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Jellyûsh have existed on the earth for around six hundred million years and have evolved
in response to environmental changes. Hydrozoan jellyûsh, members of phylum Cnidaria,
exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and
sexually-reproducing medusae. Although free-swimming medusae display complex
morphology and exhibit increase in body size and regenerative ability, their underlying
cellar mechanisms are poorly understood. Here, we investigate the roles of cell
proliferation in body-size growth, appendage morphogenesis, and regeneration using
Cladonema paciûcum as a hydrozoan jellyûsh model. By examining the distribution of S
phase cells and mitotic cells, we revealed spatially distinct proliferating cell populations in
medusae, uniform cell proliferation in the umbrella, and local cell proliferation in tentacle
bulbs. Blocking cell proliferation by hydroxyurea caused inhibition of body size growth and
defects in tentacle branching, nematocyte diûerentiation, and regeneration. Local cell
proliferation in tentacle bulbs is observed in medusae of two other hydrozoan species,
Cytaeis uchidae and Rathkea octopunctata, indicating that it may be a conserved feature
among hydrozoan jellyûsh. Altogether, our results suggest that hydrozoan medusae
possess actively proliferating cells and provide experimental evidence regarding the role
of cell proliferation in body-size control, tentacle morphogenesis, and regeneration.
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 16 

Abstract 17 

Jellyfish have existed on the earth for around six hundred million years and have 18 

evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum 19 

Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating 20 

polyps, and sexually-reproducing medusae. Although free-swimming medusae display 21 

complex morphology and exhibit increase in body size and regenerative ability, their 22 

underlying cellar mechanisms are poorly understood. Here, we investigate the roles of 23 

cell proliferation in body-size growth, appendage morphogenesis, and regeneration 24 

using Cladonema pacificum as a hydrozoan jellyfish model. By examining the 25 

distribution of S phase cells and mitotic cells, we revealed spatially distinct proliferating 26 

cell populations in medusae, uniform cell proliferation in the umbrella, and local cell 27 

proliferation in tentacle bulbs. Blocking cell proliferation by hydroxyurea caused 28 

inhibition of body size growth and defects in tentacle branching, nematocyte 29 

differentiation, and regeneration. Local cell proliferation in tentacle bulbs is observed in 30 

medusae of two other hydrozoan species, Cytaeis uchidae and Rathkea octopunctata, 31 

indicating that it may be a conserved feature among hydrozoan jellyfish. Altogether, our 32 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27627v1 | CC BY 4.0 Open Access | rec: 2 Apr 2019, publ: 2 Apr 2019



results suggest that hydrozoan medusae possess actively proliferating cells and provide 33 

experimental evidence regarding the role of cell proliferation in body-size control, 34 

tentacle morphogenesis, and regeneration.  35 

 36 

 37 

Introduction 38 

Cell proliferation lies at the core of controlling cell number in Metazoa and thus 39 

contributes to the growth and the maintenance of animal body and organs (Leevers & 40 

McNeill 2005; Penzo-Mendez & Stanger 2015). During development, cell proliferation 41 

plays a critical role in body-size increase by adding cells into tissue layers, and it further 42 

generates cellular resources for different cell types by multiplying progenitors (Gillies & 43 

Cabernard 2011; Hardwick et al. 2015). Later in adults, proliferating cells are required 44 

for physiological cell turnover and for the replacement of damaged cells after tissue 45 

injury (King & Newmark 2012; Pellettieri & Sanchez Alvarado 2007). These roles of 46 

cell proliferation in multicellularity must be conserved throughout evolution: indeed, 47 

sponges, one of the earliest metazoan organisms, have acquired mechanisms to allow 48 

cell turnover by controlling proliferative capacities (Alexander et al. 2014; Kahn & Leys 49 

2016). 50 

As the sister group of bilaterians and early-branching metazoans, cnidarians 51 

have been studied as a model to understand evolutionary development (Genikhovich & 52 

Technau 2017). Cnidarians are diploblastic and radially symmetric animals that include 53 

diverse species such as corals, sea anemones, hydroids, and jellyfish (Technau & 54 

Steele 2011). During the embryonic development of the sea anemone Nematostella 55 

vectensis, cell proliferation is coordinated with epithelial organization and is involved in 56 

tentacle development (Fritz et al. 2013; Ragkousi et al. 2017). Cnidarians are also 57 

known for their regenerative abilities: for instance, Hydra polyps have been used for a 58 

century to investigate mechanisms of metazoan regeneration (Fujisawa 2003; Galliot & 59 

