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ABSTRACT10

In recent years, the emerging paradigm of software-defined networking has become a hot and thriving

topic that grabbed the attention of industry sector as well as the academic research community. The

decoupling between the network control and data planes means that software-defined networking

architecture is programmable, adjustable and dynamically re-configurable. As a result, a large number

of leading companies across the world have latterly launched software-defined solutions in their data

centers and it is expected that most of the service providers will do so in the near future due to the new

opportunities enabled by software-defined architectures. Nonetheless, each emerging technology is

accompanied by new issues and concerns, and fault tolerance and recovery is one such issue that faces

software-defined networking. Although there have been numerous studies that have discussed this issue,

gaps still exist and need to be highlighted. In this paper, we start by tracing the evolution of networking

systems from the mid 1990’s until the emergence of programmable networks and software-defined

networking, and then define a taxonomy for software-defined networking dependability by means of fault

tolerance of data plane to cover all aspects, challenges and factors that need to be considered in future

solutions. We discuss in a detailed manner current state-of-the-art literature in this area. Finally, we

analyse the current gaps in current research and propose possible directions for future work.
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1 INTRODUCTION26

C
OMPUTER networks play an essential role in changing the lifestyle of modern society. Nowadays,27

most of the Internet services are located in data centers, which consist of thousands of computers28

that are connected via large-scale data center networks. Typically, wide-area networks interconnect data29

centers that are distributed across the globe. Internet users are usually using their devices (i.e. computer,30

mobile, tablet, smart watch etc.) to access the various services available on the Internet through different31

means; such as WiFi, Ethernet and cellular networks. Managing the networks efficiently to meet the32

requirements of the Quality of Service (QoS) and the Service Level Agreements (SLA) are the core33

challenging points of computer networks, which need to be improved continuously due to the increasing34

number of devices that are connected to the Internet, which is currently estimated to be over 7 billion35

devices and is expected to be more than double that before 2020 Melcherts (2017); Mourtzis et al. (2016).36

With its billions of users and diverse networks, many pundits are now considering the Internet as37

the future infrastructure of global information. Beside this view, it has been widely debated about the38

pricing in computer networks whether it’s on the basis of the performance and the quality of provided39

services, which is also called ”flat pricing”, or to basing charges on actual usage, which is also called40

”usage-based pricing”, more details can be found in (Shenker et al., 1996).41

Since most computer networks are commercial enterprises, operators are also willing to maximise42

revenue and profits and therefore, their networks confined to meet some business requirements (i.e. QoS)43

and benefits. Network failures (e.g. link failure) usually result in service interruption, which will lead to44

SLA violation as a consequence and hence revenue loss. Therefore, resilience methods are very important45
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to guarantee the high network availability and consequently avoid revenue losses.46

Fault tolerance is a crucial property for computer networks availability, which has been widely47

explored since the 1950s (Peter and Thomas, 1981). However, this concept needs to be revisited from48

time to time in order to explore and revise the new networking solutions and technologies. In this context,49

the recently emerged paradigm of software-defined networks (SDNs) gives a glimpse of hope for a50

new networking architecture that provides more flexibility and adaptability. While, fault tolerance is51

considered one of the key concerns with respect to SDNs dependability. Although some studies have been52

undertaken to identify the limitations of SDNs fault tolerance, in this paper we mainly focus on the data53

plane fault tolerance issues of SDNs by providing a comprehensive literature survey on SDN data plane54

recovery strategies to date in addition to briefly summarising the historical development of programmable55

networks.56

The reminder of the paper is organised as follows. In Section 2.1, an overview on traditional network57

systems and contemporary strategies of data transmission in such systems is given. Section 2.2 presents58

an intellectual history of programmable networks and the strenuous efforts made by researchers since59

the mid of 90’s. Section 2.2.1 provides the main concepts of SDNs and how it differs from traditional60

networking systems, followed by an approximated number of SDN articles that have been published so far61

(Section 2.2.2). Section 3 outlines the dependability indices and then, a comprehensive survey has been62

undertaken to find achievements and challenges in SDN fault tolerance. A summary of main issues are63

categorised and presented in Section 4. Finally, we have listed some open research challenges that need to64

be addressed in Section 5, which somewhat gives future directions. The paper is concluded in Section 6.65

2 EVOLUTION OF COMPUTER NETWORKS66

2.1 Traditional Networks67

Traditionally, the distributed control systems in networking devices along with a set of defined protocols68

(e.g. OSPF (Moy, 1998) and RIP (Hedrick, 1988)) constitute a fundamental technology that has been69

adopted to send and receive data via networks around the world in recent years. The OSPF protocol,70

which is usually run periodically by every single switch, is responsible for collecting the information71

about the state of the local links in the network, so that the collected information will be processed by72

every switch in the network in order to calculate the routing table. In case of failure events (e.g. link73

failure), the protocol will propagate an update regarding the failed link(s), so as to amend the set of routes74

within seconds. While, over the past few decades, these protocols have increased the inflexibility of75

network management by making the network operators lose their visibility over their networks (Benson76

et al., 2009). The reason for this is that the switches were like a black box and the opaqueness of protocols,77

which are written by multiple vendors, prevented the network operators from modifying these proprietary78

implementations in order to satisfy their routing requirements and goals.79

The rigidity of the traditional network architecture increases the difficulty of handling the network80

transferred data. The reason is that the conventional network switches are vertically integrated by means81

of the two functional components, namely control plane and data plane, which are bundled together inside82

the networking forwarding elements. Switches discover the network topology by relying on the distributed83

protocols that are running in the control plane, while the data plane is responsible for forwarding the84

incoming packets (i.e. traffic) based on the decision made by the control plane. The network operator85

had to set up each switch manually through the configuration CLI, in which hundreds of parameters need86

to be adjusted in order to orchestrate the work of all the control plane’s running protocols. Therefore,87

the network operators had neither a high level of abstract view on their networks, nor a high level of88

interface abstraction to configure the huge number of parameters. Hence, the attitude of networks was89

very challenging and opaque from the perspective of the network operators and the transition from IPv490

to IPv6 is a perfect illustration of that, since it was started more than 10 years ago and still the protocol91

update is incomplete for a large number of networks. All these inconvenient obstacles made the network92

operators keen to get rid of the rigidity of the proprietary implementations by replacing them with a new93

flexible architecture. A solution with more flexibility is not only of benefit to the network operators, but94

also for the permanency of the Internet services, since it was stated in (Lin et al., 2011) that ossification of95

the Internet widely expected due to the massive number of connections and low degree of manageability.96

2/26PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27624v1 | CC BY 4.0 Open Access | rec: 1 Apr 2019, publ: 1 Apr 2019



2.2 Programmable Networks97

The management of the legacy networks is complex and difficult due to the nature of the networking98

equipment, from switches to middleboxes such as firewalls, intrusion detection and load balancers. That99

is work based on distributed protocols and requires a long process of configuration across every single100

device. This mode of operation has increased the level of complexity of networking system management101

and, therefore, the network administrators were looking for more programmable and open solutions to102

enable them to build agile networks instead of the traditional rigid system. According to (Feamster et al.,103

2014), the history of programmable networks can be divided into three stages:104

1. Active Networks (1994-2000): In the beginning, the researchers were designing protocols and105

testing them in their labs which simulate a large scale network. Then, the new solutions were106

submitted to the Internet Engineering Task Force (IETF) for standardisation of the new protocols.107

