eastwood & Bailey, 2006). 46 

With the development of next generation sequencing (NGS) techniques, we now have 47 

potential access to numerous nuclear markers allowing us to address evolutionary questions 48 

without being constrained by the generation of sequence datasets per se. In principle, the 49 

whole genome is at our disposal, but whole genome sequencing (WGS) is currently relatively 50 

expensive, time-consuming and computationally difficult, especially for non-model organisms 51 

and eukaryote genomes in general (Jones & Good, 2016). These disadvantages will doubtless 52 

reduce in the near future, but nevertheless much of the data that might be obtained through 53 

WGS is irrelevant for particular purposes. In the case of phylogenetic problems, repetitive 54 

elements and multiple copy genes are not useful; neither are sequences that are highly 55 

constrained and hence insufficiently variable, nor indeed those that are too variable and 56 

impossible to align; nor those subject to strong selection pressure. We need strategies to 57 

identify and target sequencing of markers appropriate for phylogenomic analysis in different 58 

clades and at different taxonomic levels, and are currently faced with an array of options. 59 

Different methods, referred to in general as <genome-partitioning approaches=, or <reduced-60 

representation genome sequencing=, have been developed that are cheaper, faster and 61 

computationally less demanding than WGS, and as such are currently more feasible for 62 

analyses of numerous samples for particular purposes (Mamanova et al., 2010).  These 63 

include restriction-site-associated DNA sequencing (RAD-seq; Miller et al., 2007), and 64 
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similar Genotyping by sequencing (GBS) approaches (Elshire et al., 2011), and whole-65 

transcriptome shotgun sequencing (RNA-seq; Wang, Gerstein & Snyder, 2009). These 66 

methods can be applied to non-model species (Johnson et al., 2012) but do not necessarily 67 

deliver the most informative data for phylogenetic inference. RAD-seq/GBS sequences are 68 

short, generally used for obtaining (independent) single nucleotide polymorphisms (SNPs) 69 

from across the genome, suitable for population genetic analyses. RNA-seq transcriptome 70 

data cannot be obtained from dried material (such as herbarium specimens), restricting its 71 

application, and the sequences that are obtained are functionally conserved and therefore may 72 

be more suitable for analysing more ancient divergences, such as the origins of land plants 73 

(Wickett et al., 2014). Neither approach is ideal for inferring meaningfully resolved 74 

independent gene trees of closely related species as they will inevitably present limited 75 

numbers of linked, informative characters.  76 

Alternative approaches can be used to target more variable, longer contiguous sequences 77 

involving selective enrichment of specific subsets of the genome before using NGS through 78 

PCR based, or sequence capture techniques. PCR based enrichment, or multiplex and 79 

microfluidic amplification of PCR products, is the simultaneous amplification of multiple 80 

targets (e.g. 48, as used in Uribe-Convers, Settles & Tank, 2016; to potentially hundreds or 81 

low thousands per reaction). Although this method dispenses with the need for time-82 

consuming library preparation, it requires prior knowledge of sequences for the design of 83 

primers; such primers must be restricted to within regions that are known to be conserved 84 

across the study group.   85 

Current targeted sequence capture methods involve hybridization in solution between 86 

genomic DNA fragments and biotinylated RNA <baits= (also referred to as <probes= or the 87 

<Capture Library99) between 70 and 120 bp long. Hybridization capture can be used with non-88 

model organisms (as is the case for RAD-seq/GBS and RNA-seq), and shows promising 89 

results with fragmented DNA (such as might be retrieved from museum specimens) (Lemmon 90 

& Lemmon, 2013; Zimmer & Wen, 2015; Hart et al., 2016; Budenhagen et al., 2016). 91 

Moreover, even without baits specifically designed using organelle genomes, plastid and 92 

mitochondrial sequences can also be retrieved during the hybrid-enrichment process 93 

(Tsangaras et al., 2014). Use of targeted sequence capture for phylogenetic inference is on the 94 

increase but still somewhat in its infancy, with a range of different more or less customised 95 

laboratory and bioinformatic protocols being applied to different organismal groups and in 96 

different laboratories. The protocols follow two general approaches: One is to design baits for 97 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2763v3 | CC BY 4.0 Open Access | rec: 2 Jun 2017, publ: 2 Jun 2017



4 

use in specific organismal groups (e.g. Compositae, Mandel et al., 2014; cichlid fish, Ilves & 98 

Lopez-Fernandez, 2014; and Apocynaceae, Weitemier et al., 2014). To this end, conserved 99 

orthologous sequences of genes of the species of interest are identified e.g. using a BLASTn 100 

or BLASTx search (or equivalent) with transcriptome data, expressed sequences tags (ESTs) 101 

and/or WGS. Alternatively, and with considerably less effort, pre-designed sets of more 102 

universal baits are used (Faircloth et al., 2012; Lemmon, Emme & Lemmon, 2012). Of the 103 

latter, <Ultra Conserved Elements= (UCE) (Faircloth et al., 2012) and <Anchored Hybrid 104 

Enrichment= (AHE) (Lemmon, Emme & Lemmon, 2012) approaches have been applied in 105 

phylogenetic analyses of animal (e.g. snakes, Pyron et al., 2014; lizards, Leaché et al., 2014; 106 

frogs, Peloso et al., 2016; and spiders, Hamilton et al., 2016)  and plant (Medicago, De Sousa 107 

et al., 2014; Sarracenia, Stephens et al., 2015; palms, Comer et al., 2016; Heyduk et al., 2016; 108 

Heuchera, Folk, Mandel & Freudenstein, 2015; Inga, Nicholls et al., 2015; and Protea, 109 

Mitchell et al., 2017) clades. 110 

Universal protocols are an attractive prospect, in terms of  reduced cost and effort, and 111 

because they might generate broadly comparable data suitable for wider analyses (or even 112 

