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Abstract

The scale of phenological research has expanded due to the digitization of herbarium

specimens and volunteer based contributions. These data are status-based, representing

the presence or absence of a specific phenophase. Modelling the progress of plant

dormancy to growth and reproduction and back to dormancy requires estimating the

transition dates from these status-based observations. There are several methods

available for this ranging from statistical moments using the day of year to newly

introduced methods using concepts from other fields. Comparing the proficiency of

different estimators is difficult since true transition dates are rarely known. Here I use a

recently released dataset of in-situ flowering observations of the perennial forb

Echinacea angustifolia. In this dataset, due to high sampling frequency and unique

physiology, the transition dates of onset, peak, and end of flowering are known to within

3 days. I used a Monte Carlo analysis to test eight different estimators across two scales

using a range of sample sizes and proportion of flowering presence observations. I

evaluated the estimators accuracy in predicting the onset, peak, and end of flowering at

the population level, and predicting onset and end of flowering for individual plants.

Overall a method using a Weibull distribution performed the best for population level

onset and end estimates, but other estimators may be more appropriate when there is a

large amount of absence observations relative to presence observations. For individual

estimates a method using the midway point between the first flower presence and most

prior flower absence, within 7 days, is the best option as long as the restriction does not

limit the final sample size. Otherwise the Weibull method is adequate for individual

estimates as well. These methods allow practitioners to effectively utilize the large

amount of status-based phenological observations currently available.

Keywords: onset, peak, flowering, budburst, sampling frequency, herbarium records,

GAM

Introduction

Plant phenology has a long history in ecological research and is a primary indicator of

climate change (Scheffers et al. 2016, Chuine and Régnière 2017). Studies commonly

document the long-term trends of the first flower or leaf out dates, apply various

modelling approaches to infer the drivers of these transitions, or make forecasts using

future climate conditions. Phenological models, such as predictive models or those used

for long-term trends, use the transition dates as the variable of interest. Common

transition dates are First Observed open flowers or new leaves on a plant, but can also

include peak flower, fruit maturation, and leaf senescence. Historic datasets often use

repeated observations to identify the true transition date (Wolkovich et al. 2012, Davis

et al. 2015), yet this is susceptible to observer bias (Miller-Rushing et al. 2008). Most

modern studies and collection protocols use status-based monitoring, where over time

observers record the current state of a single plant (ie. leaves present or absent)

regardless of recent or impending transitions. This includes research using herbarium
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records, where the presence or absence of flowers and other phenophases is inferred

from their presence on a specimen (Willis et al. 2017). To make use of status-based data

in most phenological models the transition date must first be estimated, and there are

several methods available.

Two of the most common estimators are the First Observed and Mean Flowering

methods, where either the first observation in a year or the mean dates for all

observations within a year is used as an estimate for a phenophase transition and peak

dates, respectively (Miller-Rushing et al. 2008, CaraDonna et al. 2014, Willis et al.

2017, Jones and Daehler 2018). The First Observed method has been shown to be

biased in several instances, while the Mean Flowering date is considered a reliable

estimator for the midpoint or peak of a phenophase (Miller-Rushing et al. 2008,

Moussus et al. 2010, Bertin 2015). Recently more robust methods have been introduced.

Templ et al. (2017) used survival modelling to estimate the median date of flowering

and Pearse et al. (2017) used an extinction model to estimate the first flowering date.

Using repeated observations of individual plants, as opposed to observations from

across a population, site, or region, allows for more reliable estimates. For example if

flowers are not present during one visit but present during the next, the transition of

flowers opening is constrained to the window between the two visits (Gerst et al. 2016).

Studies of bird migration phenology face similar challenges and several estimators have

been used to model the first arrival dates. Examples include logistic regression (Mayor

et al. 2017) and General Additive Models (GAMs) (Moussus et al. 2009, Newson et al.

2016, Lindén et al. 2017). To date no comparison has been made of these different

transition date estimators for plant phenology.

Furthermore, there are no clear guidelines for using estimators across different spatial

scales. Over a latitudinal gradient the transition of a phenophase for a single species can

last several weeks to months, and even at the local scale can vary due to many factors

(Diez et al. 2012, Zhang et al. 2017). Studies which estimate transition dates have

combined observations from individual plants (Gerst et al. 2016, Taylor et al. 2019),

sites or populations of plants (Schaber and Badeck 2002, Linkosalo et al. 2008, Basler

2016), or entire regions (Calinger et al. 2013, Park 2014). How different phenological

estimators perform across spatial scales is currently unknown.