Usually, the protocols standardisation process was very slow which discouraged the enthusiasm of108

researchers. Therefore, this situation pushed the researchers to think about opening up network109

control with a view by adding a programmable interface (or network API). The initial idea was110

described in (Tennenhouse and Wetherall, 2002) and the main aim was to split the services from111

the underlying structure and hence accelerate the innovation. This was a radical approach at that112

time because it changed the strategy of the traditional networking systems. Additionally, many of113

the Internet pioneers were against simplifying the core of the network, as they thought this affect114

the success of the Internet itself. The ideas behind active networks were firmed up by the program115

of the U.S. Defense Advanced Research Projects Agency (DARPA), which discussed the future of116

networking systems and identified the barrier to innovations, distributed protocols and performance117

issues (Tennenhouse et al., 1997). Two main programming models were suggested during the era118

of the active network:119

a) The Capsules model, which is a mobile code that carried in-band in data packets and should be120

executed in the active nodes (Wetherall et al., 1998).121

b) The programmable switch/router model, where the software-programmable elements of every122

switch/router were able to interpret messages as programs and hence codes were executing at nodes123

in an out-of-band manner (Smith et al., 1996; Bhattacharjee et al., 1997).124

2. Control-Data separation Networks (2001-2007): In the early 2000s, the Internet traffic grew rapidly,125

hence there was a requirement for more flexibility over some networking services, such as network126

reliability and predictability. For this reason, the network operators were looking for a new solution127

that was in line with the new challenges. This solution must consider the tightly coupled architecture128

between the data and control planes of the conventional routers and switches as it accelerates the129

task of network management. In consequence, that period experienced numerous efforts that130

addressed methods of separating the data and control planes. ForCES (Forwarding and Control131

Element Separation) (Dantu et al., 2004) is one of the most significant solutions that addressed the132

challenge of the open interface between the control and data planes, which is also standardised by133

the IETF. The Routing Control Platform (RCP) (Feamster et al., 2004; Caesar et al., 2005) is another134

radical solution that focuses on facilitating the logically centralised control of the network through135

separate routing from routers. Furthermore, the SoftRouter architecture (Lakshman et al., 2004) has136

separated the functions of the control plane from the data packet forwarding through utilisation of137

the ForCES API. However, unfortunately, most of the manufacturing companies did not support the138

new approaches (such as the ForCES) and that hampered wide deployment. Afterwards, researchers139

started exploring new clean-slate architectures, since the dominant vendors had little incentive140

to adopt the previous solutions. The 4D project (Greenberg et al., 2005) reshaped the network141

architecture into four planes, namely: decision, dissemination, discovery and data planes, with the142

purpose of centralising the network functions of control and management. Ethan (Casado et al.,143

2007) (an extension of SANE (Casado et al., 2006)) has addressed some of the 4D considerations144

by using two components: (i) a centralised controller that is supposed to manage the global network145

security policies and (ii) Ethan switches that receive the forwarding rules from the controller. There146

were two main limitations that prevented Ethan from being adopted: firstly, knowledge about on147

network nodes and users is missed out; secondly, it requires control over routing at the flow level.148

However, these two limitations were addressed by the NOX network operating system (Gude et al.,149

2008).150
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Figure 1. Basic Architecture of OpenFlow

3. OpenFlow networks (2007-2010): The SANE and its successor Ethan (the simple switch design151

of Ethan in particular) set the stage for the inception of the OpenFlow era. A research group152

from Stanford University has developed the OpenFlow (OF) protocol (McKeown et al., 2008) as a153

clean slate technology that deployed in the university campus network. OpenFlow acts as an API154

that remotely control the forwarding tables of the network elements (i.e. switches and routers).155

Figure 1 illustrates the OpenFlow architecture in which the network elements are managed by156

one or multiple controllers. The OpenFlow enabled switch consists of two main components: (i)157

a secure channel as an interface to establish the connection over an encrypted channel (usually158

via SSL and/or TLS) between the controller and the switch, and (ii) a flow table (could be one or159

multiple) that host a number of flow entries (i.e. forwarding rules) which are necessary to process160

the incoming packets. Each OF switch contains at least one flow table and each flow table contains161

one or multiple flow entries, sorted by priority order, as illustrated in Figure 2. Each flow entry162

maintains of the following three main components:163

• Matching Fields: To match against the incoming packets, this field includes information such164

as source and destination ports, IP/MAC address and VLAN ID.165

• Actions/Instructions: To specify how the matched packet(s) will be handled, which is typically166

to forward the packet (either to one of the switch’s ports or to the controller) or to drop.167

• Stats: To include statistics for each flow such as the number of packets/bytes that matched a168

particular entry and time since last packet matched the rule.169

Currently, OpenFlow protocol supports a wide range of various types of OpenFlow messages170

that can be used to coordinate the forwarding devices and some of the essential ones are listed as171

follows:172

• HELLO: This message is launched by either switch or controller at the point when the173

connection is established. This message carries the information about the highest version174

StatsActionsMatching Fields

Packet Counters

Forward packet to port(s) 
Drop packet 
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Figure 2. Flow table and flow entries
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that can be supported by the sender as stepping stone with the receiver towards building a175

channel between them.176

• ECHO: This message is used to check operational status and liveness between the controller177

and switches or routers. For instance, the network controller can send an ECHO-REQUEST178

to a switch and the particular switch in turn will respond to the controller request by sending179

an ECHO-RESPONSE. When ECHO-REQUEST fails to get a reply, controller will report180

this as disconnection status (e.g. failure).181

• PACKET-IN: This message enables OpenFlow switches to send data packets to the controller.182

There are two occasions that might lead a switch to generate this message; it could be either183

an explicit action as a result of a match asking for this behaviour, or when the received data184

packet fails to match any rules of the flow table.185

• PACKE-OUT: As a response upon receiving a PACKET-INmessage, the controller initiates a186

PACKE-OUT in which the instruction on how to deal with the received packet is encapsulated187

and send to the switch.188

• FLOW-MOD: This message enables the controller to update the flow table states of any189

particular switch in the network. This message can be used either reactively or proactively to190

modify the rules (e.g. add, delete, modify).191

• PORT-STATUS: This message is sent by switches directly to the controller as an announce-192

ment that there will be a port status change (i.e. port up, port down), which is necessary for193

the controller to deal with failure events.194

The OpenFlow is considered to be the father of SDN due to the wide adoption and smooth195

deployment that crystallised the principle of SDN as a pragmatic and bold view.196

2.2.1 Software-Defined Networks197

The lessons learned from the past were mainly related to easing the network management and control198

and to make the networking systems more elastic to open the door for new innovations. In this regard,199

Software-Defined Networking (SDN), which is often linked to OpenFlow, has emerged as a promising200

solution to tackle the inflexibility of the previous networking systems. The success of OpenFlow, which201

has gained huge attention from both academia and commercial industry, has driven the development202

of SDN as a next generation of networking system architecture. Figure 3 demonstrates the difference203

between the architecture of SDN and the traditional networks. Such a new networking paradigm of SDN204

with much more flexibility compared to the traditional networks meant that SDNs are nowadays adopted205

by many of the well known pioneering companies such as Deutsche Telekom, Google, Microsoft, Verizon206

and CISCO. These have recently combined in 2011 to launch the Open Network Foundation (ONF) (ONF,207

2018), which is a nonprofit consortium that aims to accelerate the adoption of SDN technologies. In SDN208

the data and control planes have been physically detached resulting into two isolated layers as follows:209
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Table 1. Some of SDN controllers that supports OpenFlow

Controller Devloper Implementation Open-Source

NOX (Gude et al., 2008) Nicira C++ Yes

Maestro (Cai et al., 2010) Rice Uni. Java Yes

POX (McCauley, 2012) Nicira Python Yes

Floodlight (Project Floodlight, 2012) Big switch Java Yes

Trema (Trema, 2011) NEC Ruby/C Yes

Beacon (Erickson, 2013) Stanford Uni. Java Yes

OpenDaylight (OpenDaylight, 2013) Linux Foundation Java Yes

Figure 4. Overview of SDN layers (ONF Market Education Committee, 2012)

• Control Layer210

The creation of the OpenFlow protocol is accompanied with development of some controller211

platforms such as those illustrated in Table 1: The control layer/plane, which is usually called212

the controller, represents the network brain as it provides a global view over the whole network213

and enables the network operators to configure or reconfigure their infrastructure dynamically by214

customizing policies/protocols across the network forwarding elements. Control plane acts as an215

intermediary between the network applications and the infrastructure layers as depicted in Figure216

4. Typically, the network controller communicates with the application layer via the northbound217

interface and governs the network switches via the southbound interface. Controllers usually offer218