DNA barcoding; Blattner, 2016). However, the resulting sequence markers may not be 113 

optimal for all purposes. For phylogenetic inference, low-copy markers are required to avoid 114 

paralogy issues, and for successful hybridisation capture similarity of baits to target sequences 115 

must fall within c. 75-100% (Lemmon & Lemmon, 2013). This places a restriction on more 116 

universal markers that will necessarily exclude potentially useful low copy, high variability 117 

markers where these are subject to duplications or too variable in particular lineages. 118 

The selection of appropriate sequence markers may therefore be crucial in determining the 119 

success of this kind of analysis, especially for non-model species. Transcriptome data for 120 

increasing numbers of non-model organisms are available (Matasci et al., 2014) and can 121 

already be used for marker selection in many plant clades. Bioinformatics tools are available 122 

that can assist in the selection of markers and design of baits, taking transcriptome and/or 123 

whole genome sequences of relevant taxa as input. These include MarkerMiner (Chamala et 124 

al., 2015), Hyb-Seq (Weitemier et al., 2014; Schmickl et al., 2016) and BaitsFisher (Mayer et 125 

al., 2016). The question for researchers embarking on phylogenomic analyses is whether it is 126 

worth the additional cost and effort involved in designing custom baits, and how to select 127 

sequence markers in order to get the most information out of a given investment of time and 128 

funds.  129 

Our ongoing research addresses the challenge of resolving potentially complex phylogenetic 130 
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relationships between closely related populations and species of a non-model flowering plant 131 

group, the genus Erica (Ericaceae; one of 22 families of the asterid order Ericales; Stevens, 132 

2001). The c. 700 South African species of Erica represent the most species rich 8Cape clade9 133 

in the spectacularly diverse Cape Floristic Region (Linder, 2003; Pirie et al., 2016). Analyses 134 

of the Erica clade as a whole offer a rich source of data in terms of numbers of evolutionary 135 

events, and our ability to infer such events accurately is arguably greatest in the most recently 136 

diverged species and populations. In such clades, the historical signal for shifts in key 137 

characteristics and geographic ranges are in general less likely to have been overwritten by 138 

subsequent shifts and (local) extinction. However, phylogenetic inference in rapid species 139 

radiations, such as that of Cape Erica (Pirie et al., 2016), Andean Lupinus (Hughes & 140 

Eastwood, 2006) or Lake Malawi cichlid fish (Santos & Salzburger, 2012) presents particular 141 

challenges. These include low sequence divergence confounded by the impact of both 142 

reticulation and coalescence on population-level processes. To infer a meaningful species tree 143 

under such circumstances, we need data suitable to infer multiple, maximally informative, 144 

independent gene trees. 145 

The aims of this paper are to compare the performance of custom versus more universal 146 

approaches to marker selection for groups of closely related species/populations. Applying 147 

new scripts and a number of similar existing methods for marker selection, we compare 148 

predicted sequence lengths and variability of the resulting markers as estimates of their 149 

potential for delivering multiple independent and informative gene trees. We further compare 150 

different options implemented in our scripts for optimising e.g. intron numbers/lengths for a 151 

given number of baits. In so doing, we generate a tool for low-level phylogenetic inference in 152 

Erica, we test it experimentally by generating empirical data, and we assess its potential 153 

application across a wider group, e.g. the family Ericaceae.  154 

 155 

Materials & Methods 156 

Our first aim was to identify homologous, single-copy sequence markers for which we could 157 

design baits (probes) with similarity of ≥75% (as hybridization between target and probe 158 

tolerates a maximum of 25% divergence) that would be predicted to deliver the greatest 159 

numbers of informative characters. Baits currently represent a relatively large proportion of 160 

the total cost of the protocol (which is expensive on a per sample basis compared to e.g. PCR 161 

enrichment). We therefore restricted the total length of hybridisation baits to 692,400 bp 162 
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(5770 individual 120 bp baits), representing a total <capture footprint= (i.e. cumulative 163 

sequence length) of 173,100 bp given probe overlap representing 4x coverage. With our lab 164 

protocol (see below) this permits dilution of the baits to capture five samples per unit of baits 165 

instead of just one. We developed custom-made Python 2.7.6 scripts to identify the wider 166 

pool of all potential target sequences from transcriptome and WGS data (both of which were 167 

available from published sources; details below), as well as applying already available 168 

scripts/software for comparison. We subsequently implemented in further scripts different 169 

options for prioritising target variability, length and/or intron numbers and lengths to select 170 

optimal sequence markers from these pools of potential targets. We then compared the lengths 171 

and numbers of the sequences in the different resulting potential and optimal marker sets. 172 

 173 

Identifying potential target sequences 174 

Our custom-made script (AllMarkers.py; summarised in Fig. 1 available at Github: 175 

https://github.com/MaKadlec/Select-Markers/tree/AllMarkers) requires at least two 176 

transcriptomes, ideally of taxa closely related to the focal group. Where WGS/genome 177 

skimming data of one or more such taxa is available, it can be used too, as in Folk, Mandel & 178 

Freudenstein (2015). AllMarkers.py implements the following steps: First, two or more 179 

transcriptomes are compared to identify homologues, retaining those found in at least two 180 

transcriptomes. These are hence likely to also be found in related genomes. We have 181 

successfully used up to eight transcriptomes; on eight cores of a fast desktop PC the analyses 182 

ran for up to two days. Particularly when larger numbers of larger transcriptomes are 183 

compared, an additional filter can be applied prior to this step to remove shorter sequences 184 

(e.g. those <1,000 bp) and thereby improve speed. Next, multiple copy sequences are 185 

identified, for which homology assessment might be problematic. When WGS data is 186 

available, this is achieved using BLASTn of transcriptome against WGS. When no WGS data 187 

is available it is by comparison to the classification of proteins as single/mostly single copy 188 

across angiosperms by De Smet et al. (2013), using BLASTx following the approach used in 189 

MarkerMiner (Chamala et al., 2015). Multiple-copy sequences are then excluded. Finally, a 190 

filter for similarity ≥75% is applied. This series of steps is comparable to but differs from 191 

those implemented in Hyb-Seq (Weitemier et al., 2014) and in MarkerMiner (Chamala et al., 192 