A comparison of estimators is difficult since, due to infrequent sampling, the true date

of transitions is rarely known. Previously Moussus et al. (2010) used simulated data to

test the ability of different estimators to detect shifts in phenological distributions. Here

I expand on this prior study by using a dataset of flowering observations from a single

population where, due to the unique physiology of the focal species, transition dates can

be calculated with high precision, and the efficacy of the different estimators directly

compared. To determine how these estimators perform using different sources of

phenological data, such as those from herbarium records or crowd-source applications, I

performed this analysis across two different scales (population and individual level

transition dates), with varying sample sizes, and with varying proportions of observed

flowering presence.
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Methods

Phenological Data

I used phenological observations of the perennial forb Echinacea angustifolia collected

in Minnesota, U.S.A. in the years 1995-2015 (Waananen et al. 2018a, 2018b) to test the

accuracy of different transition date estimators. The data consist of the start and end

date of flowering (defined as the start and end of pollen production) for 286 individual

plants in a 0.5 ha plot from the 11 years of sampling, where the sampling frequency was

at least every 3 days during pollen production. The flowering of E. angustifolia is such

that the true start date of flowering can be inferred very precisely for an individual plant.

The flowering heads of E. angustifolia consist of 80-250 disk flowers in several rows.

The bottom most row flowers first, with each adjacent row flowering every day

afterwards. This pattern was used to determine the date of first flowering for an

individual to within 2 days for flowering onset and 3 days for flowering end (Wagenius

2004, Waananen et al. 2018b). With this information a true start and end date of

flowering for the entire population can be approximated.

Different interpretations of phenological metrics can yield different results (Renzi et al.

2019), thus with the E. angustifolia dataset I used strict definitions in calculating the

true values used in the analysis. For each year I calculated the following

population-level metrics: 1) the start of flowering as defined by the day of year (DOY)

of the first observed flower, 2) peak flower defined as the DOY when the most flowers

were observed in a given year, 3) the end of flowering as defined by the last DOY a

flower was observed. I also calculated two individual level metrics: 1) the start and 2)

end DOY of flowering for each individual plant in each year.

To simulate status-based data of a plant population I first determined the flowering

status (either present or absent) for every individual plant on every DOY 1-365, then

randomly sampled from these dates. Thus an observation could be of flowers present or

absent. Flowering absence observations are possible throughout the year as no

individual flowers for the full duration of the season. I performed a Monte Carlo

analysis, where for every year I repeated this 1000 times with varying sample sizes (10,

50, and 100 observations) and varying levels of flowering presence being observed

(25%, 50%, and 75%). For example, with flowering presence set to 25% using 100

observations only 25 observations were allowed to be of flower presence while the rest

were of flower absence, all being randomly chosen from the full calendar year. The

variation in sample size and ratio of flowering presence observations simulate patterns

seen in non-systematic phenological datasets, such as the those from herbarium records

or volunteer contributions. These patterns stem from biases in the time of year of

sampling, infrequent or sporadic sampling, or variations in observer effort (Dickinson et

al. 2010, Willis et al. 2017, Daru et al. 2018).

For individual level flowering estimates I performed the same random sampling routine

for every individual in every year using sample sizes of 5, 10, and 20 observations, and

flowering presence ratios of 25%, 50%, and 75%. I only used individuals which were in

flower for more than 20 days, since below that there would not be enough data in the
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lowest sample size and flowering presence classes. I repeated this 20 times for each

individual in every year in the Monte Carlo analysis.

Each estimator, described below, was fit to each random sample (Table 1). For the

population estimates this resulted in 11,000 estimates for each estimator, and sample

size/flowering presence combination. For the individual estimates this resulted in 4840

estimates for each estimator and sample size/flowering presence combination.

Estimators were compared using the R2 value between estimated and observed dates of

metrics, and by examining the density of errors from all Monte Carlo estimates.

Estimators

The First Observed method uses the earliest DOY of flowering as the estimate for the

start of flowering. Analogous to this is the Last Observed DOY for estimating the end of

flowering. These were used in both the population and individual level analysis.