APIs, which represent the northbound interface, for the programmers to develop various kinds219

of applications and to abstract the low-level instruction sets of the southbound interface. The220

southbound interface defines the communication protocol between the controller and the switches,221

furthermore, it provides an API that is essential to define the instruction set of the infrastructure222

layer elements. Most of the current SDN controllers support and utilise the OpenFlow protocol223

as a southbound API, however, a few other controllers (such as the OpenDaylight) support a wide224

arrange of southbound APIs in addition to the OpenFlow.225

A single SDN controller is able to process a surprising number of flow requests that could reach226

and even exceed a million per second. Although, one controller is sufficient to handle and manage227

a large-scale network, multiple controllers may be required to increase the network availability in228

case single controller fails. For a survey on SDNs with multiple controllers, we refer the interested229

readers to (Zhang et al., 2017b).230

• Infrastructure Layer231

The infrastructure layer, which is also known as the Data plane, consists of a set of forwarding232

devices (i.e. switches and routers) that are interconnected via either wireless channels or wired233

cables and constitute the network topology. The decoupling between the control and data planes234
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results in dumb forwarding elements whose packet forwarding behaviour is dictated by the controller.235

Hence, the newly arriving packets, that have no matching rules yet, will be forwarded to the236

controller (i.e. PACKET-IN) that, in turn, sends the pertinent information (i.e. PACKET-OUT)237

as a forwarding rule to the relevant switch(es) over the southbound interface, which eventually238

will be installed as a flow entry. Currently, several OpenFlow-enabled devices are available on the239

market in both hardware (i.e. native) and software (e.g. run in testbed and virtualisation) based240

implementations (Nunes et al., 2014). It is also worth mentioning that most of the current switches241

have a relatively limited space on the ternary content-addressable memory (TCAM), which can242

be reached up to 8000 entries, however, some of the recent OpenFlow appliances such as Gigabit243

Ethernet and EZchip NP-4 support up to 32000 and 125000 entries, respectively (Kreutz et al.,244

2015). It is obvious that the relatively small TCAM might cause a scalability issue for the future245

deployment of SDN.246

• Application Layer247

The network application layer comprises a set of network applications that are essential to imple-248

ment the control logic for the whole network domain. SDN applications run on top of the controller249

and utilise the northbound interface to request the network state in order to manipulate the provided250

services. The applications outcome will be translated into instructions and then sent to the forward-251

ing elements in the infrastructure layer via the southbound interface. This simplified the deployment252

of new network protocols and services and despite the various aims of SDN applications, according253

to (Kreutz et al., 2015) it can be classified into five categories; traffic engineering, mobility and254

wireless, measurement and monitoring, security and dependability and data center networking.255

2.2.2 Research Trend of Software-Defined Network256

After the development of the OpenFlow protocol during the period 2007-2010 (as mentioned in Section257

2.2), exploring the pros and cons of the different aspects of the new network architecture; such as the258

interoperability, applicability and dependability, was the focus of attention from the second quarter of the259

last decade. This section shows the amount of SDN conducted research from several academic publishers260

in the field of computer science and engineering like IEEE, ACM, Elevier, Springer and IET. We have261

collected an approximate number of research publications (i.e. journals, conference proceedings and262

corporate technical papers) that were published in the period 2010-2018, since works that predate the263

usage of the term ”SDN” are not reported. For example, some synonyms such as programmable and264

OpenFlow networks were used instead of software-defined networking. On one hand, Figure 5a illustrates265

the increasing number of research efforts focusing on SDN over the last 10 years. According to the figure,266

more than 7200 research publications over the last 10 years were published just from the aforementioned267

publishers. Table 2 shows the total number of published items. On the other hand, Figure 5b shows the268
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Table 2. Publisher-based classification

Publisher No. of SDN research

IEEE 3386

Springer 1559

Elsevier 1109

ACM 854

IET 315

Dependability

Impairments

Means

Attributes

Faults

Error

Failure

Availability

Reliability

Security

Procurement

Validation

Safety

Fault Prevention
Fault Tolerance
Fault Removal
Fault Forecasting

Figure 6. Dependability tree (Laprie et al., 1992)

relative size of SDN fault tolerance research, which has been filtered on the basis of two keywords; namely269

fault tolerance and software-defined networking, as a percentage of the entire scope of SDN research.270

3 DEPENDABILITY AND FAULT MANAGEMENT271

The rapidly increasing number of critical business applications and secured data transmission over modern272

day communication networks brings up the demand for a high degree of robustness and reliability.273

Apparently, communication networks are prone to either unintentional (unplanned) failures due to various274

causes such as human errors, natural disasters (e.g. earthquakes), overload, software bugs and so on, or to275

intentional (planned) failures that are caused by the process of maintenance (Markopoulou et al., 2004,276

2008). All network elements (e.g. forwarding devices and links) are susceptible to failure incidents and277

in such cases some network facilities (like routing) will be harmed. In addition, failures could cause a278

financial loss to the service providers (e.g. cloud service providers), for instance, according to the statistics279

of 28 cloud providers (from 2007 to 2013), financial losses were estimated at approximately $285 million280

(USD) as a consequence of infrastructure and application failures (Cérin et al., 2013).281

Therefore, a failure recovery scheme is a necessary requirement for networking systems to ensure the282

reliability and service availability. In computing systems, according to (Laprie et al., 1992), dependability283

is the umbrella concept that subsumes a set of attributes such as reliability, availability and fault–{tolerance,284

prevention, prediction and removal} as illustrated in Figure 6. In other words, dependability includes285

a range of properties that aim to mitigate threats through different means. Fault management is the286

expedient to which the concept of dependability is attainable. Hence, the efficiency and efficacy of the287

fault management functions impact upon dependability. This thesis is mainly focussed on fault tolerance,288

which is the property that enables the system to continue functioning properly even in the presence of289

failure in some of its components. Fault tolerance has been a widely used approach in communication290

networks to recover from failure when it occurs. The main concept is to mask the failed (unhealthy)291

components by relying on and utilising some ready/available (healthy) ones. In what follows, the essential292
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failure recovery techniques of paths in both conventional networks (in brief) and SDNs (in detail) are293

discussed and the pros and cons of each technique are elucidated.294

3.1 Recovery in Legacy Networks295

In general, failure recovery mechanisms of carrier-grade networks are categorized into two types: protec-296

tion and restoration. In protection, which is also known as proactive, the alternative solution is preplanned297

and reserved in advance (i.e. before a failure occurs). According to (Vasseur et al., 2004), there are a298

couple of protection schemes that can be applied to recovery from network failure, these are:299

• One to One (1:1): in which, one protection path is dedicated to protect exactly one path.300

• One to Many (1:N): in which, one protection path is dedicated to protect up to N paths.301

• Many to many (M:N ): in which, M specified protection paths are dedicated to protect up to N302

working paths such that M ≤ N.303

In contrast, in restoration, which is also called reactive, the possible solution is not preplanned and will304

be calculated dynamically when failure occurs. Despite the different extant schemes of failure recovery,305

there are some shared succession phases in between, these are, the recovery and reversion cycles (Vasseur306

et al., 2004).307

On the one hand, at the moment of failure (i.e. when failure occurs), a fault detection process will take308

some time to detect the failure and it typically depends on the speed of the fault detection mechanism. For309

example, there are different mechanisms that can be used to detect the link failure such as Bidirectional310

Forwarding Detection (BFD) (Katz and Ward, 2010), which detects the failure through the periodic311

exchange of monitoring messages via an established session between source-destination nodes. Also, the312

Loss of Signal method (LoS) (Vasseur et al., 2004), which detects the failure by depending on the port313

state of the device (i.e. down or up), however, the frequency of signals sent varies. Once the fault detection314

process is finished, the node that detected the failure will wait some time, that is the Hold-off time, before315

propagating the announcement about the detected failure. This is because some kind of failure such as a316

cable cut might be rapidly repaired in some IP networks that are supported by an optical transport layer.317

When the fault still persists after the period of the Hard-off, a failure message announcement (i.e. Fault318

notification) will be sent throughout the network to notify the relevant nodes that they should perform a319

recovery action. The later step, which is the Recovery operation, depends on the recovery scheme used320