Schmid 2002). The basal head regeneration of Hydra relies on cell proliferation 60 

triggered by dying cells (Chera et al. 2009b; Galliot & Chera 2010). Hydractinia polyps 61 

regenerate through cell proliferation and the migration of stem-like cells (Bradshaw et al. 62 

2015; Gahan et al. 2016). Although much has been learned about mechanisms 63 

controlling embryogenesis and growth during regeneration, it is unclear how cnidarians 64 

A
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integrate cell proliferation to control their body size and maintain tissue homeostasis 65 

under normal physiological conditions. 66 

Among cnidarians, hydrozoan jellyfish have a complex life cycle including 67 

planula larvae, sessile polyps, and free-swimming medusae. While polyps undergo 68 

asexual reproduction to grow vegetatively, medusae generate gametes to perform 69 

sexual reproduction. Despite the limited life span compared to the long-lived or possibly 70 

immortal polyps, the size of medusae increases dramatically (Hansson 1997; Miyake et 71 

al. 1997). Furthermore, medusae maintain their regenerative capacity for missing body 72 

parts by integrating dedifferentiation and transdifferentiation (Schmid & Alder 1984; 73 

Schmid et al. 1988; Schmid et al. 1982). Recent studies using the hydrozoan jellyfish 74 

Clytia hemisphaerica have provided mechanistic insights into embryogenesis, 75 

nematogenesis, and egg maturation (Denker et al. 2008; Momose et al. 2008; Quiroga 76 

Artigas et al. 2018). However, little is known about the mechanism that controls body 77 

size growth in medusae. It is also unclear whether cell proliferation is required for 78 

tentacle morphogenesis and regeneration of hydrozoan jellyfish. 79 

The hydrozoan jellyfish Cladonema is an emerging model, with easy lab 80 

maintenance and a high spawning rate, that is suitable for studying diverse aspects of 81 

biology including development, regeneration, and physiology (Fujiki et al. 2019; 82 

Graziussi et al. 2012; Suga et al. 2010; Takeda et al. 2018b; Weber 1981). Cladonema 83 

is characterized by small-sized medusae with branched tentacles. Using specialized 84 

adhesive tentacles, Cladonema can adhere to different substrata, such as seaweed, in 85 

the field. The species Cladonema pacificum, originally found along coastal areas in 86 

Japan, have nine main tentacles with a stereotyped branching pattern (Fig. 1A). During 87 

the Cladonema medusa9s maturation, body size increases, and each main tentacle 88 

grows and exhibits branching morphology (Fujiki et al. 2019), providing an ideal system 89 

to dissect the cellular mechanisms associated with jellyfish growth and morphogenesis. 90 

In this study, we investigate the role of cell proliferation in medusa growth and 91 

morphogenesis, using Cladonema pacificum as a model of hydrozoan jellyfish. We 92 

show that cell proliferation occurs evenly across the medusa body, including the 93 

umbrella and manubrium, with the exception of the tentacles, where cell proliferation is 94 

spatially localized to the bulb area. Blocking cell-cycle progression with a 95 
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pharmacological assay inhibits the increase of body size, tentacle branching, and 96 

nematocyte differentiation, which suggests that cell proliferation is necessary for growth 97 

and tentacle morphogenesis. We further show that cell proliferation is required for 98 

tentacle regeneration in Cladonema medusae. Our findings reveal cell proliferation9s 99 

critical roles in the development and maintenance of the Cladonema body and 100 

appendages and provide a basis for understanding growth-control mechanisms in 101 

hydrozoan jellyfish. 102 

 103 

 104 

Materials & Methods 105 

Animal cultures 106 

We used Cladonema pacificum (strains 6W and UN2), Cytaeis uchidae (strain f17) and 107 

Rathkea octopunctata (strain MF-1) medusae for this research. The medusae were 108 

cultured in plastic cups (V-type container, V-7 and V-8, AS ONE) at 20oC (Cladonema 109 

and Cytaeis) or 4 oC (Rathkea), and their polyps were maintained in the cups (V-7) at 20 
110 

oC or 4 oC in darkness. Vietnamese brine shrimp (A&A Marine LLC) were fed to 111 

medusae and polyps. Artificial sea water (ASW) was prepared by SEA LIFE (Marin 112 

Tech, Tokyo). Pictures of medusae were taken through a LEICA S8APO microscope 113 

with a Nikon digital camera (D5600). 114 

 115 

Immunofluorescence 116 

The medusae were anesthetized with 7% MgCl2 in ASW for 10 min and fixed 4% 117 

paraformaldehyde (PFA) in ASW for 1 hr. After fixation, the samples were rinsed in 1x 118 