The Midway method uses the midway date between the First Observed flowering date

and the most prior observation of flowering absence for an individual plant. This can be

improved by applying a restriction whereas only individuals with an observed absence

within 7 days of the First Observed presence are used (Gerst et al. 2016). Applying this

restriction reduces the final sample size available for modelling though. The Midway

method was used to estimate onset and end in the individual analysis (Midway and

Midway 7-Day), and in the population analysis by using the mean onset date from all

individuals (Mean Midway and Mean Midway 7-Day). For all cases I noted the rate at

which this could not be calculated due to inadequate sampling (ie. if no individuals have

an absence observation within 7 days prior to the first presence, than no estimate can be

made).

The Weibull method fits a Weibull distribution to only the flowering presence

observations, thus is advantageous when no absence observations are available. The

flexible Weibull distribution can model a variety of shapes, and is commonly used to

used to estimate the start or end of a process. The estimated date of first flowering is the

sum of the dates of all flowering weighted by the joint Weibull distribution and is

equivalent to estimating an extinction date (Roberts and Solow 2003, Pearse et al. 2017).

This was used for both population and individual level estimates. Code for this in the R

language was obtained from Pearse et al. (2017) and is provided in the code repository.

The Logistic method fits a generalized linear model to both presence and absence

observations using a binomial distribution, where the DOY was used to explain the

presence or absence of flowering (glm(flowering ~ doy, family=binomial)). Prior to

fitting all flowering absence observations after the last observed flowering presence

were excluded. The expected probability of observing a flower was calculated for all

DOYs 1-365, and the estimated onset of flowering was the first DOY in the season in

which the expected probability exceeded a given threshold. The inverse of this is used to

estimate the end of flowering. All absence observations prior to the First Observed

flowering date were excluded, the expected probability was calculated for all DOYs

1-365, and the first DOY where the probability of flowering falls below the threshold

5PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27629v2 | CC BY 4.0 Open Access | rec: 19 Aug 2019, publ: 19 Aug 2019



was the estimate for the end of flowering. I evaluated a range of probability thresholds

(0.05, 0.25, 0.50 ,0.75, and 0.95) and used the one with the highest R2 for each

combination of metric, sample size, and flowering presence ratio. This method was used

in both the population and individual level analysis.

The GAM method is unique in that it can potentially estimate the full flowering

phenology for a season (onset, peak, and end) using smoothing splines. Similar to the

Logistic method, a general additive model was fit with a binomial distribution and DOY

explaining the presence or absence of flowers, where the DOY was a thin plate

regression spline (gam(flowering ~ s(doy, bs=’tp’), family=binomial)). The expected

probability of flowering was calculated for all DOYs 1-365. The estimated onset date

was the first DOY in which the probability exceeded a given threshold. The estimated

peak flowering date was the DOY with the maximum probability in a given year. The

estimated end of flowering was the first DOY, after the peak, in which the probability

fell below the threshold. As in the Logistic method I evaluated five probability

thresholds and chose the one with the highest R2 for each metric and scenario. Results

showing the best probability thresholds for the GAM and Logistic are available in

Figure S4. The GAM method was used for estimating onset and end in both the

population and individual level analysis, and for estimating peak flowering in the

population analysis.

The Survival method uses a Kaplan–Meier model, which is commonly used to estimate

the survival of medical patients. Patient survival (alive or dead) observed in the years

following a treatment is used in the model to estimate overall survival probability, with

median survival rate, in years, used as a common summary statistic. In a phenology

context observations of non-flowering and flowering can be ascribed to alive or dead,

respectively, and the DOY, instead of year, of observation used as the time (Templ et al.

2017). The median survival rate can then be interpreted as the median time for

flowering. I used the survfit function in the R package survival using right censoring

(Therneau 2015). This method was used to estimate peak flowering in the population

analysis.

Finally, the Mean Flowering method uses the average DOY of all flowering presence

observations from throughout the year. This was used to estimate peak flowering in the

population analysis.

All analysis was done using the R programming language (version 3.6.0, R Core Team

2017). Packages used during the analysis included dplyr (version 0.8.1, Wickham et al.

2017), tidyr (version 0.8.3, Wickham and Henry 2018), ggplot2 (version 3.1.1,

Wickham 2016), mgcv (Wood 2003, version 1.8.28, 2011), survival (version 2.44.1.1,

Therneau 2015), testthat (version 2.1.1, Wickham 2011), ggridges (version 0.5.1, Wilke

2018), and lubridate (version 1.7.4, Grolemund and Wickham 2011). Code to fully

reproduce this analysis is available on GitHub

(https://github.com/sdtaylor/phenology_estimators) and archived on Zenodo

(https://doi.org/10.5281/zenodo.3234913).
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Table 1: Estimators used in this analysis. p indicates the

estimator uses only presence observations as opposed to both

presence and absence observations.