(i.e. protection or restoration). Finally, the traffic will start flowing on the new path after the last recovery321

action and it is usually affected by some factors such as the: location of failure, delay of recovery process,322

scheme of failure recovery. Figure 7 (a) illustrates the cycle of recovery. One the other hand; and after323

the termination of the recovery cycle, the network will pass into a fully operational state. However, the324

resulting paths from the recovery cycle may be less ideal than before the failure (e.g. the alternative path325

is longer than the original). Therefore, when the fault is fully repaired, a switch back to the original path is326

important in order to keep the network in an optimal state. The operation of switching back to the former327

path is called revertive and Figure 7 (b) shows the phases of the reversion cycle, which bears a strong328

similarity to the cycle of recovery. When the fault is repaired, it could take some time (i.e. fault clearing329

time) to be detected. Afterwards, the repaired notification might be delayed for a while (i.e. Hold-off time)330

and this is necessary for the network stability, especially when the fault is intermittent. After that, the331

notification about the repaired fault will be propagated throughout the network so that the relevant nodes332

will be notified to deploy the reversion operation. Finally, the traffic will start flowing through the original333

working path after some time (i.e. traffic reversion time), which is the time between the last reversion334

action (i.e. last time of using the alternative path) and the restoration of the ideal/original path. In fact, the335

traffic reversion time is small because both paths are working and ready to be utilised.336

In contrast to the recovery cycle–which is a mandatory operation that responds to unforeseen failures337

as soon as they are detected (the quicker the better), the reversion cycle is another essential operation but338

it can be planned in advance to avoid the service disruption (quick but not hasty).339

3.2 Recovery in Software-Defined Networks340

The new features of SDNs such as the global view of the central controller and the programmable341

interfaces have changed the traditional methods of fault management from decentralise, which mainly342

relies on the distributed protocols, to centralise, with the view of fixing today’s fault management issues343
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Figure 7. Recovery process in legacy networking systems, (Vasseur et al., 2004).

(e.g. fault localization). However, the new architecture of SDN imposes some constraints and concerns on344

the implementation of the failure recovery schemes. Since the SDN consists of three layers, then each345

layer is considered as a point of failure, as follows:346

• Control layer: The controller dependability is of critical importance due to the fact that SDN is a347

centralised networking system and the controller is responsible for managing the network events348

and activities. Therefore, when failure occurs in the controller, then all network services will be349

halted.350

• Application layer: Failure can be also generated due to an application bug, which will lead to a351

network misconfiguration and error. However, sometimes the application layer and control layer352

are considered as one layer (i.e. control plane) and hence it can be considered as a control plane353

failure again.354

• Data layer: A failure in the network infrastructure elements (i.e. switches and links) will lead to355

service degradation where this will directly affect the QoS and significantly impact the network356

users.357

Therefore, the different layers of SDNs meant that the fault tolerance of each layer has to be built358

separately as the failure that could occur in a particular layer may or may not affect the other layers. For359

example, link failure may not affect the control layer, while, the controller failure may affect the entire360

infrastructure layer. Thus, it is possible to categorise the SDN fault tolerance into the following tiers:361
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3.2.1 Fault Tolerance for Control Plane362

Basically, a single centralised control is sufficient to manage all the switches of the data plane. However,363

reliance on a single controller may not be wise for two reasons: first, the controller is a single point of364

failure and second: for large-scale networks, a single controller is a potential performance bottleneck.365

Thus, a number of studies have focused on this issue with a wide range of solutions such as: a backup366

controller (Sidki et al., 2016), a broker-based approach for multiple controllers (Kurtz and Wietfeld, 2017)367

and distributed controller clusters (Abdelaziz et al., 2017). Given that this paper is mainly focussed on368

the fault tolerance of the data plane, then the aforementioned short overview regarding the issues of fault369

tolerance in the control plane will be sufficient.370

3.2.2 Fault Tolerance for Data Plane371

Since link and node failure is an issue almost as old as computer networks, so far, SDN follows the372

traditional fundamental strategies of failure recovery (i.e. protection and restoration) to recover from373

the data plane failures. However, the fault management in SDNs differs from the legacy networks in374

its mean of computing and updating the routing tables which react to failure incidents. Traditionally,375

the distributed networking appliances (e.g. switches) are responsible for building the routing table and376

reconstructing when link failure is detected. In contrast, in OpenFlow networks the routing decisions377

for each forwarding element (e.g. switch) are dictated by the central controller. Based on the global378

view that the controller possesses, any change in the network topology (e.g. when failure occurs) will379

lead the controller to immediately reconfigure the flow tables of the switches that are involved in the380

affected routes either in a direct (controller-needed) or indirect (controller-needless) way. This section381

is subdivided into two subsections in order to introduce some existing methods in two different aspects,382

namely protection and restoration. We categorised the proposals into two categories; namely, native and383

hybrid. We call the newly designed solutions of the literature with native solutions, however, the tailored384

solutions that derived from, or combined with, the traditional networking systems as hybrid solutions.385

Figure 8 presents the four possible cases of fault tolerance schemes against the relationship with the SDN386

controller.
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Figure 8. Classification of SDN recovery schemes

387

Protection388

The method of protection will be employed after the failure is detected. As mentioned earlier the389

protection mechanism is capable of masking a failure proactively by calculating the recovery settings (i.e.390

routing tables) at an early stage, in other words, the backups are pre-established. This means that each391

switch will reserve the forwarding information for both primary and backup (i.e. protection) paths.392

A) Native solutions393

In (Sgambelluri et al., 2013b) and (Sgambelluri et al., 2013a), the authors produced a fast recovery394

mechanism in case of single link failure, in which the controller installs low priority flow rules for395

the backup paths along with the primary ones. When link failure occurs, the two switches connected396

to the failed link will delete the primary path information and redirect the traffic to the backup one.397

In contrast, when the failed link is physically repaired, the switches will send a notification message,398

OFPT FLOW RESTORE, as an extended feature to the OpenFlow protocol, to the network controller in399

order to re-install the primary path. The experiments, with small scale topologies, show that the recovery400

can be achieved within less than 64 µs.401

11/26PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27624v1 | CC BY 4.0 Open Access | rec: 1 Apr 2019, publ: 1 Apr 2019



Kitsuwan et al. (2015) produced the Independent Transient Plane (ITP) as a new protection scheme,402

which is originally proposed in (Kitsuwan et al., 2014), for fast rerouting with a view of reduce the number403

of flow entries that are required in the rerouting operation. ITP consists of two completely independent404

planes, namely working and transient planes. The working plane is used for routing under the normal405

operation of the network (i.e. no failures), which also contains the information on the backup disjoint406

path for each of the source-destination nodes in the network. In contrast, when a link failure occurs, the407

packets will be routed over the transient plane until the failure is repaired. Controller intervention is408

required for switching from the working to the transient after detecting a link failure. Compared with409

the work of (Sgambelluri et al., 2013b), this study demonstrates how the number of flow entries can be410

reduced by 50% in topologies with up to 30 nodes.411

Some studies have utilised the fast failover feature of OpenFlow v1.1 (ONF, 2011), in which the412

OpenFlow switch has been extended to include a new table (i.e. Group table) in addition to the Flow table.413

Again, the Group table encompasses a set of group entries, these are ID, type, counter and action buckets,414

where the last are ordered actions that are associated with specific ports and are to be executed according415

to the ports alive stats. Sharma et al. (2013) have produced a 1:1 protection mechanism using the fast416

failover feature to handle the link failures. According to their study, the controller computes the dis-joint417

paths for the network traffic and then installs them as protection paths in the switches. When link failure418

occurs, the switch will activate the failover rules and redirect the affected traffic to the backup protection419

paths without requiring the controller’s intervention. The study showed that the carrier-grade requirement420

to recover from failure within 50 µs can be achieved with the proposed protection method.421