PBS and washed 3 times (10 min each) in PBS containing 0.1% Triton X-100 (0.1% 119 

PBT). The samples were incubated in primary antibodies in 0.1% PBT overnight at 4 oC. 120 

The antibodies used were rabbit anti-Phospho-Histone H3 (Ser10) (1:500; Upstate, 06-121 

570) and mouse anti-³-Tubulin (1:500; SIGMA, T6199). After the primary antibody 122 

incubation, the samples were washed 3 times (10 min each) in 0.1% PBT and incubated 123 

in secondary antibodies (1:500; ALEXA FLUOR Goat anti-mouse IgG, ALEXA FLUOR 124 

Goat anti-rabbit IgG, Life Technologies) and Hoechst 33342 (1:250; Thermo Scientific) 125 

in 0.1% PBT for 1hr in dark. After 4 washes (10 min each) in 0.1% PBT, the samples 126 
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were mounted on slides with 70% glycerol. Confocal images were collected through 127 

Leica SP8 or SP5 confocal microscopes. Z-stack images were performed using 128 

ImageJ/Fiji software. 129 

 130 

EdU labeling 131 

The medusae were incubated with 20 ¿M EdU (EdU kit; Invitrogen, 1836341) in ASW 132 

for 24 hr or 150 ¿M for 1hr. After EdU treatment, the medusae were anesthetized with 133 

7% MgCl2 in ASW for 10 min and fixed 4% paraformaldehyde (PFA) in ASW for 1 hr. 134 

After fixation, the samples were rinsed in 1x PBS and washed 3 times (10 min each) in 135 

0.1% PBT. The samples were incubated with a EdU reaction cocktail (1x reaction 136 

buffer, CuSO4, Alexa Fluor azide, and 1x reaction buffer additive; all included in EdU kit; 137 

Invitrogen, 1836341) for 30 min in the dark. After the EdU reaction, the samples were 138 

washed 3 times (10 min each) in 0.1% PBT and Hoechst 33342 (1:250; Thermo 139 

Scientific) in 0.1% PBT for 1hr in dark. The samples were washed 4 times (10 min each) 140 

in 0.1% PBT and were mounted on slides with 70% glycerol.  141 

 142 

Hydroxyurea treatment 143 

The live medusae were incubated with 10mM hydroxyurea (HU) (Wako, LKP3349) in 144 

ASW (ASW only for control) (Fig. 2-4). HU incubation was continued for 9 days and HU 145 

solution or ASW was changed every other day.  146 

 147 

Measurement of umbrella size and tentacle length  148 

Pictures of medusae were taken with a Nikon D5600, and umbrella size was measured 149 

using polygon selections with ImageJ software (Fig. 2B). We measured the length and 150 

width of medusae under the microscope using an ocular micrometer and multiplied the 151 

length and width to generate a value for umbrella size (Fig. 2D). Tentacle length was 152 

measured daily under the microscope with an ocular micrometer (Fig. 4D). 153 

 154 

DAPI poly-³-glutamate staining 155 

This protocol was adapted from (Szczepanek et al. 2002): The medusae were 156 

anesthetized with 7% MgCl2 in ASW for 10 min and fixed with 4% PFA in ASW for 1 hr. 157 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27627v1 | CC BY 4.0 Open Access | rec: 2 Apr 2019, publ: 2 Apr 2019



After fixation, the samples were rinsed in 1x PBS and washed 3 times (10 min each) in 158 

0.1% PBT. The samples were incubated in DAPI (1:500; Polysciences, Inc.) in PBT for 159 

60 min. After the DAPI incubation, samples were washed 4 times (10 min each) in PBT 160 

and mounted on slides with 70% glycerol in DW. Samples were scanned with a 161 

combination of 488nm excitation and 555nm emission filter using either Leica SP8 or 162 

SP5 confocal microscopes. Using ImageJ, we performed Z-stacks and counted 163 

nematocysts. Empty nematocysts were counted manually. 164 

 165 

Dissection of tentacles for regeneration  166 

Tentacles9 basal sides were dissected with small scissors, leaving the tentacle bulbs 167 

intact. Amputated medusae were fed every other day. 168 

 169 

 170 

Results 171 

Cell proliferation patterns in the medusa Cladonema pacificum 172 

To understand the spatial pattern of cell proliferation in Cladonema medusa, we 173 

performed 53ethynyl3293deoxyuridine (EdU) staining (Salic & Mitchison 2008). EdU-174 

positive cells, which indicate S-phase or the former S-phase cells, were broadly 175 