Population Individual

Onset Peak End Onset End

First/Last Observed X p X p X p X p

Midway / Midway 7-Day X X

Mean Midway / Mean Midway 7-Day X X

Weibull X p X p X p X p

Logistic X X X X

GAM X X X X X

Survival X

Mean Flowering X p

Results

Population Onset Estimates

For population level flowering onset the Weibull method produced estimates with the

lowest error for most scenarios (Fig. 1). Excluding the scenario where the proportion of

flowering presence was 25% and with a sample size of 10, the Weibull method had R2

values from 0.34 - 0.79 and median error rates of 3 - 4 days (upper and lower bound

errors range from -20 - -1 and 15 - 8 for the 0.025 and 97.5 quantiles, respectively).

With a flowering proportion presence of 25% and sample size of 10 the First Observed

method had the highest R2, but still overestimated the true dates by 11 days on average.

With higher sample sizes the First Observed method performed comparable to, but

always slightly worse than, the Weibull method.

The Logistic and GAM methods had the highest R2, and similar median errors to the

Weibull method, when the sample size was high (50-100) and ratio of flowering

presence low (25%). In the scenarios where they had the highest R2, the best threshold

for estimating onset was 0.25 and 0.50 for the GAM and Logistic methods, respectively

(Fig. S4). As the proportion of flowering presence increased, and relative amount of

absences decreased, the Logistic and GAM methods tended to perform worse (Fig. 1).

This was due to larger time gaps in the data since flowering presence observations occur

during a short time window. The gaps resulted in overfit models which increasingly

underestimated flowering onset as the proportion of flowering absences decreased (Fig

S5).

The Mean Midway and Mean Midway 7-Day methods were never the best performing
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Figure 1: The error distribution of all estimators for population onset. The density

curves are each derived from 11,000 randomly drawn observations, with sample size

and presence proportion stated, across eleven years of phenological data. Text values

represent the median error and the 95% quantile range in parenthesis.

methods for estimating population onset. The Mean Midway method did not improve

by increasing the sample size or by increasing the proportion of flowering presence

observations. Results from the Mean Midway 7-Day method using a sample size of 10

were excluded due to less than 1% of random samples resulting in a usable estimate.

This was due to the requirement of each individual plant having at least one presence

and one prior absence observation. The usable number of estimates for the remaining

scenarios ranged from 2-10% (Fig. S1). With a sample size of 10 the GAM method

only produced estimates 27-81% of the time because of too few absence observations,

and 100% of the time in all other scenarios.
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Population End Estimates

The end of flowering for the entire population was more difficult to estimate than the

onset of flowering. The highest R2 for a given scenario in estimating population onset

was always higher than the same scenario in population end estimates. For end

estimates the Weibull method had the highest R2 in 4 of 9 scenarios, including all three

scenarios where the proportion of flowering presence was 75%, as well as when the

proportion was 50% with a sample size of 10 (Fig. 2, B,C,F,I). With a sample size of 50

and 100 and a presence proportion of 50% and 25% the Logistic and GAM methods had

the highest R2 (Fig. 2, D,E,G,H). Where it performed the best the Logistic method used

a threshold of 0.25 or 0.50 for estimating flowering end, while the GAM method used a

threshold of 0.05 (Fig. S4). As in estimating population onset, the Logistic and GAM

methods performed worse with increasing flowering presence due to large gaps in the

absence data (Fig. S5).

With a sample size of 10 and presence proportion of 25% the Last Observed method had

the highest R2, but still underestimated the end date of flowering by 17 days the

majority of the time (Fig. 2,A). The Midway method, both with and without the 7-day

restriction, were never the best performing estimators. Without the 7-day restriction the

method consistently overestimated the end date. With the 7-day restriction the method

consistently underestimated the end date. Neither Midway method improved with either

increasing sample size or increasing proportion of flowering presence. As in the

population onset the results from the Mean Midway 7-Day method were excluded due

to less than 1% of estimates being usable, and the GAM method had a low proportion

(27-81%) of usable estimates with a sample size of 10 (Fig. S1).