Van Adrichem et al. (2014) argued about the time required to detect the link failure and the time422

required to compute the alternative path. The authors introduced (i) a per-link BFD session (instead of423

per-path) as a fast failure detection method and (ii) a fast failover mechanism as a protection method424

against failures. The experiments showed that the recovery time can be achieved within sub 50 µs, which425

meets the carrier-grade requirements.426

Ramos et al. (2013) proposed SlickFlow, a source-based routing method to enhance the scalability and427

fault tolerance in OpenFlow networks. Since the packet header provides an additional limited segment of428

information that can be used for the purpose of adding some details (Nguyen et al., 2011), in SlickFlow,429

the controller computes the primary and the disjoint backup paths and then both are encoded in the packet430

header along with an alternative bit, which indicates the current path being used. When the primary path431

is affected by link failure, a switch will forward the packets through the backup path and change the value432

of the alternative, which is necessary for the neighbor switch to follow the backup as well. Due to the433

header space limitations, the alternative path should not exceed 16 hops. Yang et al. (2015) produced a434

multipath protection scheme for the SDN data center. The study adopted the principle of the disjoint path435

to improve the network reliability in addition to extending the OpenFlow protocol by adding the Type436

feature to the flow table entries. The controller computes 1+n disjoint paths for each source-destination437

node, the value of n can be set to match the importance of the service (the higher the value of n, the more438

important the service is). The Type field is used as an indicator to distinguish between the primary and439

backup paths. When link failures occur, the influenced paths will be identified by the controller and it will440

proceed to remove the flow entries of the primary (affected) paths from the only source and destination441

nodes. Thus, the incoming data packets will follow the rules of the remaining backups.442

Bianchi et al. (2014) developed OpenState as a super set extension of OpenFlow that aims to offload443

some of the control logic from the network controller to switches. In other words, the pragmatic approach444

of OpenState has moved the data plane elements from stateless to stateful operation in network switches.445

This means that the OpenFlow switches can also be directly programmed and therefore they are not fully446

dump and are able to handle forwarding rules locally without need for the intervention of the controller.447

Despite the OpenState has not been adopted yet as a standard extension to OpenFlow, it is expected to448

be implemented in the future version of OpenFlow (Borokhovich et al., 2018) since the new capabilities449

of OpenState encourage researchers to further investigate the dependability of the data plane in SDNs.450

In this context, (Capone et al., 2015) introduced a new OpenState-based protection method for single451

node and link failures with a view to consider some QoS objectives (e.g. link congestion). The follow-up452

work SPIDER (Cascone et al., 2016),(Cascone et al., 2017) from the same research group proposed a453

new method to enable the switches to customize the fault detection and traffic rerouting by relying on454

OpenState, however, this approach is still inapplicable as the existing SDN equipment does not support455

such customization.456
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Van Adrichem et al. (2016) produced a method for pre-planning all the possible backup paths that are457

necessary to recover from all the expected future failures including both links and nodes. The authors also458

show how to implement a fast failure detection mechanism based on the liveness monitoring protocols.459

Thorat et al. (2016) introduced a new protection scheme in which the VLAN tagging technique460

was used to aggregate the disrupted flow. The authors show how their proposed method reduced the461

number of flow rules and accelerates the process of recovery, which fully satisfy the carrier-grade recovery462

requirements. This method was extended in (Thorat et al., 2017), where the authors considered two463

methods to enhance their previous work in terms of fast failure recovery. Firstly, the authors proposed the464

Local Immediate (LIm) recovery strategy, in which the controller will utilise the fast failover to install the465

alternative paths and the VLAN tagging feature to tag the arriving packets with the outgoing link ID that466

should be used for the transmission. When a link failure occurs, the switch will automatically divert the467

disrupted flows to the output port of the backup path and, therefore, this strategy eliminated installing468

rules per flow and instead, it elevated the flow-aggregation for all flows who share the same output links.469

Secondly, the authors produced the immediate controller dependent (ICoD) recovery mechanism in which470

a controller intervention is required. With ICod, the controller needs to compute the alternative path at the471

moment of failure and update the failover group table, however, the new installed rules will be dedicated472

to the affected aggregated-flow and, therefore, this scheme eliminates the number of required rules (i.e.473

rules for flow-aggregation instead of per flow). Aggregating flows might be a good idea for tackling the474

failure issue, however, in such a case all the affected flows will be treated as one flow, in other words,475

different QoS objectives can not be applied. ICoD is similar in some ways to the proposed Algorithm476

(Node-to-Node) in Chapter 5.477

In general, the protection solutions require additional information, which has to be loaded into the data478

plane elements, in order to tell the nodes how to perform when failure occurs. However, the extra loaded479

information affects the storage memory of the network switches and thus the designed fault tolerance480

mechanisms should consider the limited space of the flow table and TCAM.481

Since using protection mechanisms are memory (TCAM) consuming due to the requirement of482

installing backup paths along with the primary ones, this issue has been considered by some researchers,483

but there are a very limited number of studies in this area. Mohan et al. (2017) produced a protection484

scheme, as an extension to their previous work presented in (Mohan et al., 2015), that minimises TCAM485

consumption. The authors developed two routing strategies: Backward Local Rerouting (BLR) and486

Forward Local Rerouting (FLR). In BLR, a node-disjoint path is computed as a backup for every primary487

path in the network and when a failure occurs, packets are sent back to the origin node to be rerouted488

over the pre-planned backup towards the destination. In FLR, a backup route for each link in the primary489

path is pre-computed. When a link failure occurs, the packets will be forwarded from the point of failure490

towards the downstream switch in the primary path by following the backup path, however, in the case491

that there are multiple backups, the one with the least number of switches will be chosen. Instead of using492

fast failover group type, the authors have extended the OpenFlow protocol by adding an additional entry,493

namely: BACKUP OUTPUT to the ACTION SET of the flow table entries, so that the new added entry is494

responsible for setting the output port when a link fails.495

Stephens et al. (2016) proposed a new flow tables compression algorithm, as well as a compression-496

aware routing concept to enhance the ratio of the gained compression rate. The proposed algorithm497

reduces the consumed TCAM space by using the wildcard to match the tables who share the same output498

and packet modification operations and hence the compression. The authors relied on their previous work499

(Stephens et al., 2013) in which they proposed Plinko as a new forwarding model where the forwarding500

table entries apply the same action.501

Zhang et al. (2017a) discussed the problem of the protection schemes and their impact on the shortage502

of TCAM memory. The authors proposed the Flow Entry Sharing Protection (FESP), which is a greedy503

algorithm that selects the node with the largest available flow entry capacity and the minimum backup504

flow entry. The study showed how the total number of flow entries can be minimised and the experimental505

results revealed that the reduction ratio of flow entries is up to 28.31% compared with the existing path506

and segment protection methods.507

B) Hybrid solutions508

Some of the legacy network strategies have been utilised to leverage the SDN capability that relates to509

quick reaction to failures. In this context, Tilmans and Vissicchio (2014) introduced a new architecture510

called IGP-as-a-Backup SDN (IBSDN) in which the centralised network controller is responsible for511
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pushing the fine-grained primary paths, however, the IGP protocol will provide the alternative paths in512

case of link failures. Authors showed how an IGP-support local routing agent can be run on top of the513

OpenFlow switches and can construct and save the paths information independently from the network514

controller. Watanabe et al. (2015) introduced ResilientFlow as a distributed failure mechanism that enables515

the SDN switches to maintain the link failure that occurs between the controller and switch. ResilientFlow516

runs the OSPF protocol on top of SDN nodes in order to collect and exchange the network information517

so that the switch will be able to find an alternative path to connect to the controller after losing its518

connection. The comprehensive studies of (Sinha and Haribabu, 2017) and (Amin et al., 2018) analyse519

and summarise the existing approaches of the hybrid SDN-Legacy networks with a taxonomy to identify520

the gaps, limitations and cutting edges in the body of this research.521

Restoration522

After the failure is detected, the restoration mechanism will be activated. Since the infrastructure523

layer equipment in SDN are dummy forwarding elements due to the split architecture, then, the central524

controller is responsible for calculating the alternative paths and then installing the flow entries (i.e.525

forwarding rules) in the relevant switches of each backup.526

A) Native solutions527

Sharma et al. (2011) and Staessens et al. (2011) discussed the possibility of achieving the carrier-grade528

reliability requirement in terms of recovery from failure within 50 µ , or less. The strategy followed529

the LoS to detect the changes (such failure) in the network topology, when the controller receives a530

notification about link failure, the affected paths will be identified by the controller as a first step before531

recalculating the new alternative paths and sending the respective flow modifications to switches. In532

both studies, the experiments, which have been carried out on small-scale network (i.e. 6 and 14 nodes),533

showed that the carrier-grade reliability requirement can be accomplished (i.e. recovery time < 50 µs).534