2015) (Fig. 1), which we also applied here. 193 

The Hyb-Seq pipeline uses transcriptome and WGS sequences of closely related species to 194 
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select marker sequences. This pipeline employs BLAT (BLAST-like Alignment Tool), rather 195 

than BLAST as in AllMarkers.py, to identify single-copy sequences with identity > 99%. 196 

After isoform identification, sequences with exons <120 bp and those of total length <960 bp 197 

are removed. This represents a further filtering of potential targets that is comparable in part 198 

to the next steps in our own scripts, as described below. Then orthologous sequences are 199 

identified using a transcriptome of a closest related species or of one of four angiosperms 200 

(Arabidopsis thaliana, Oryza sativa, Populus trichocarpa and Vitis vinifera), as opposed to by 201 

comparison to two or more transcriptomes in AllMarkers.py.  202 

For MarkerMiner, WGS data is neither required (as in HybSeq) nor used if available (as in 203 

AllMarkers.py). This pipeline involves selecting sequences by size in input transcriptomes 204 

(we set length parameter to >1000 bp) then using reciprocal BLAST between transcriptomes 205 

and a reference proteome to select sequences above 70% similarity. The proteome most 206 

closely related to Erica implemented in MarkerMiner in August 2016 was that of Vitis 207 

vinifera (Vitaceae; Vitales; core eudicots; Stevens, 2001). This minimum similarity threshold 208 

does not directly reflect that required for successful probe hybridisation, and particularly 209 

given comparison to a relatively distantly related proteome (as opposed to more closely 210 

related transcriptomes with AllMarkers.py and HybSeq) can be expected to be conservative. 211 

In the final step, MarkerMiner retains putative single copy ortholog pairs following De Smet 212 

et al. (2013), as also implemented in AllMarkers.py when no WGS is available.  213 

 214 

Selection of optimal target sequences from pools of potential targets 215 

The above steps result in potentially large pools of potentially highly suboptimal targets, in 216 

particular shorter and/or invariable sequences that, given rapid lineage divergence, may not 217 

deliver enough informative characters to discern meaningfully resolved independent gene 218 

trees. In order to select optimal markers from these pools given a limited number of baits we 219 

designed a further script (available at Github: https://github.com/MaKadlec/Select-220 

Markers/tree/BestMarkers.py). Depending on the phylogenetic problem to hand (e.g. recent, 221 

species level divergence versus older radiations) and available information (e.g. about 222 

sequence variability in the focal clade; positions and lengths of potentially more variable 223 

introns), various options are possible. In our case, from WGS and transcriptome data we 224 

know where introns are likely to be found, but in the absence of sequences from multiple 225 

accessions of our ingroup, the only indication of sequence variability comes from comparison 226 
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of coding regions of relatively distantly related taxa, i.e. single species of Rhododendron, 227 

Vaccinium and Erica. We therefore assessed two options: 1) simply selecting the longest 228 

sequences. 2) Selecting the longest sequences, but taking into account the (likely) additional 229 

length of introns. Using WGS data, we assessed the number and length of introns. For the 230 

purpose of ranking potential markers, we decided to use mean intron length in order to avoid 231 

favouring the selection of sequences with large introns that a) might not be efficiently 232 

captured/sequenced; or b) might not be so large in the focal clade. Finally, the longest 233 

sequences were selected that could be captured with our maximum number of baits. Coding 234 

regions <120 bp long are shorter than the baits and are likely to be ineffectively captured. For 235 

this reason, in the Hyb-Seq approach (Weitemier et al., 2014) all sequences including exons 236 

<120 bp are excluded; however, this is at the expense of excluding otherwise optimal markers 237 

that may include individual exons of <120 bp. We therefore opted to retain sequences 238 

including one or more coding regions ≥120 bp, whilst excluding individual exons <120 bp as 239 

potential targets for baits.  240 

 241 

In silico comparison with empirical data 242 

Our custom scripts (AllMarkers.py and BestMarkers.py), the Hyb-Seq and MarkerMiner 243 

pipelines were each applied to transcriptomes and (except for MarkerMiner) WGS of 244 

representatives of the Ericaceae subfamily Ericoideae. Transcriptome data was of 245 

Rhododendron scopulorum (18,307 gene sequences; 1KP project; Matasci et al., 2014) and 246 

(diploid) cranberry Vaccinium macrocarpon (48, 270 sequences, PRJNA260125 NCBI). 247 

WGS was of V. macrocarpon (PRJNA246586) and Erica plukenetii (Le Maitre & Bellstedt, 248 

unpublished data). We compared the (potential) length and identity of the resulting targets. 249 

We then compared these <made to measure= (Erica/Ericoideae-specific) targets with those 250 

that might be selected using a more <one size fits all= (universal) approach to probe design. 251 

For this purpose, we used transcriptomes from increasingly distantly related plants as 252 

available on NCBI. First we included different families of the wider order Ericales: 253 

Actinidiaceae (Actinidia chinensis; 10,000 sequences; PRJNA277383), Primulaceae 254 

(Aegiceras corniculatum; 49,412 sequences; PRJNA269022), Theaceae (Camellia reticulata ; 255 

139,145 sequences; PRJNA297756), Ebenaceae (Diospyros lotus; 413, 775 sequences; 256 

PRJNA261339), and Ericaceae (R. scorpulum and V. macrocarpon, as above). Then we 257 

expanded to different orders of eudicots: Ranunculales (Anemone flaccida; 46,945 sequences; 258 
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PRJNA277332), Asterales (Dahlia pinnata; 35,638 sequences; PRJNA189243), Proteales 259 

(Gevuina avellana; 185,089 sequences; PRJNA299715), Caryophyllales 260 

(Mesembryanthemum crystallinum; 24,204 sequences; PRJNA217685), Solanales (Solanum 261 

chacoense; 42,873 sequences; PRJNA299204), Fabales (Vigna radiata; 78,617 sequences; 262 