Population Peak Estimates

All three methods to estimate peak flowering had median error rates of 1 day except in

one instance, using the GAM method for a sample size of 10 and proportion of flower

presence 75% (Fig. 3, C). The Mean Flowering method had the highest R2 in all

scenarios except three where it had R2 values equal to the Survival Curve method. For

the Mean and Survival Curve methods, errors improved with both increasing sample

size and increasing proportion of flowering presence. For the GAM method errors

improved with increasing sample size, but worsened with increasing proportion of

flowering presence.

Individual Onset and End Estimates

For individual plant onset estimates the Midway 7-Day method performed the best in 7

of 9 scenarios (Fig. 4, A-C,D,E,G,H). In two scenarios, when the sample size was 15

and 20 with a proportion of flowering presence observations of 75%, the First Observed

method had slightly higher R2 and lower median error rates than the Midway 7-Day

method (Fig. 4, F,I). The Midway 7-Day method was able to produce usable individual

9PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27629v2 | CC BY 4.0 Open Access | rec: 19 Aug 2019, publ: 19 Aug 2019



Figure 2: The error distribution of all estimators for population end. The density

curves are each derived from 11,000 randomly drawn observations, with sample size

and presence proportion stated, across eleven years of phenological data. Text values

represent the median error and the 95% quantile range in parenthesis.
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Figure 3: The error distribution of all estimators for population peak. The density

curves are each derived from 11,000 randomly drawn observations, with sample size

and presence proportion stated, across eleven years of phenological data. Text values

represent the median error and the 95% quantile range in parenthesis.

11PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27629v2 | CC BY 4.0 Open Access | rec: 19 Aug 2019, publ: 19 Aug 2019



estimates only 3-17% of the time due to its restrictive nature, while the Midway method

produced usable estimates 70-100% of the time (Fig. S2).

The Weibull, Midway, Logistic, and GAM methods never produced the best estimate for

any scenario in estimating individual plant flowering onset. The Weibull method did

improve with increasing sample size and increasing proportion of flowering presence.

Though, since the Weibull method does not use absence observations, increasing the

flowering proportion effectively just increases the sample size. At effective sample sizes

of 10 or more the Weibull method produced estimates only slightly worse than the

Midway 7-Day and First Observed method. The Midway, Logistic, and GAM methods

improved slightly with increasing sample size but worsened with increasing proportion

of flowering presence.

The errors from individual end estimates were nearly identical to individual onset errors,

thus the model performance outcomes were the same. Individual end errors are supplied

in the supplement (Fig. S3).

Discussion

Overall findings

This comparison of phenological estimators using a dataset with known onset, peak, and

end of flowering dates confirmed biases in some estimators and shows the strength of

newer ones. Overall the Weibull method predominantly outperformed all other methods

for estimating the onset and end of flowering populations. The Mean Flowering method

produced better, or equal, estimates than other methods for flowering peak. The Midway

7-Day method outperformed other methods in estimating onset and end of individuals

flowering, albeit with limitations on the usable sample size. Exceptions to these stem

mainly from differences in sample size but also the shape of the flowering distribution.

The Weibull method was the best overall for estimating population onset and end with

two exceptions. First, when the total number of flowering presence observations were

extremely low (ie. with a total sample size of 10 and percent presence observations

25%) using just the first or last observed flowering date produced better estimates. Yet

with such a low R2 values this method cannot be recommended, and along with other

studies I recommend not estimating flowering onset or end with extremely low sample

sizes (Miller-Rushing et al. 2008, Moussus et al. 2010, Bertin 2015). Second, using a

larger sample size (50-100) and a small proportion of flowering presence the Logistic

and GAM methods performed slightly better than the Weibull method. This suggests

the Logistic and GAM methods effectively utilize flowering absence observations, but

require a large amount of them, relative to presence observations, to accurately describe

the phenology. Exploring the GAM and Logistic methods further showed that regular

sampling, especially during the non-flowering season may also be important. Absence

observations are rare in herbarium data due to a bias toward growing season sampling

(Rich and Woodruff 1992, Daru et al. 2018), but more common in datasets with
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Figure 4: The error distribution of all estimators for individual onset. The density curves

are each derived from 4840 randomly drawn observations, with sample size and presence

proportion stated, across eleven years of phenological data for 286 individual plants.

Text values represent the median error and the 95% quantile range in parenthesis.
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status-based protocols (Denny et al. 2014, Elmendorf et al. 2016). Given that flowering

absence observations could prove useful when presence observations are low, absence

observations should be emphasized in future data collection efforts.