However, the authors stated that the restoration time also depends on the number of flows (i.e. rules) that535

need to be modified in the affected path, therefore, the recovery time reached up to 300 µs in some of536

their experiments that were carried out on 14 nodes and hence it is a significant challenge to meet the537

reliability requirement of carrier-grade in large-scale networks.538

Kuźniar et al. (2013) proposed a restoration scheme called Automatic Failure Recovery for OpenFlow539

(AFRO), which is working on the basis of two phases namely: record mode and recovery mode. In540

record mode, AFRO records all the controller-switches activities (e.g. PACKET-IN and FLOW-MOD)541

towards creating a clean state copy about the network when no failure is experienced. When failure542

occurs, AFRO switches to the recovery mode followed by generating a new instance of controller (called543

shadow controller), which is a copy from the original state but excluding the failed elements. Then, all544

the recorded events will be replicated for the sake of installing the difference rule set between the original545

and shadow copies. The authors produced a prototype of AFRO, however, the study lacks any simulation546

results and/or measurements to show the effectiveness of AFRO.547

Philip and Gourhant (2014) discussed the convergence delay after failure events and attributed it to548

the network resiliency. The study showed that the speed of failover is determined by two factors: (i) the549

distance between the failure site and placement of the controller and (ii) the length of the alternative path550

that needs to be installed by the controller. To accelerate the failure recovery and maximise the resilience551

and scalability of the network, the authors proposed multiple centralised controllers to enable the dynamic552

computation of end-to-end paths.553

Kim et al. (2012) produced a SDN fault tolerant system, which is called CORONET, to achieve a fast554

network recovery from multiple link failures of the data plane. CORONET slices the network into set of555

VLANs in which the ports of physical switches are mapped to different logical VLAN IDs. The route556

planning module of CORONET computes multiple link-disjoint paths by using the Dijkstra shortest path557

algorithm (Dijkstra, 1959). The set of computed paths can be used by the network controller to assign the558

alternative route when the primary path is functioning incorrectly due to a link failure (single or multiple).559

In addition, the calculated dis-joint paths can be utilised for load balancing purposes (e.g. change between560

paths in round-robin fashion) and therefore, the system provides a traffic monitoring module for analysis561

and dynamic load balancing. The CORONET prototype has been built on top of a NOX controller and it562

is compatible with the standard OpenFlow protocol.563

Jinyao et al. (2015) proposed HiQoS, a SDN-based solution that finds multiple paths between source564

and destination nodes to guarantee certain QoS constraints such as bandwidth, delay and throughput.565

HiQoS uses a modified Dijkstra algorithm to gain the multiple paths set that meets the QoS requirements.566
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Not only can the QoS be guaranteed with HiQoS, but also a fast failure recovery can be achieved. This567

is because when a link fails it causes a truncation or interruption in some paths, the controller will then568

directly select a working path from the already computed ones. The authors compared the performance569

of HiQoS, which supports multiple paths, against MiQoS, which is a single path solution, and the570

experiments showed that HiQoS outperformed the MiQoS in terms of performance and resilience to571

failure.572

Astaneh and Heydari (2016) considered the problem of the required number of flow entries that are573

necessary for the restoration operation, which is an extension to their previous work reported in (Astaneh574

and Heydari, 2015). The authors imputed the required time for the process of restoration and recovery575

from multiple data plane failures to the number of flow entries that need to be pushed by the network576

controller, in other words, the more forwarding rules to be established the more delay is incurred and the577

greater the impact upon the operation of failure recovery. Comparing with the current restoration methods,578

Astaneh and Heydari argued that fast recovery from link failure cannot be guaranteed by merely relying579

on shortest path techniques, since it does not consider the pre-installed rules and hence new techniques580

have to be devised. In this context, the authors introduce optimal and sub-optimal solutions to identify581

routes by focusing on two metrics, namely, the lowest operation cost and the least path cost. The optimal582

solution, which is a Dijkstra-like solution, seeks to obtain candidates with minimum path cost, however,583

the sub-optimal solution endeavours to explore solutions with minimum operation cost in terms of either584

Add-Only flow entries or Add-and-Remove. The simulation results that have been conducted on two585

topologies showed that up to 50% of operation cost reduction can be achieved in case of Add-and-Remove,586

however, the reduction ratio of the operation cost can be reached up to 30% in the case of Add-Only. The587

study makes no attempt to address the question of how the reduction in the operation cost will not affect588

the order of the established rules of the new solution, in other words, it does not guarantee a sequential589

chain for the alternative path. The proper order of nodes in a path is important and selecting an alternative590

path on the basis of mere presence of common nodes may not always work. Some cross-sectional studies591

consider the correlation between reducing the flow entries and the original sequence of rules of paths592

while computing the alternatives. Malik et al. (2017a) developed a couple of new algorithms that divide593

the anatomy of a path to achieve a quick and optimum solution to the problem of finding and replacing594

a failed link. The authors demonstrated how the proposed algorithms utilise existing pre-installed flow595

entries through dealing with a sub-path of the original shortest path at the moment of failure. It has been596

also noted that the resulting new path, though not necessarily a shortest path itself, is guaranteed to have597

better utilisation of the existing rules than in the case of an end-to-end path discovery algorithm, therefore598

leading to the acceleration of the operation of path recovery in terms of both minimising the discovery599

time and the number of flow entry modifications. In the same vein, Malik et al. (2017c) suggested a new600

approach for an efficient restoration after a link failure. On one hand, the authors proposed a method to601

improving the performance of reactive failure recovery through segmenting the network topology into a602

certain number of non-overlapping cliques. By dividing the network into N cliques, the authors considered603

the only intra link failure by assuming that when the link failure occurs then only one clique will suffer604

from the failure. Meantime, the other cliques should be working fine. Therefore, the only clique which605

includes the effected link will be treated rather than dealing with the whole network topology. On the606

other hand, the study has not dealt with inter link failure that affects the connection between the cliques607

itself.608

Since the studies that considered the reduction of flow entries were mainly rely on the possibility of609

deriving a new least cost route out of the affected one. Therefore, Malik et al. (2017b) presented a study610

that dealt with the problem of path selection. The authors proposed an algorithm that enables the selection611

of the best shortest path, which is essential to guarantee the feasibility of path that required a minimal612

number of flow entries to mask the failure when occurs, towards fast reconfiguring data plane.613

614

B) Hybrid solutions615

Yu et al. (2011) proposed a framework for tackling the slow recovery of OSPF against failures. The616

authors employed an OpenFlow controller to reactively manage the data plane failures by dynamically617

recalculating paths using the Floyd algorithm (Floyd, 1962) and then, installed the new computed path618

rules to mask the occurred failure. However, during the normal operation, the OpenFlow-enabled switches619

rely on a Routing Information Database (RIB) to handle the incoming data packets.620

621
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622

C) Traffic engineering based solutions623

Traffic engineering is becoming an increasingly essential feature for network administrators, which624

strives to maximise the network resource utilisation and optimise the network performance towards625

delivering a good service to end users. One of the key roles of traffic engineering is routing, and the key626

challenge for routing is to find good routes that attain a desired level of network performance (i.e. QoS627

and SLA) and to adapt to network events that lead to continuous changes in network topology such as the628

frequent incidents of link and node failures (Wang et al., 2008). Traditionally, the distributed protocols629