detected in the whole medusa body including the umbrella, the manubrium (a 176 

supporting organ of the oral in medusae), and the tentacles (Fig. 1B and 1C). In the 177 

tentacles, large numbers of EdU positive cells were located at their base, called tentacle 178 

bulbs, suggesting that tentacle bulbs might behave as a proliferation zone (Fig. 1D). We 179 

confirmed that these EdU-positive cells were proliferating cells using the mitotic marker, 180 

anti-Phospho-Histone 3 (PH3) antibody. PH3-positive cells were detected in both the 181 

umbrella and the tentacle bulbs (Fig. 1E and 1F). We further observed mitotic spindles, 182 

detected with an anti-³ Tubulin antibody in PH3-positive cells (Fig. 1E). These results 183 

suggest that cell proliferation may occur uniformly in the medusa body, while a subset of 184 

cell proliferation could occur locally in the tentacle bulbs. Based on these observations, 185 

we hypothesized that uniform cell proliferation may control body size growth while local 186 

cell proliferation in the tentacle bulbs may contribute to tentacle morphogenesis. 187 
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 188 

Cell proliferation is necessary for the control of body size  189 

Animal body size increases upon intake of nutrition because nutrition influences cell 190 

proliferation and cell growth (Bohnsack & Hirschi 2004). We first monitored the body 191 

size of juvenile medusae by focusing on the size of their umbrella because the umbrella 192 

grows in direct proportion with whole body size. Under normal feeding conditions, the 193 

medusa umbrella size increased dramatically by 54.8%, from 0.62±0.02 mm2 to 194 

0.96±0.02 mm2 during the first 24 hours, with a subsequent minor increase observed 195 

over the following 5 days (0.98±0.03mm2) (Fig. 2A and 2C). By contrast, under starved 196 

conditions, the size of medusa umbrella did not increase, compared to controls, and 197 

rather gradually decreased over the following 5 days. Moreover, fewer EdU positive 198 

cells were detected in the starved medusae than in fed controls (Fig. 2B), suggesting 199 

that, at the cellular level, nutrition affects cell proliferation in medusae. These results 200 

indicate that body-size growth in juvenile medusa depends on available nutrition. 201 

To test the hypothesis that uniform cell proliferation in medusa contributes to 202 

body-size increase, we performed a pharmacological assay to block cell-cycle 203 

progression using hydroxyurea, a cell-cycle inhibitor that causes G1 arrest (Koc et al. 204 

2004). Under hydroxyurea treatment, S phase cells detected by EdU staining 205 

disappeared from the medusa body (Fig. 2D). By tracking the size of umbrella, we found 206 

that hydroxyurea-treated medusae did not exhibit the size increase that was observed in 207 

controls (Fig. 2E). Together, these results suggest that cell-cycle progression affects 208 

body size in Cladonema medusae.  209 

 210 

Cell proliferation is necessary for tentacle morphogenesis  211 

In Clytia hemisphaerica, another hydrozoan jellyfish, stem-like cells or progenitors are 212 

proposed to exist in tentacle bulbs (Denker et al. 2008). The local cell proliferation 213 

observed in the tentacle bulbs of Cladonema medusa may reflect such stem or 214 

progenitor cell populations (Fig. 1D and 1F). To test the hypothesis that local cell 215 

proliferation in tentacle bulbs contributes to tentacle morphogenesis, we first focused on 216 

tentacle branching. Although the initial tentacles have one branch in juvenile medusa, 217 

the number of branches gradually increases during medusae maturation (Fujiki et al. 218 
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2019). In our normal feeding condition, the branching number reached approximately 219 

three (2.98±0.05 per tentacle) by day 9 (Fig. 3A and 3C). By contrast, when cell 220 

proliferation was blocked with hydroxyurea, none of the medusae exhibited the typical 221 

increase in branched tentacles; rather, all maintained only one branch (Fig. 3B and 3C). 222 

This result points to cell proliferation in tentacle bulbs as a necessary component for 223 

normal tentacle branching. 224 

Cnidarian tentacles have nematocysts, organelles specific to the cnidarian 225 

phylum that are utilized for food capture and defense against predators (Kass-Simon & 226 