For estimating the peak of flowering populations the Mean Flowering method

consistently produced the best estimate, even when the sample size and proportion of

flowering presence was low, 10 and 25%, respectively. This method has the advantage

over the Survival Curve and GAM method of not requiring flowering absence

observations. As noted in other studies the Mean Flowering method is a reliable method

for estimating peak flowering (Miller-Rushing et al. 2008, Moussus et al. 2010, Bertin

2015).

For estimating the start and end of flowering for individual plants the Midway 7-Day

method was the best in most cases. The Weibull method performed similarly when the

absolute number of flowering presence observations was greater than 10, and the First

Observed method also performed well with a high amount of presence observations.

The First Observed method can be advantageous as it ensures no underestimate of the

onset date (or no overestimate of the end date if using Last Observed). In the vast

majority of cases (83-97% depending on the scenario, Fig. S2) it was not possible to use

the Midway 7-Day method due to lack of individuals with an absence observation

within 7 days of the first presence observation. With large enough datasets using this

method is still possible even with the restriction (Gerst et al. 2016), and it can also be

relaxed with a 15 or 30 day minimum to increase sample size if needed (Taylor et al.

2019). If an insufficient number of individuals results from applying the restriction

using the Midway method, then the Weibull or First Observed methods are preferable

for estimating onset in an individual given enough flowering presence observations.

While the Midway 7-Day method was the best for estimating flowering for individual

plants, using the mean of those estimates from a population (Mean Midway 7-Day) did

not provide the best population level estimates even with a large sample size. The onset

of flowering for individuals is staggered over time and the mean of these start times is

not equivalent to the population onset date (Ison and Wagenius 2014, Keyzer et al. 2017,

Renzi et al. 2019).

Prior study comparison

Moussus et al. (2010) found GAM’s to be among the best estimators for detecting

phenological shifts among different seasons, yet here the GAM method performed best

only in scenarios with a large proportion of flowering absences. Differences in analysis

include Moussus et al. (2010) using a poisson distribution with simulated count data,

while here I used a binomial distribution and observed presence/absence data. Moussus

et al. (2010) also did not evaluate the Weibull estimator, which outperformed the GAM

method in many scenerios in the current study. Here the performance of the GAM

method was influenced by the proportion of absence observations, where their relative

amount affected the best threshold to use as well as the highest accuracy attainable (Fig.

S5). Future studies could potentially adjust the GAM model specifications to better

accommodate scenarios with a low proportion of absence observations. It is also
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possible that the output for the GAM model used here, the probability of observing a

flower, is not analogous to the total abundance of flowers. General additive models have

substantial flexibility (Wood 2017, Simpson 2018, Pedersen et al. 2018) and further

exploration into their use for plant phenology would be beneficial.

Drivers of estimator performance

The shape of the flowering distribution affected the proficiency of the estimators. The

number of E. angustifolia flowers observed over time resembles a skewed distribution,

with a quick onset, peak, and gradual decline in number of flowers. The long tail made

end estimates more difficult as the probability of observing a flower close to the true end

was low. The best performing estimators also tended to overestimate onset and

underestimate end of population flowering, as the majority of randomly sampled

observations came from the center of the flowering period. The likeness to a normal

distribution allowed for very accurate estimates of peak flowering using the Mean

Flowering method. Flowering distributions for many species are thought to have similar

properties (Forrest and Miller-Rushing 2010, Clark and Thompson 2011), but the

methods used here may not be appropriate for other phenophases, especially ones which

can last significantly longer (ie. leaves lasting several months on the tree). Flowering is

also expected to have non-uniform shifts from changing drivers (Ogilvie and Forrest

2017, Theobald et al. 2017). Other phenophases which do not have a distinct transition

or cannot be easily modelled using presence and absence, such as fruit maturation, may

not be well described by the methods used here. In these cases models integrating the

continuous cycle of phenology would likely need to be developed, such as using

integrated process based models (Chuine and Régnière 2017) or hierarchical bayesian

models (Clark et al. 2014).

The outcomes for estimating the end of individuals flowering was essentially identical

to estimates for the onset. The flowering of an individual E. angustifolia plant over time

approximates a uniform distribution. Thus, unlike the skewed population flowering over

time, estimators for the onset and end of individuals perform equally. This may not be

the case when the study species are larger in size and/or contain numerous flowers

which can be counted (Renzi et al. 2019). In these cases the phenology over time may

be more similar to a population, with a flowering peak and potentially skewed

distribution (while E. angustifolia, being in the family Asteraceae, can have one or more

flowering heads each with numerous florets, here I treated each individual plant as a

single unit).