(e.g. BGP and OSPF) are used to enable the adjacent nodes from sharing their control information630

due to the lack of global view available in traditional networks (Hakiri et al., 2014). In contrast, and631

particularly with the global view supported by the controller, the traffic engineering in SDN becomes632

more efficient and intelligent where such an improvement meant that traffic engineering is involved in633

four domains, which includes; fault management, fault tolerance, topology update and traffic analysis634

(Akyildiz et al., 2014) as illustrated in Figure 9. The recent studies in (Akyildiz et al., 2016; Mendiola635

et al., 2016) revealed that fault tolerance and recovery from failures is one of the key challenges that636

face SDN nowadays. In this regard, Luo et al. (2015) introduced the ADaptive Multi-Path Computation637

Framework (ADMPCF) as a traffic engineering tool for large scale OpenFlow network systems. ADMPCF638

can hold two, or more, disjoint paths to be utilised at the moment of occurrence of some network events639

(e.g. link failure, congestion, etc.). As a result, those precomputed paths can be used as backups in640

the case of link/node failures or when the defined cost function does not meet the QoS requirements.641

Similarly, Dinh et al. (2016) proposed a multipath traffic engineering approach for SDN (MSDN-TE) in642

which k-paths between the source and destination pairs will be computed and established. On one hand,643

this approach is employed to reduce the load on congested areas by selecting the least loaded path for644

handling the new arriving data flows. On the other hand, MSDN-TE can also be used as a technique to645

improve the network resilience against failures (e.g. link failure), since the multiple established paths646

between pairs will allow the service to be available even if one of the pre-installed paths fails.647

Protection-Restoration Combination648

Some studies suggested cooperation between the two failure recovery schemes (i.e. protection and649

restoration) to seek a better approach to enhance the fault management of SDN. Sahri and Okamura650

(2014) proposed a fast failure recovery scheme that considers the connectivity and optimality factors.651

According to their approach, the controller calculates the backup paths in advance and when a failure652

occurs the respective switch will firstly, redirect the affected flow to the backup path and secondly, notify653

the controller in order to compute an optimal path.654

Thorat et al. (2015) proposed the Optimized Self-Healing (OSH) framework for optimising the process655

of failure recovery. With OSH, the failure recovery can be classified into two steps: (i) Rapid Recovery656

(RR) by relying on the fast failover group type mechanism, in which the recovery process is performed657

locally without requiring intervention by the controller and afterward (ii) the network controller will658

optimise the recovered paths towards meeting the prescribed QoS level.659

In the same way, Wang et al. (2018) have formalised the recovery process as a multiobjective optimi-660

sation problem, in order to gain a fine-grained trade-off between recovery time and QoS requirements,661

such as resource utilisation. The authors also devised the Cooperative Link Failure Recovery scheme662
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(CFR) to ameliorate the process of failure recovery in SDNs. CFR consists of two algorithms, namely663

rapid connectivity restoration and backup path adjustment. The rapid connectivity restoration algorithm664

aims to recover from failure quickly through calculating the backup paths for all source-destination pairs665

and establishing those paths in the data plane switches. The fast failover mechanism has been utilised to666

detour disrupted flows to the pre-computed backup paths, in addition, VLAN tags technique to aggregate667

affected flows was used to reduce the installed backup rules. The backup path adjustment algorithm aims668

to refine the paths that are set by the rapid connectivity restoration, which is important for QoS.669

3.3 Factors Impacting Recovery Process670

The recovery process delay is connected with some aspects that can be categorised into three groups with671

each representing a different stage in the recovery process cycle. For instance, some factors are related to672

the controller side as it is the most vital part in the network, while, some other factors are associated with673

the OpenFlow protocol specifications, as it is the standard communication interface between the data and674

control layers. There are also some other relevant and important factors such as those resulting from the675

data plane nodes performance. The following three subsections will cover the aforementioned aspects.676

3.3.1 Network Changes Discovery677

The first step to recover from a link failure is to discover the changes in the underlying network topology.678

In SDNs, the topology changes can be detected on the basis of the infrastructure components, which are of679

two classes, nodes and links. On one hand, the liveness of nodes (e.g. switches) can be verified by sending680

an ECHO message regularly from the control plane and, therefore, it is not difficult for the controller to681

detect the disconnected switches. On the other hand, the operational state of links can be checked by682

the switches they are connected with. For this purpose, two mechanisms can be utilised to perform a683

link failure detection, namely BFD and LoS (as mentioned in Section 3.1). OpenFlow protocol supports684

the LoS mechanism through its PORT-STATUS messages that provide the controller with notifications685

as soon as a port change status is detected. A number of studies took this matter into account due to its686

critical impact on failure recovery.687

Desai and Nandagopal (2010) discussed the problem of forwarding data traffic towards a non-688

operational area that is experiencing a link failure in a centralised controlling network such as an SDN.689

The authors claimed that the period of time from the moment of failure till the moment of recovery will690

usually cause a waste of bandwidth due to the fact that switches will continue forwarding flows, regardless691

of the failure, that are unnecessarily transmitted until an update arrives from controller. This waste is692

substantial and must avoid. A controller could be placed remotely and may not be connected directly to693

the switches that belong to its domain, which makes the update operation even more critical and time694

consuming. For this reason, the study focuses on restraining switches from sending traffic in the direction695

where the failed link is located and this should not require the controller intervention in order to speed696

up the process. To address this, the Link Failure Messages (LFMs) algorithm was developed, which697

enables the sharing of failure information among the relevant switches and therefore it prevents them698

from sending data packets to that direction. LFMs does not require the controller intervention and hence699

the relevant switches will be aware of the link failures quickly without waiting for controller messages.700

However, the performance of LFMs is related to the number of involved switches in the process, i.e., the701

large the number of involved switches the longer the time it takes to send LFM to all them.702

Gebre-Amlak et al. (2017) developed the Topology-Aware Reliability Management framework (TAR-703

Man) that classifies the network elements into different zones based on their criticality, the more critical704

the more important. Instead of sending LLDP messages at uniform intervals from the controller to705

switches, TARMan customises the frequency of LLDPs according to how the zone is important (the more706

important the more frequent LLDP). Therefore, TARMan aims to reduce the time of failure detection for707

the critical nodes/links in the network.708

3.3.2 Path Computation709

Generally, and for restoration schemes, the step of path computation will be activated as soon the first step710

(i.e. failure detection) is done. When failure is detected an alternative working path should be computed711

reactively, unless it is planned proactively. The OpenFlow switches are not able to calculate new paths712

when failure occurs owing to the SDN architecture and the decoupling between the data and control713

plane, however, controller is able to do so utilising the global view of the network’s entire resources.714

Currently, most of the reactive failure recovery techniques suspend the alternative path computation715
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until failure occurs, except some traffic engineering methods such as the ADMPCF (Luo et al., 2015),716

which continuously strive to look for good paths in the network that will be stored as backups and to717

be employed when an incident occurs. Similarly, Mendiola et al. (2015) developed the Dynamic Path718

Computation (DynPac) framework as a traffic engineering technique to improve the network resource719

utilisation. DynPac uses a stateful path computation element (PCE) that computes and stores all possible720

paths between all source and destination pairs in a database and it guarantees the bandwidth allocation for721

the requested services. Beside this, the authors state that DynPac is not only concerned with resource722

utilisation improvement, but also it supports resilience during link failures through removing the flow723

entries of the failed path and installing the flow entries of the path that will be selected from the database724

of paths.725

The phase of path computation also constitutes an obstacle to the process of recovery as this will lead726

the controller to put in additional time to search for possible solutions, while, the controller is racing727

against time to mitigate the effect of disruption and speed-up the recovery operation. A further discussion728

on this issue can be found in (Malik et al., 2017a).729

3.3.3 Network Update730

After the second stage (i.e. path computation) is performed, the next and last phase will be commenced,731

these are to update the relevant switches with the new computed flow entries that will mask the disruption732

caused by failure incidents (e.g. link failure). This can be done either by pushing a new set of flow entries733

associated with a higher priority than the idle ones, as a technique to override the existing rules, or by734

removing the non-working rules along the damaged path first and installing the new forwarding entries.735