Scappaticci 2002). In Clytia hemisphaerica, stem-like cells or progenitors in tentacle 227 

bulbs seem to supply nematocysts at the tips of tentacles via cell proliferation, migration 228 

to the tip, and differentiation (Denker et al. 2008). This evidence raises the possibility 229 

that cell proliferation also controls nematocyte development or nematogenesis in 230 

hydrozoan jellyfish. To monitor nematocytes in Cladonema tentacles, we utilized DAPI, 231 

a nuclear staining dye that can label poly-³-glutamate synthesized in the nematocyst 232 

wall (Szczepanek et al. 2002). Using poly-³-glutamate staining, we discovered 233 

nematocyte size variations ranging from 2¿m2-110¿m2 (Fig. 3D). Because nematocytes 234 

increase in size during maturation, small nematocysts tend to be immature nematocysts. 235 

We also found that some of the nematocysts were empty, suggesting that such 236 

nematocytes had been depleted (Fig. 3D). In order to investigate whether cell 237 

proliferation in tentacle bulbs also contributes to nematocyte maturation, we examined 238 

the size distribution and emptiness of nematocytes after cell-cycle blocking with 239 

hydroxyurea. Compared to controls, the rate of small nematocysts significantly reduced 240 

in the medusae under the treatment of hydroxyurea (HU+: 65.1±3.6%; HU-: 85.3±2.3%, 241 

Fig. 3D and 3E). We further detected that the rate of the empty nematocysts was higher 242 

in the medusae with hydroxyurea treatment than in controls (HU+: 25.7±3.1%; HU-: 243 

14.1±3.1%, Fig. 3D and 3F). These results indicate that even after discharge, 244 

nematocytes are still actively supplied by progenitor cell proliferation and that this refill is 245 

prevented when cell proliferation is blocked. Taken together, our data suggest that cell 246 

proliferation in tentacle bulbs plays an important role in both tentacle branching and 247 

nematogenesis.  248 
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 249 

Cell proliferation is necessary for tentacle regeneration 250 

Cnidrians are known to have a high regenerative capacity (Galliot & Schmid 2002; 251 

Holstein et al. 2003), and the hydrozoan jellyfish Cladonema species exemplifies this 252 

typical regenerative ability (Weber 1981). Given the localization of proliferative cells in 253 

the Cladonema tentacle bulb, we decided to investigate the nature of tentacle 254 

regeneration. After dissecting tentacles at their base, we monitored the process of 255 

tentacle regeneration (Fig. 4A). During the first 24 hours, wound healing occurred at the 256 

dissected area. Subsequently, the tip of tentacle became elongated and started 257 

branching on day 2 (Fig. 4A). At day 4, fully branched tentacles were observed (Fig. 258 

4A), suggesting that tentacle regeneration may follow normal tentacle morphogenesis 259 

after elongation. 260 

To examine the initial stage of tentacle regeneration, we examined the 261 

distribution of proliferating cells using PH3 staining to visualize mitotic cells. While 262 

dividing cells were frequently observed near the amputated area, mitotic cells were 263 

dispersed in uncut control tentacle bulbs (Fig. 4B). We quantified the number of PH3-264 

positive cells present in the tentacle bulbs and found a significant increase in PH3-265 

positive cells in the tentacle bulbs of amputee medusae, compared to controls (Fig. 4C). 266 

These observations indicate that initial regenerative responses accompany the active 267 

increase of cell proliferation in tentacle bulbs. In order to test the role of cell proliferation 268 

in tentacle regeneration, we blocked cell-cycle progression using hydroxyurea after 269 

dissection and monitored the length of regenerating tentacles. While the tentacles 270 

continued to elongate from the bulb structure after dissection in controls, tentacles in 271 

animals treated with hydroxyurea were not able to elongate despite displaying normal 272 

wound healing (Fig. 4D). These results demonstrate that cell proliferation in tentacle 273 

bulbs is required for proper tentacle regeneration. 274 

 275 

Cell proliferation patterns across different hydrozoan jellyfish 276 

Hydrozoan jellyfish constitute the most broadly varied class of cnidarian jellyfish with 277 

approximately 2,700 species worldwide featuring highly diverse morphological and 278 

physiological characteristics (Cartwright & Nawrocki 2010; Schuchert 2019). For 279 
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instance, Cytaeis uchidae has four tentacles, and their polyps live exclusively on one 280 

type of shell: Niotha livescens (Takeda et al. 2018a; Takeda et al. 2013). Another 281 

species, Rathkea octopunctata, has eight grouped-tentacles, and their juvenile medusae 282 

asexually produce medusae that grow out of the manubrium (Berrill 1952; Schuchert 283 

2007). To gain insight into the conserved and diversified nature of cell proliferation in 284 

hydrozoan jellyfish, we investigated the spatial pattern of cell proliferation in Cytaeis and 285 