PRJNA266360), Vitales (Vitis vinifera; 52,310 sequences; PRJNA239278) and Ericales (R. 263 

scorpulum, as above). Because in this wider context it is no longer appropriate to identify 264 

single copy markers on the basis of Ericoideae data alone, we instead used the option to 265 

compare to the angiosperm-wide database (De Smet et al., 2013) following an approach 266 

similar to MarkerMiner (Chamala et al., 2015). We compared the resulting targets to those of 267 

the Erica-specific approach, as above.  268 

 269 

Generation of a novel empirical dataset  270 

In order to confirm that our scripts can be used to obtain datasets of single-copy markers, we 271 

applied them to our empirical study on Cape Erica. We used the 132 sequences resulting from 272 

our custom scripts, taking into account the potential intron lengths (see results and 273 

discussion).  274 

In addition to these targets, we added two additional markers that were not otherwise selected 275 

as optimal, for the purpose of comparison with other datasets. These were rpb2 (as used in 276 

phylogenetic reconstruction in Rhododendron; Goetsch, Eckert & Hall, 2005) and 277 

topoisomerase B (as proposed for use across flowering plants; Blattner, 2016).  278 

 279 

Laboratory methods: Plant material was collected in the field under permit (Cape Nature: 280 

0028-AAA008-00134; South Africa National Parks: CRC-2009/007-2014) or obtained from 281 

cultivation. DNA was extracted from one sample of Rhododendron camtschaticum, supplied 282 

by Dirk Albach and Bernhard von Hagen from collections of the Botanic Garden, Carl von 283 

Ossietzky Universität, Oldenburg, Germany; and 12 of Erica (Table 1) using Qiagen 284 

DNAeasy kits (Qiagen, Hilden, Germany). DNA extraction in Erica is generally challenging 285 

(Bellstedt et al., 2010) and the quantity and quality of DNA obtained differed considerably 286 

between species. To reach the correct amount of DNA required for library preparation, 287 

multiple DNA extractions from the same sample were combined. 288 

 289 

For library preparation and hybridisation enrichment, we used the Agilent SureSelectXT 290 
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protocol (G7530-90000), incorporating sample-specific indexes for pooled sequencing, with a 291 

1kb-499kb SureSelectXT Custom capture library designed using the SureDesign Custom 292 

Design Tool for NGS Target Enrichment, specifying 4x coverage and probe length 120 bp. 293 

For the library preparation, amount of gDNA used was between 1 and 3 µg, and during the 294 

hybridisation and capture step, we used a diluted capture library (1 part Agilent baits solution 295 

to 4 of ddH2O). Sequencing was performed with Illumina NextSeq500 (StarSeq, Mainz, 296 

Germany) to generate 25 million paired-end reads of length 150 bp. 297 

 298 

Bioinformatic analysis: As the total footprint of the capture library (the cumulative sequence 299 

lengths of all the selected markers) was small, de novo assembly was possible. We chose to 300 

use MIRA (version 4.0) (Chevreux, Wetter & Suhai, 1999), in part because MIRA can be 301 

used to perform both de novo assembly and mapping. The two options were used with default 302 

parameters for Illumina (overlap value=80 for de novo and 160 for mapping assembly; quality 303 

level=accurate). Reads were assembled into contiguous sequences (contigs). We then 304 

compared using BLASTn against the sequence targets (complete sequences and coding region 305 

sequences) as well as against nuclear ribosomal (nrDNA), plastid, and mitochondrial data. 306 

Contigs for which overlap with targets was under 100 bp and similarity to target sequences 307 

was less than 75% were removed. Using the L-INS-i (iterative refinement method 308 

incorporating local pairwise alignment information) method of MAFFT (Katoh et al., 2002), 309 

we aligned contigs with each other and with the sequence targets (complete sequences and 310 

coding region sequences). Contigs were checked with Gap5 (Bonfield & Whitwham, 2010)  311 

and by comparison to the alignments to identify and confirm remaining separate overlapping 312 

contigs without sequence differences. We used custom made scripts to merge and remove 313 

redundant contigs, combining only those with identical overlapping sequences (minimum 314 

overlap of 30 bp) or which differed by a single base only (in which case this position was 315 

coded with IUPAC ambiguity codes). Contigs differing by more than one base, or which did 316 

not overlap, were not combined. This should avoid combining non-continuous contigs 317 

representing different copies or alleles, at the cost of tending to overestimate the numbers of 318 

such copies where overlap of contigs is incomplete. We then attempted to add to the 319 

alignments any <100 bp sequences or sequences under 75% similarity that matched the target 320 

according to BLASTn, combining (or not) contigs using the same principles as above.  321 

We excluded alignment positions representing indels or missing data in one or more samples 322 

and then calculated the percentage of variable sites per marker, including combined 323 
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mitochondrial and plastid sequences and individual nrDNA sequences representing Internal 324 

and External Transcribed Spacer regions (ITS and ETS) as obtained using Sanger sequencing 325 

in previous work (Pirie, Oliver & Bellstedt, 2011;Pirie et al., 2017). Gene trees were inferred 326 

using RAxML (Stamatakis, 2014) and used as a rough test for potential paralogy, under the 327 

assumption that the ingroup (comprising all samples except Rhododendron and the more 328 

closely related outgroups Erica abietina and Erica plukenetii) is monophyletic. We 329 

summarised 70% bootstrap consensus trees using DendroPy (Sukumaran & Holder, 2010) 330 

with SumTrees (https://github.com/jeetsukumaran/DendroPy).  331 

 332 

Results 333 

Similarity, length and overlap of selected markers: <made to measure= versus <one size fits 334 

all= 335 

The lengths of sequences selected using the different scripts are presented in Fig. 2. Summary 336 

comparisons by method are presented in Table 2 (sequence numbers, lengths and similarity). 337 

In general, the additional filter that includes mean intron length resulted in an increased 338 

number of shorter targets that might nevertheless deliver greater final sequence lengths, if 339 

average lengths of flanking introns are effectively captured (Fig. 2). 340 

Made to measure: We identified 4649 potential markers using our custom script 341 