Recommendations

Results from this study can be applied to two common sources of large-scale

status-based phenological observations, herbarium data and citizen science data. Data

from herbarium specimens represent spatially diffuse observations at the population

scale or larger, with a bias toward flowering presence (Willis et al. 2017, Daru et al.
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(2018)). The best onset estimator for these data depends on the type and amount of data

available. With a low sample size (less than 10 observations) I recommend not

estimating onset as it can lead to high errors (Miller-Rushing et al. 2008, Moussus et al.

2010, Bertin 2015). With larger sample sizes the Weibull method will be appropriate in

most cases as herbarium data are mostly presence observations, but when there are a

large amount of absences the GAM or Logistic methods should be explored. With a

very large sample size (greater than 50) the First Observed method can be just as

accurate as the Weibull, but note that this accuracy will likely decrease for longer

lasting phenophases such as leaves or fruit. For estimating the end of a phenophase the

same recommendations apply, with the caveat that the minimum sample size will need

to increase if the phenophase distribution has a long tail. As herbarium specimens do

not represent repeated observations of the same individual, individual level estimates

are not applicable.

Citizen science phenological data can be subset into two types: 1) those from social

media applications using geotagged images (ie. Twitter or iNaturalist, Silva et al. 2018),

and 2) those from observing networks and consisting of repeated observations of the

same site or individual plant (ie. the USA National Phenology Network or Pan

European Phenological database, Denny et al. 2014, Templ et al. 2018). For the former

the same recommendations as from herbarium specimen data apply. For the latter, if

estimates for individual plants are needed then the Midway-7 Day method is most

suitable as long as absence observations are available and the final usable amount of

data is adequate. Without absences, or to provide more usable data, the First Observed

method can be used as long as the sample size is adequate, and the Weibull method

should be considered regardless due to its ability to generate confidence intervals

(Pearse et al. 2017).

This analysis used data from a single site, yet with herbarium or citizen science data

observations more commonly represent a large spatial extent. At these larger scales the

underlying phenology of a species is affected by an array of biotic and abiotic factors

which can cause different flowering times at distant locations (Diez et al. 2012, Keyzer

et al. 2017, Prevéy et al. 2017). When combining phenological observations from

different locations any transition estimates will be for some subset of the full flowering

phenology across the species entire range (ie. the universal curve, Keyzer et al. (2017)).

The spatial extent and grain of the analysis will affect the minimum sample size needed

and also what the estimates represent due to the modifiable areal unit problem (Jelinski

and Wu 1996). For example consider a case where 10 observations of flowering from a

single year are used to estimate onset (Fig. 5A), which represents flowering onset for

the entire landscape. If the same landscape is subset to a finer spatial grain (Fig. 5B),

then each of the two smaller spatial units could have an independent onset estimate, but

would each require an adequate sample size. Also note that the onset estimate for the

larger grain (Fig. 5A) will likely approximate the onset estimate of the earlier of the two

smaller grain estimates, while the larger grain end estimate will approximate the later of

the smaller grain estimates. Previous studies used political boundaries as the spatial unit

(Park 2014, Pearse et al. 2017), though the optimal spatial grain and observation density

needed likely depends on the species being analysed and the large-scale gradients over

which it occurs. Future studies should examine these relationships between spatial
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Figure 5: A theoretical scenario where 10 flowering observations are used to estimate

onset across a landscape (A), and a second scenario where onset is estimated at a

finer spatial grain on the same landscape (B). Curves indicate the theoretical flowering

distribution over time for the respective area.
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scales and phenology more closely.

Conclusion

In summary I have used a precise flowering phenological dataset to confirm that naively

using the first flowering observation is biased, and estimates using the Mean Flowering

reliable for estimating flowering peak. I have also shown how the recently introduced

Weibull method can produce reliable estimates given an adequate sample size. The

Logistic and GAM methods can be useful with large datasets having low amounts of

flowering presence, and future collection efforts should emphasize absence observations

for this reason. Additionally, estimating transition dates of individual plants is best done

with the Midway method using a 7 day restriction, and the Weibull method if the

restriction results in a low number of final samples. These estimators are needed for

translating status-based phenological data into distinct transition dates used to track

changing seasonal patterns.
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