Rathkea medusae. In Cytaeis medusa, EdU-positive cells were observed in manubrium, 286 

tentacle bulbs, and at the top of the umbrella (Fig. 5A and 5B). PH3-positive cells were 287 

also detected in the same regions, suggesting that proliferating cells in Cytaeis are 288 

distributed in a pattern similar to that observed in Cladonema. (Fig. 5C and 5D). By 289 

contrast, in Rathkea octopunctata, EdU-positive cells and PH3-positive cells were 290 

mostly restricted to the manubrium and tentacle bulbs (Fig. 5E-G). Of note, proliferating 291 

cells were frequently detected in the medusa buds that grew out of the manubrium (Fig. 292 

5E and 5F), which may reflect asexual reproduction in Rathkea medusae. These results 293 

suggest that cell proliferation may occur in tentacle bulbs across hydrozoan medusae 294 

commonly, while cell proliferation patterns may vary in a species-specific manner with 295 

physiology. 296 

 297 

Discussion 298 

In this study, we show that the body size of Cladonema medusae is influenced by cell 299 

proliferation following uptake of nutrition. Without nutrition and under the blocking of cell-300 

cycle progression, body-size increase is inhibited (Fig.2). Intriguingly, despite the 301 

significant differences between fed and starved animals and between hydroxyurea-302 

treated and -untreated animals, the body size of Cladonema medusae increases during 303 

the first 24 hours regardless of condition (Fig 2). These results can be explained by cell 304 

growth via protein synthesis (Schiaffino et al. 2013) or accretionary growth, in which 305 

cells secrete extracellular matrix to increase extracellular regions, as has been 306 

suggested in the growth of cartilage and bone (Karsenty et al. 2009; Wang et al. 2014). 307 

Given the large amount of collagen that jellyfish contain (Khong et al. 2016; Miura & 308 

Kimura 1985), extracellular matrix may increase their size during the initial growth of 309 

juvenile medusae. Another interesting feature we observed is that the body size of the 310 
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starved medusae gradually decreases after 24 hours (Fig. 2B). Similarly, upon 311 

starvation, Hydra polyps cease asexual budding and decrease their size (Buzgariu et al. 312 

2008; Chera et al. 2009a), suggesting that cnidarian animals are sensitive to nutrition 313 

availability and adapt to metabolic changes. At the organ and tissue level, such size 314 

reduction can occur via autophagy or cell death during starvation in diverse phyla 315 

(Jeschke et al. 2000; O'Brien et al. 2011; Thongrod et al. 2018; Tracy & Baehrecke 316 

2013). Cnidarians thus may utilize similar mechanisms to reduce cell size and/or cell 317 

number to adjust their body size in response to environmental changes. Molecularly, 318 

TOR and Hippo signaling are conserved machinery that control organ size, and, as 319 

such, these molecules may also play an important role in cnidarian growth control 320 

(Coste et al. 2016; Ikmi et al. 2014; Loewith & Hall 2011; van Dam et al. 2011). 321 

 Hydrozoan animals are known to possess interstitial stem cell populations, called 322 

i-cells. In Hydra and Hydractinia polyps, i-cells are localized to the body column and 323 

have the potential to differentiate into several cell types including nematocytes, nerve 324 

cells, and gametes (Gold & Jacobs 2013; Hemmrich et al. 2012; Hobmayer et al. 2012; 325 

Kunzel et al. 2010; Muller et al. 2004). By contrast, the current understanding of the 326 

localization and roles of stem-like cells or i-cells in hydrozoan jellyfish are limited 327 

(Leclere et al. 2012). In Cladonema medusae, proliferative cells are distributed in 328 

tentacle bulbs (Fig. 1), which have been similarly observed in the tentacle bulbs of the 329 

Clytia medusa (Denker et al. 2008). Our pharmacological experiments confirmed that 330 

cell proliferation contributes to tentacle branching, nematogenesis, and tentacle 331 

regeneration in Cladonema (Fig. 3 and Fig. 4), suggesting that these proliferative cells 332 

may behave as progenitors or stem-like cells. We further found similar distribution of 333 

proliferative cells in tentacle bulbs of Cytaeis uchidae and Rathkea octopunctata (Fig. 334 

5). Together, these results suggest that the distribution of proliferative cells in tentacle 335 

bulbs are widely conserved in hydrozoan jellyfish, while such cells might exist in other 336 

tissue to allow body-size increase and species-specific life styles. 337 

 338 
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	524 

	525 

Figure legends 526 

	527 

Figure 1. Cell proliferation patterns in Cladonema medusa 528 

(A) Adult medusa of Cladonema pacificum. (B) Distribution of S-phase cells in the 529 