AllMarkers.py. Applying script BestMarkers.py to this pool to optimise for length, two 342 

different subsets of optimal markers were obtained: 132 with median length (of coding 343 

region) of 2,187 bp when taking intron lengths into account; 79 of median length 2,631 bp 344 

when not. Sequence identity was similar (Table 2).  345 

With the Hyb-Seq pipeline, 782 sequences were obtained, which after applying 346 

BestMarkers.py, was reduced to 55 of median length 2,157 bp when taking introns into 347 

account and 66 of median length 2,184 bp when not. Sequence identity was similar, and 348 

similar to that resulting from AllMarkers.py (Table 2). 349 

With MarkerMiner, target sequences are delivered separately for each transcriptome provided. 350 

We selected a total pool of 544 potential target sequences, of which 389 are represented in the 351 

R. scopulorum data and 222 in V. macrocarpon. By comparison using our own scripts 352 

(available on request) we identified just 67 that were common to both (whereby it should be 353 

noted that AllMarkers.py by default retains only those found in at least two transcriptomes). 354 

Of the 544 sequences, 519 are indicated by MarkerMiner as mostly single copy and 25 as 355 
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strictly single copy in angiosperms. After applying BestMarkers.py we retained 254 sequence 356 

targets when taking introns into account and 207 sequences when not. Use of MarkerMiner 357 

resulted in the selection of greater numbers of shorter and slightly more conserved markers 358 

compared to both AllMarkers.py and HybSeq (Table 2, Figs. 2-3).  359 

One size fits all: Applying AllMarkers.py/BestMarkers.py to transcriptomes of Ericales 360 

resulted in a pool of 2,354 potential markers and final datasets of 409 sequences when taking 361 

introns into account and 171 when not. With the Eudicot transcriptomes, the total pool 362 

included 461 potential markers and final datasets 249 (when taking introns into account) and 363 

130 sequences (when not) (Table 2). In the latter, there is a slight increase in similarity 364 

(≥85%, similar to MarkerMiner; Fig. 3), and in both, sequences are shorter (Table 2, Fig. 2).  365 

The numbers of markers in common given the different methods for selecting them, before 366 

and after applying BestMarkers.py are presented in Fig. 4. Fig. 4a illustrates both the low 367 

overlap and large differences in numbers between the complete pools of potential markers 368 

identified using the different methods/input data. Expanding in taxonomic scope from Erica 369 

(identifying single-copy genes on the basis of WGS data) to Ericales and to eudicots 370 

(adopting single copy markers from the database of De Smet et al. (2013) resulted in a 371 

decrease in numbers of potential markers, and the use of MarkerMiner a further decrease. Fig. 372 

4b illustrates the differences in the optimal markers selected using BestMarkers.py on these 373 

pools. There is limited overlap and considerable differences in both target numbers and 374 

lengths: overall, AllMarkers.py/BestMarkers.py and HybSeq delivered the longest sequences, 375 

whereby the former delivered more markers for the same number of baits. Both the Ericales 376 

and eudicot analyses and MarkerMiner delivered greater numbers of shorter sequences.   377 

 378 

Empirical data  379 

We performed selective enrichment of 134 markers (132 selected using 380 

AllMarkers.py/BestMarkers.py, plus the two 8universal9 markers added for the purposes of 381 

comparison). Exon sequences used for probe design are presented in supplementary data 1 382 

and sequence alignments in supplementary data 2. Raw sequence reads are deposited on 383 

NCBI (PRJNA388814). With the exception of a single marker, capture was equally effective 384 

in the single Rhododendron sample and thirteen Erica samples. One marker was captured 385 

only in Rhododendron, and two others was not captured at all. All of the remaining 129 386 

markers plus rpb2 and topoisomerase B were recovered, at least in part, from all thirteen 387 
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samples analysed (supplementary data 3). Of these, 6 were single copy without allelic 388 

variation; 83 included sequence polymorphisms corresponding to two distinguishable putative 389 

alleles in one or more (but not all) individual samples. A further 40 included sequence 390 

polymorphisms in all samples, which exhibited two or more copies. Of the latter 40, 28 391 

represented paralogs that were easily distinguished on the basis of high sequence divergence 392 

in one or more coding region(s) and could thus be segregated into separate matrices of 393 

homologous sequences. The remainder (12) included multiple contigs that could not 394 

obviously be combined into single homologous sequences or pairs of alleles. Inspection of 395 

individual gene trees (supplementary data 4) failed to reject the monophyly of the ingroup in 396 

all but five cases. 397 

Comparison of sequence length/variability was limited by uneven sequencing coverage, but 398 

we could confirm the capture of complete intron sequences of up to c. 1000 bp and partial 399 

introns/flanking non-coding regions of up to c. 500 bp. In addition, large stretches of 400 

homologous high copy nuclear ribosomal and mitochondrial sequences were captured for all 401 

samples, as well as more fragmented plastid sequences. 402 

Despite incomplete sequencing coverage, the average alignment length of single copy nuclear 403 

sequences was 1810 bp, with a range between 823 and 5574 bp. With all gaps and missing 404 

data excluded (resulting in alignments of between 327 and 4716 bp), the single copy nuclear 405 

sequences in the ingroup presented between 5 and 412 variable positions each, representing a 406 

range of  2.6 – 26.1 % variability. Variability of rpb2 was 3.4%; topoisomerase B: 7.5%; 407 

ETS: 22.1%; ITS: 17.9%; mitochondrial: 6.3%; and plastid sequences: 0.54%. A plot of 408 

original predicted length of markers (instead of real length since in most cases complete 409 

sequences were not obtained) against variability is presented in Fig. 5. There was no obvious 410 

relationship between sequence length and variability. A further plot of observed sequence 411 

variability against variability of the corresponding transcriptome data (Rhododendron 412 

compared to Empetrum) is presented in Appendix 1; there was also no obvious relationship. 413 