Cladonema pacificum medusa (1 day old) revealed by EdU staining (20¿M, 24hr 530 

incubation). (C) Uniform distribution of S-phase cells (EdU+) in a medusa umbrella (1 531 

day old). (D) Local distribution of S-phase cells (EdU+) in medusa tentacle bulbs (1 day 532 

old). (E) Mitotic cells detected by anti-PH3 in a medusa umbrella (8 day old). (F) Mitotic 533 

cells (PH3+) in medusa tentacle bulbs (1 day old). Arrows indicate EdU-positive (C, D) 534 

and PH3-positive (E, F) cells, respectively. Scale bar: (A) 1mm, (B-D) 100¿m, (E, F) 535 

50¿m. 536 

 537 

Figure 2. Cell proliferation is necessary for body-size growth 538 

(A) Cladonema pacificum newborn medusa (0 day old) and juvenile medusa (8 day old). 539 

(B) Distribution of S-phase cells in control medusa and starved medusa with EdU 540 

staining (150¿M, 1hr). (C) Quantification of umbrella size in control and starved 541 

medusae. Control medusae were fed every other day. Error bar: SD, ***p < 0.0005. (D) 542 

Distribution of S-phase cells in medusa of control (HU-) and hydroxyurea (HU) 543 

treatment detected by EdU staining (20¿M, 24hr). No S-phase cells were detected in 544 

HU+ medusa. (E) Quantification of body size in control and in HU conditions. HU 545 

suppresses body-size growth. HU-: control medusae incubated in ASW, HU+: medusae 546 

incubated in HU 10mM ASW. Both HU+ and HU- were fed every other day. Error bar: 547 

SD, ***p < 0.0005. Scale bar: (A) 1mm, (B and D) 100¿m. 548 

 549 

Figure 3. Cell proliferation is necessary for tentacle morphogenesis 550 
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(A) Control (HU-) medusa incubated in ASW for 9 days. The picture shows the 551 

representative image of medusae with three branched tentacles. (B) The medusa 552 

incubated in10mM HU (HU+) ASW for 9 days. The picture shows the representative 553 

image of medusae with one branched tentacle. (C) Quantification of branching numbers 554 

per tentacle at Day 0 and Day 9. HU+: n=313, HU- condition: n=199. Error bars: SD, 555 

***p < 0.001. (D) Nematocytes in tentacles labeled by DAPI (poly-³-gultamate) in the 8 556 

day old medusa incubated in ASW (HU-) or 10mM HU ASW (HU+). Arrows indicate 557 

small nematocysts, and arrowheads indicate empty nematocysts. (D) The rate of small 558 

nematocysts (size: 2-40 ¿m2) in HU- and HU+ medusa. HU+: n=19, HU-: n=18. (E) The 559 

rate of empty nematocysts in HU- and HU+ medusa. HU+: n=19, HU-: n=18. 560 

 561 

Figure 4. Cell proliferation is necessary for tentacle regeneration 562 

(A) Tentacle regenerative processes after amputation in an adult medusa. Series of 563 

pictures show the growing tentacle over 4 days. (B) Mitotic cells (PH3+) in tentacle 564 

bulbs of the unremoved control and the dissected medusa. Arrowheads indicate PH3-565 

positive cells. (C) Quantification of proliferative cells in tentacle bulbs for control and 566 

after amputation. Control: n=26, Amputation: n=11. error bar: SD, ***p < 0.0005. (D) 567 

Quantification of tentacle length after amputation in control (HU-) and 10mM HU 568 

treatment (HU+). Scale bar: (A) 1mm, (B) 100¿m. 569 

 570 

Figure 5. Cell proliferation patterns across different hydrozoan jellyfish 571 

(A) Distribution of S-phase cells in the Cytaeis uchidae medusa (30 day old) revealed by 572 

EdU staining (EdU: 20¿M, 24hr). (B) Distribution of S-phase cells (EdU+) in Cytaeis 573 

medusa (11 day old). (C) Mitotic cells (PH3+) in the umbrella of Cytaeis medusa (30 day 574 

old). (D) Mitotic cells in Cytaeis medusa tentacle bulbs (30 day old). (E) Distribution of 575 

S-phase cells (EdU+) in the Rathkea octpunctata juvenile medusa (EdU: 20¿M, 24hr). 576 

(F) Mitotic cells (PH3+) in a manubrium of Rathkea juvenile medusa. (G) Mitotic cells 577 

(PH3+) in Rathkea juvenile medusa tentacles. Arrows indicate PH3-positive mitotic 578 

cells. Scale bars: 100¿m. 579 

	580 

	581 
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Figure 1(on next page)

Cell proliferation patterns in Cladonema medusa

(A) Adult medusa of Cladonema paciûcum. (B) Distribution of S-phase cells in the Cladonema

paciûcum medusa (1 day old) revealed by EdU staining (20¿M, 24hr incubation). (C) Uniform
distribution of S-phase cells (EdU+) in a medusa umbrella (1 day old). (D) Local distribution of
S-phase cells (EdU+) in medusa tentacle bulbs (1 day old). (E) Mitotic cells detected by anti-
PH3 in a medusa umbrella (8 day old). (F) Mitotic cells (PH3+) in medusa tentacle bulbs (1
day old). Arrows indicate EdU-positive (C, D) and PH3-positive (E, F) cells, respectively. Scale
bar: (A) 1mm, (B-D)100¿m, (E, F) 50¿m.
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Figure 2(on next page)

Cell proliferation is necessary for body-size growth

(A) Cladonema paciûcum newborn medusa (0 day old) and juvenile medusa (8 day old). (B)
Distribution of S-phase cells in control medusa and starved medusa with EdU staining
(150¿M, 1hr). (C) Quantiûcation of umbrella size in control and starved medusae. Control
medusae were fed every other day. Error bar: SD, ***p < 0.0005. (D) Distribution of S-phase
cells in medusa of control (HU-) and hydroxyurea (HU) treatment detected by EdU staining
(20¿M, 24hr). No S-phase cells were detected in HU+ medusa. (E) Quantiûcation of body size
in control and in HU conditions. HU suppresses body-size growth. HU-: control medusae
incubated in ASW, HU+: medusae incubated in HU 10mM ASW. Both HU+ and HU- were fed
every other day. Error bar: SD, ***p < 0.0005. Scale bar: (A) 1mm, (B and D) 100¿m.
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Figure 3(on next page)

Cell proliferation is necessary for tentacle morphogenesis

(A) Control (HU-) medusa incubated in ASW for 9 days. The picture shows the representative
image of medusae with three branched tentacles. (B) The medusa incubated in10mM HU
(HU+) ASW for 9 days. The picture shows the representative image of medusae with one
branched tentacle. (C) Quantiûcation of branching numbers per tentacle at Day 0 and Day 9.
HU+: n=313, HU- condition: n=199. Error bars: SD, ***p < 0.001. (D) Nematocytes in
tentacles labeled by DAPI (poly-³-gultamate) in the 8 day old medusa incubated in ASW (HU-)
or 10mM HU ASW (HU+). Arrows indicate small nematocysts, and arrowheads indicate empty

nematocysts. (D) The rate of small nematocysts (size: 2-40 ¿m2) in HU- and HU+ medusa.
HU+: n=19, HU-: n=18. (E) The rate of empty nematocysts in HU- and HU+ medusa. HU+:
n=19, HU-: n=18.
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Figure 4(on next page)

Cell proliferation is necessary for tentacle regeneration

(A) Tentacle regenerative processes after amputation in an adult medusa. Series of pictures
show the growing tentacle over 4 days. (B) Mitotic cells (PH3+) in tentacle bulbs of the
unremoved control and the dissected medusa. Arrowheads indicate PH3-positive cells. (C)
Quantiûcation of proliferative cells in tentacle bulbs for control and after amputation. Control:
n=26, Amputation: n=11. error bar: SD, ***p < 0.0005. (D) Quantiûcation of tentacle length
after amputation in control (HU-) and 10mM HU treatment (HU+). Scale bar: (A) 1mm, (B)
100¿m.
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Figure 5(on next page)

Cell proliferation patterns across diûerent hydrozoan jellyûsh

(A) Distribution of S-phase cells in the Cytaeis uchidae medusa (30 day old) revealed by EdU
staining (EdU: 20¿M, 24hr). (B) Distribution of S-phase cells (EdU+) in Cytaeis medusa (11
day old). (C) Mitotic cells (PH3+) in the umbrella of Cytaeis medusa (30 day old). (D) Mitotic
cells in Cytaeis medusa tentacle bulbs (30 day old). (E) Distribution of S-phase cells (EdU+) in
the Rathkea octpunctata juvenile medusa (EdU: 20¿M, 24hr). (F) Mitotic cells (PH3+) in a
manubrium of Rathkea juvenile medusa. (G) Mitotic cells (PH3+) in Rathkea juvenile medusa
tentacles. Arrows indicate PH3-positive mitotic cells. Scale bars: 100¿m.
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