Gene trees inferred under ML are documented in Supplementary Material 3 (with further 414 

details in Supplementary Material 4), with eight based on selected markers (ITS, 415 

mitochondrion, and six single copy nuclear markers that delivered the greatest numbers of 416 

clades supported by ≥70% BS) illustrated in Fig. 6.  417 

 418 

  419 
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Discussion 420 

Comparing closely versus distantly related genomes for marker selection 421 

It seems intuitively obvious that optimal markers for a given phylogenetic problem will be 422 

those informed by comparison to transcriptomes/WGS of the most closely related 423 

representative taxa. With such data, lineage specific gene duplications can be identified and 424 

the number of potential targets of appropriate variability maximised. However, the genomic 425 

data available for a given focal group (such as transcriptome data from the 1KP project; 426 

Matasci set al., 2014) may represent taxa more or less distantly related to it, and particular 427 

researchers may or may not wish to go to the trouble of designing and applying custom 428 

protocols. Indeed, if an off-the-shelf tool will provide appropriate data, it would be a great 429 

deal simpler just to use it. Hence, before embarking on expensive and time-consuming lab 430 

procedures, we need to know to what degree targets designed for one group might be applied 431 

to more distantly related ones (e.g. in this case the utility of Erica baits across Ericaceae, or 432 

Ericales); and conversely, how suboptimal baits designed for universal application (e.g. across 433 

angiosperms) are likely to be for a given subclade.  434 

Using our own custom scripts, we compared the pools of markers that might be selected on 435 

the basis of comparison of relatively closely related genomes with those on the basis of more 436 

distantly related ones (i.e. within the subfamily Ericoideae as opposed to within the order 437 

Ericales or across eudicots). Our results showed that both the pools and the best marker sets 438 

from those pools differed considerably, and that the sequences of the latter were considerably 439 

shorter (Table 2, Figs. 2 and 3). On the other hand, sequence variability within Ericales 440 

(minimum sequence identity between Ericaceae and Actinidiaceae: 73%) suggests that baits 441 

designed for Erica are also potentially suited for use at least across Ericaceae, including in 442 

Rhododendron and Vaccinium (both species-rich genera for which such tools might be 443 

particularly useful (Kron, Powell & Luteyn, 2002; Goetsch, Eckert & Hall, 2005). In general, 444 

our results confirm both the greater potential of custom baits developed for specific clades; 445 

and show that once obtained, such tools are nevertheless likely to apply across a fairly broad 446 

range of related taxa.  447 

 448 

The impact of method for marker selection 449 

Having decided to design custom baits, the next question that we might ask is which method 450 

to use for probe selection/design. Our results suggest that this is also likely to have a 451 
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significant impact on the resulting datasets. We compared three approaches to marker 452 

selection: our own custom scripts; those presented in the Hyb-Seq approach (Weitemier et al., 453 

2014) and MarkerMiner (Chamala et al., 2015).   454 

Of these three, MarkerMiner is arguably the most user-friendly, which is important given that 455 

its user base ought ideally to include biologists without extensive bioinformatics skills. 456 

However, in our comparisons it delivered the shortest sequence lengths (Table 2). The reasons 457 

for this are two-fold. First (and perhaps most importantly), because the transcriptomes used, 458 

irrespective of their similarity one to another, are compared to what is likely to be a rather 459 

distantly related proteome. Second, because the approach for identifying single or low-copy 460 

markers involves comparison to a general database (in this case for flowering plants), rather 461 

than a case-by-case assessment. Hence, in the current implementation of MarkerMiner it is to 462 

be expected that the most variable sequences will be excluded. So will some that are single 463 

copy in the focal group (or with easily discerned paralogs, as was the case here and also at 464 

lower taxonomic levels in Budenhagen et al. 2016), but not in other clades; and some that are 465 

multiple-copy may in fact be included. This is reflected in our results by the low number of 466 

potential target sequences recovered in total; in the low proportion of those that were 467 

recovered also being recovered using our own custom scripts and Hyb-Seq; and in the lower 468 

sequence length: the removal of more variable sequences arbitrarily results in the removal of 469 

longer ones too (Table 2). This phenomenon is apparently also reflected in the even shorter 470 

sequences reported by Budenhagen et al. (2016), using universal angiosperm probes (average 471 

764 bp, derived from targets averaging 343 bp).   472 

The Hyb-Seq approach is more similar to our own, but nevertheless results in a different 473 

dataset of selected sequences. The main differences lie in the search tool and filters. Our script 474 

uses BLAST, whereas Hyb-Seq uses BLAT. BLAT is faster than BLAST, but needs an exact 475 

or nearly-exact match to return a hit. Significantly, the exclusion in HybSeq of all sequences 476 

including any exons <120 bp is at the loss of markers including variable introns; in our 477 

approach the problem of short exon/probe mismatch is avoided simply by ignoring such 478 

exons during probe design. The net result is that while both approaches deliver long target 479 

sequences, ours can deliver those including more introns (which can therefore be captured 480 

using fewer baits).  481 

 482 

Selecting optimal markers from within a pool of potential candidates 483 
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Our approach includes not just a means to select potentially appropriate markers 484 

(AllMarkers.py; as is the case with the other approaches compared) but also a second step 485 

(BestMarkers.py) that selects putatively optimal markers from amongst that pool. Obviously, 486 

it is possible to capture and sequence the entire pool (following Ilves & Lopez-Fernandez, 487 

2014; Mandel et al., 2014; Weitemier et al., 2014). However, by targeting a smaller number 488 

of the most appropriate markers, more samples can be analysed less expensively. A given bait 489 

solution can be used for a greater number of samples (because it includes fewer different 490 

baits, each at higher concentration), whilst sequencing effort can be reduced by eliminating a 491 

potentially large number of less informative (or perhaps even entirely uninformative) markers.  492 

AllMarkers.py identifies and reports the positions of introns from comparison of WGS to 493 

transcriptome data. Subsequently optimising for intron numbers/length, as implemented in 494 

BestMarkers.py, would seem appropriate for the purpose of identifying regions that are likely 495 

to be both longer and more variable (Folk, Mandel & Freudenstein, 2015). Hybrid capture can 496 

result in sequencing of potentially long stretches of flanking regions (Tsangaras et al., 2014) 497 

without requiring matching baits, and introns should be less constrained, possibly with 498 

informative length variation too. Hence, taking into account the additional length of introns in 499 

marker selection can result in greater numbers of longer (and likely more variable) obtained 500 

sequences. Our empirical results support this approach: sequences showed intron capture of 501 

up to 1,000 bp, including regions in which multiple introns are interspersed with short (<120 502 

bp) exons for which no probes were used. Intron sequences from WGS data can nevertheless 503 

be included in the output of AllMarkers.py and used to design probes. This may be effective 504 

at low taxonomic levels when WGS appropriate to assess sequence similarity within the focal 505 

group is available. Alternatively, if the problem to be addressed represents older divergences 506 

(e.g. phylogenetic uncertainty within Ericaceae; Freudenstein, Broe & Feldenkris, 2016) for 507 

which length variation in introns would be unhelpful, BestMarkers.py can be used to optimise 508 

the length of exons alone. 509 

An alternative to optimising for sequence length (with or without taking introns into account) 510 

would be to optimise for variability (or combined length and variability). We included this 511 

option in BestMarkers.py, but in the absence of data with which to compare within our 512 

ingroup, decided a priori that we would be more likely to optimise total per sequence 513 

variation by selecting on the basis of length alone. This decision was supported by the 514 

empirical results: as might be expected, there was no obvious relationship between sequence 515 

length and variability (Fig. 5) and the numbers of informative characters provided by a given 516 
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target could not be predicted from the similarity of the Vaccinium and Rhododendron 517 

transcriptomes (Appendix 1).  518 

The variability of the data we obtained can be compared to that of nrDNA, plastid and 519 

mitochondrial sequences (and which were also obtained here without the need for matching 520 

baits due to their high copy number) and to two generally single copy nuclear genes, 521 

topoisomerase B and rpb2 (Fig. 5). Consistent with the results presented by Nichols et al. 522 

(2015), the variability of the nrDNA spacer regions (ITS and ETS) that are frequently used in 523 

empirical studies of plants is at the upper end of that observed in the sequences we obtained 524 

(of which topoisomerase B and rpb2 were fairly typical); plastid (and mitochondrial) 525 

sequences at the lower end. Given the comparably modest variability of most alternative 526 

nuclear markers, this suggests that even in cases where ITS/ETS present sufficient 527 

information to infer a well resolved nrDNA gene tree (not the case in Cape Erica, Pirie et al., 528 

2011; Fig. 6), considerably longer sequences will be needed to infer comparably resolved 529 

independent gene trees. Difficult phylogenetic problems arise when gene trees can be 530 

expected to differ, but those inferred from standard markers are not sufficiently resolved to 531 

actually reveal it. Low information content of individual markers limits accuracy of species 532 

tree inference methods (Lanier, Huang & Knowles, 2014), and when relationships are 533 

contentious, resolution can be influenced disproportionately by small numbers of individual 534 

markers or sites (Shen, Hittinger & Rokas, 2017). These are the cases for which targeted 535 

capture approaches offer the greatest potential. We need to target markers that might deliver a 536 

forest of trees, rather than just more bushes, and not all targeted enrichment strategies are 537 

optimised to deliver this kind of data. 538 

 539 

Conclusions 540 

When sequence variation is appropriate and gene trees are consistent, standard Sanger 541 

sequencing of a small number of markers may be all that is required to infer robust and 542 

meaningful phylogenetic trees. For species complexes and rapid radiations (either ancient or 543 

recent) where this is not the case, the usefulness of sequence datasets will inevitably be 544 

limited by the resolution of individual gene trees. Our results suggest that under these 545 

circumstances, where the need for NGS and targeted sequence capture, such as hybrid 546 

enrichment, is greatest, <made to measure= markers identified using both transcriptome and 547 

WGS data of related taxa will deliver results that are superior to those that might be obtained 548 
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using a more universal <one size fits all= approach. Once available, such markers may 549 

nevertheless be useful across a fairly wide range of related taxa: e.g. those presented here, 550 

targeted for use in Erica, fall within the range of sequence variation that would in principle be 551 

applicable across the family Ericaceae. Transcriptome data for many flowering plant groups 552 

are now available; these would ideally (but not necessarily) be complemented with WGS or 553 

genome skimming data of one or more focal taxa for use in marker selection. With such data 554 

to hand, biologists are still reliant on bioinformatics skills or user-friendly tools (such as 555 

MarkerMiner). In either case, the full potential of the techniques will only be harnessed if 556 

comparisons to distantly related genomes and generalisations of single/low copy genes across 557 

wide taxonomic groups are avoided. We would conclude that rather than searching for <one 558 

size fits all= universal markers, we should be improving and making more accessible the tools 559 

necessary for developing our own <made to measure= ones. 560 

 561 
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 779 

Table 1: Samples used for DNA extraction and their collection localities. Vouchers were 780 

lodged at herbarium NBG (MP: Pirie).  781 

Voucher Sample 

# 

Species Locality (unless specified, within the Western 

Cape, South Africa) 

MP1320 78 E. abietina L. ssp. 

aurantiaca  

Du Toit's Pass 

MP1330 74 E. coccinea L. RZE, Greyton 

MP1336 81 E. coccinea L. Groot Hagelkraal 

MP1318 72 E. imbricata L. Flouhoogte 

MP1319 73 E. imbricata L. Stellenbosch 

MP1334 74 E. imbricata L. Groot Hagelkraal 

MP1311 69 E. imbricata L. Boskloof 

MP1312 80 E. lasciva Salisb. Boskloof 

MP1325 83 E. lasciva Salisb. Albertinia 

MP1309 71 E. penicilliformis Salisb. Boskloof 

MP1339 75 E. placentiflora Salisb. Cape Hangklip 

MP1333 82 E. plukenetii L. Groot Hagelkraal 

 68 R. camtschaticum Pall. Oldenburg Botanical Garden, Germany 

(cultivated) 

  782 
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Table 2: Range, median and average length of selected markers in Rhododendron, with and 783 

without taking introns into account, and similarities to homologues in Vaccinium. 784 

  

Length of CR (bp) Similarity (%) Predicted length (bp) 

Range 

Mean 

Range 

Mean 

Range 

Mean 

Median Median Median 

sd sd sd 

Erica 

AllMarkers.py 

(without 

intron length) 

- 79 seq 

2316-4815 

2834 

82-96 

90 

2412-7425 

3541 

2631 90 3342 

535 3,1 998 

AllMarkers.py 

(with intron 

length) - 132 

seq 

1053-4815 

2287 

81-97 

91 

2847-7425 

3579 

2187 92 3339 

736 3,5 773 

HybSeq 

(without 

intron length) 

- 66 seq 

1170-4146 

2350 

77-95 

89 

1839-9326 

3285 

2184 91 3013 

549 5 1181 

HybSeq (with 

intron length) 

- 55 seq 

993-4146 

2226 

77-95 

89 

2943-9326 

3835 

2157 91 3614 

719 5 1032 

MarkerMiner 

(without 

intron length) 

- 207 seq 

1293-4146 

1726 

85-97 

93 

1338-5849 

2411 

1596 94 2307 

419 2 649 

MarkerMiner 

(with intron 

length) - 254 

seq 

1011-4146 

1600 

85-97 

93 

1665-5849 

2329 

1518 94 2210 

454 2 611 

Ericales 

AllMarkers.py 

(without 

intron length) 

- 171 seq 

1002-4146 

1400 

82-97 

93 

1014-8546 

2389 

1266 93 2121 

460 2,6 1153 

AllMarkers.py 

(with intron 

length) - 408 

seq 

342-4146 

1014 

82-97 

93 

1003-8546 

1830 

924 93 1623 

458 2,3 928 

Eudicots 

 

AllMarkers.py 

(without 

introns length) 

- 130 seq 

 

1002-4146 

 

1427 85-97 

 

93 1014-7657 

 

2379 

1283 93 2093 

487 2,4 1089 

AllMarkers.py 

(with introns 

length) - 249 

seq 

 

369-4146 

 

1112 85-97 

 

93 1002-7647 

 

1895 

1017 94 1689 

494 2,2 960 

  785 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2763v3 | CC BY 4.0 Open Access | rec: 2 Jun 2017, publ: 2 Jun 2017



27 

Figures: 786 

Figure 1: Flowchart(s) illustrating the methods used for marker selection. 787 

Figure 2: Summary of a) exon lengths and b) predicted exon plus intron lengths of markers 788 

selected using AllMarkers.py (shades of green), Hyb-Seq (blue) and MarkerMiner (purple) 789 

followed by BestMarkers.py. Each pair of plots represents the markers selected when 790 

optimising for exon lengths (left) and predicted exon plus intron lengths (right). From left to 791 

right, the first three pairs represent markers targeted for Erica/Ericoideae (comparing by 792 

method); the final two for Ericales and eudicots respectively (using AllMarkers.py only).  793 

Figure 3: Length versus variability of potential sequence markers (grey dots) and those 794 

selected using BestMarkers.py from the pools generated by the different methods (coloured 795 

symbols). 796 

Figure 4: Venn diagrams produced using http://bioinformatics.psb.ugent.be/webtools/Venn/ 797 

comparing overlap in markers selected given the different methods, superimposed with their 798 

numbers. a) The complete pools of potential markers; b) the subsets of markers selected using 799 

BestMarkers.py, optimising for total predicted length (exons and introns). 800 

Figure 5: Sequence variability observed in the empirical data plotted against predicted 801 

sequence length. <Universal= markers rpb2 and topoisomerase B are indicated and plastid, 802 

mitochondrial and nrDNA are included with indication of sequence lengths derived from the 803 

literature. 804 

Figure 6: Selected 70% bootstrap support (BS) consensus gene trees inferred under maximum 805 

likelihood with RAxML, summarised with DendroPy/SumTrees and presented using 806 

Dendroscope 3.5.7 (http://dendroscope.org/). The six nuclear markers that delivered the 807 

greatest numbers of nodes supported by ≥70% BS are presented along with those based on 808 

ITS and mitochondrial sequences. Terminals correspond to collection codes and species 809 

names (Table 1). Some taxa are represented twice in some trees due to the presence of alleles, 810 

including two distinct copies of ITS in E. abietina ssp. aurantiaca (confirming previous work 811 

using cloning; Pirie et al., in press). Node labels represent bootstrap support. 812 

 813 
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Appendices: 815 

Appendix 1: Plot of sequence similarity (transcriptome data; Rhododendron and Vaccinium) 816 

against sequence similarity (empirical dataset generated here; Rhododendron and Erica spp.) 817 

for individual markers. 818 

 819 

Supplementary data: 820 

Supplementary data 1: Exon sequences corresponding to the 134 markers selected for the 821 

empirical study and the complete pools of markers selected using each of the methods 822 

compared (fasta format).  823 

Supplementary data 2: Sequence alignments 824 

Supplementary data 3: Table documenting markers as represented in Supplementary data 1-2 825 

and 4. 826 

Supplementary data 4: Gene trees inferred under RAxML (excluding multiple copy markers 827 

for which paralogues could not be distinguished). 828 

 829 

 830 
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Rhododendron Al2
Rhododendron Al1
MP1320 E. abie琀椀na Al1
MP1330 E. coccinea Al2
MP1330 E. coccinea Al1
MP1320 E. abie琀椀na Al2
MP1333 E. plukene琀椀i Al1
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93
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MP1334 E. imbricata Al2
MP1325 E. lasciva Al2
MP1333 E. plukene琀椀i Al1
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MP1325 E. lasciva Al1
MP1319 E. imbricata
MP1339 E. placen琀椀flora Al2
MP1330 E. coccinea Al2
MP1318 E. imbricata Al2
MP1309 E. penicilliformis Al1
MP1336 E. coccinea Al1
MP1336 E. coccinea Al276
MP1311 E. imbricata Al1
MP1318 E. imbricata Al188
MP1311 E. imbricata Al2
MP1334 E. imbricata Al1
MP1312 E. lasciva Al1
MP1312 E. lasciva Al2
MP1339 E. placen琀椀flora Al1
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