Network update is not trivial and sometimes it leads to a policy conflict and/or unwanted loop. The SDN736

controller is responsible for updating the switches whenever a reconfiguration is needed. To do so, the737

controller uses some of the OpenFlow protocol messages (i.e. such as those mentioned in Section 2.2) to738

reconfigure the switches’ flow table according to the forwarding rules of the new configuration scheme.739

Since the network is prone to planned and unplanned events as mentioned in Section 3, this means the740

network updates and reconfiguration can be divided into two categories, as follows:741

742

a) Planned reconfiguration743

Changes are not only demanded during the unplanned failure incidents, but also for some planned744

maintenance activities. Reitblatt et al. (2011, 2012) discussed the problem of consistent update and745

transition from an old to a new configuration for the planned occasions. The authors propose two746

strategies: per-packet and per-flow for a consistent update. The per-packet strategy duplicates the table747

entries for switches so that the controller needs to amend the flow tables by installing the new flow entries748

that meet the new configuration.749

The controller then conducts the necessary update for the ingress switches and since they cannot be750

updated at the same time and, therefore, it is necessary to mark the incoming packets (e.g. using VLAN751

tags) with the version type of the configuration that needs to be followed. In such a case, the incoming752

packets will be processed either according to the configuration prior to the update ”old” or in line with the753

recent update ”new”, but not a mixture of the two. When all the incoming packets start following the new754

configuration, the controller will remove the flow entries of the old configuration.755

Similarly, the per-flow mechanism behaves as per-flow, however, it ensures that all packets that belong756

to the same flow will be handled with the same policy (i.e. old or new). This is because in some cases it is757

compulsory for the packets belonging to the same flow to reach a certain destination, for instance, the758

server load-balancer application necessitates all packets of the same TCP connection to go through the759

same server replica.760

The implementation of per-flow is more complex than per-packet since the system needs to be aware761

of the active packets for each flow. Therefore, for per-flow, the controller needs to push the new flow762

entries of the new configuration into switches. Subsequently, on the ingress switches, the controller sets a763

timeout for the old configuration rules and pushes the new configuration rules with low priority. Hence,764

as soon as the flows match the old rules finish, it will expire and the rules of the new configuration will765

take effect. Planned failures comprise 20% of all failures, which is mainly due to the scheduled network766

maintenance activities (Markopoulou et al., 2008).767

768

b) Unplanned reconfiguration769
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Figure 10. Reconfiguration cycle in SDNs

Unplanned reconfiguration is the necessary changes that need to be carried out in order to keep the770

network functioning properly in case one, or more, of its components stop working and hence the fault771

tolerance property is important. Time plays a significant role in the process of reconfiguration as it is772

axiomatic that network operators are willing to provide their services to the end-users continuously and773

with no deterioration. Therefore, the less reconfiguration time is consumed, the more preferable the774

technique.775

The performance of current OpenFlow switches varies according to their vendor, it was reported that776

the range of time required for inserting a single flow entry varies from 0.5 µs to 10 µs (Rotsos et al.,777

2012; Tran-Gia, 2018). Therefore, the required time for rule insertion is not negligible and can not be778

ignored, especially from the point of view of a path failure, since at the moment of failure, we are not only779

concerned with new flow rule insertion, but also with the removal of invalid old rules. Jin et al. (2014)780

demonstrated that a time of 11 µs (at least) is required for each rule modification; i.e. the latency caused781

by the insertion and deletion operations. To accelerate operation of changes, Mizrahi and Moses (2016)782

suggested a simultaneous update approach to replace flow entries simultaneously as a step to reduce the783

packet loss rate while reconfiguring the network paths. However, Vissicchio et al. (2017) considered such784

simultaneous operations as impractical since it is impossible to predict the rules installation delay, in other785

words, it cannot be guaranteed that all the respective switches will proceed and complete the updates at the786

same time and hence it is unsafe and potentially highly likely to cause forwarding and policy violations.787

In contrast, the ordered update (i.e. node by node) preserves the correctness of the forwarding policy, but788

it takes a longer time compared with simultaneous update.789

Undoubtedly, switches must be reconfigured individually as it is very hard to perform the network790

update with one atomic step (Reitblatt et al., 2011), which means the update time is tied to the number of791

switches involved in the process of reconfiguration, in other words, the larger the number of switches792

the more time is required. Typically, the quicker update operation accelerates the recovery process and793

hence, the less the services are disrupted by network failures. An experimental investigation is presented794

in Chapter 4, which discuses this issue in the context of path recovery from link failures.795

4 SUMMARY OF LIMITATIONS796

Resilience to failures and convergence time after a failure are significant factors that impinge on the797

network performance. Despite the advantages of SDN and the dramatic network improvements it brought,798

this innovation has been accompanied by several challenges, such as the management of network failures,799

the reconfiguration of the network architecture and the monitoring of its status. These multiple issues are800

connected to one root subject, which is the network reconfiguration. The SDN reconfiguration cycle is801

illustrated in Figure 10 in which the reconfiguration process has been divided into four main parts, namely802

Detection, Solution, Update and Reversion. Each part stresses the elasticity of the reconfiguration cycle803

differently. However, the issues involved with these parts and considered in this thesis can be summarised804

as follows:805

• TCAM space limitation: Since pushing extra flow entries as backups increases the chance of806
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overwhelming TCAM memory, which will lead to inefficient use of SDN resources (i.e. forwarding807

elements like switches). Moreover, the installation of many attributes will affect the process of808

match and action of the data plane forwarding elements. Furthermore, there is no guarantee that the809

pushed flow entries as preplanned paths are failure-free, in other words, the backup paths could fail810

earlier than the primary ones, which could further burden the controller with unnecessary tasks.811

Consequently, protection methods are not the best solution to tackle failures especially for the812

TCAM-limited SDNs. Therefore, this thesis advocates for the restoration strategies.813

• Alternative calculation: Reactive-based solutions usually calculate the secondary (i.e. backup)814

paths at the moment of detecting failures. This calculation process is not trivial if the network815

operator is biased towards adhering to the carrier-grade quality. This issue was considered by some816

of the literature (as mentioned in Section 3.3.2). Interestingly, some publications have suggested817

the disjointness as a constraint for the calculated paths, however, this will increase time of update in818

a proportional manner to the number of rules that need to be changed.819

• Restore delay: Given that SDN is a centralised networking system in which the network controller820

is responsible for updating the data plane forwarding components and since the update operation821

takes time as it cannot be established in one go, therefore, failure recovery schemes with a minimum822

number of updates are more preferable. Proactive schemes are less affected by this matter than the823

reactive methods, since in protection both primary and secondary paths are installed, while this is824

not the case for the restoration.825

• Reverting after repair: Changing paths according to failure incidents is not enough as this will leave826

the network in a not fully-optimal state. Since the paths resulting from the recovery operation could827

be less ideal than before the failure (e.g. the alternative path is longer than the original), therefore, it828

should be an interim solution until the affected primary path gets back to the operational state again.829

This reversion is important and required to keep the network operating efficiently in an optimal830

state. This part of reversion is missed from the literature of the reactive schemes and hence it should831

be emphasised and discussed explicitly.832

Although the efficiency of failure recovery mechanisms are partially restricted by the time of failure833

detection, this thesis has no contribution to enhance this part of the reconfiguration cycle. In general,834

proactive failure recovery schemes are fast in terms of reacting to failure (i.e. small delay), however, it835

requires a large number of preplanned routing rules, which consumes the storage of data plan devices836

(TCAM space) and most of the studies in this area have been tested on small-scale networks (e.g. between837

7-28 nodes and 7-43 links), hence they are not directly comparable to a large-scale network. Furthermore,838

some of the protection schemes utilised some Openflow specifications such as VLANs to perform light839

weight failure recovery mechanisms, but, in such cases the VLANs functionality is deactivated and cannot840

be used any more. However, some of the protection proposals are still not supported (e.g. OpenState) by841

the current OpenFlow, making such a contribution impractical in reality.842

In contrast, the reactive failure recovery schemes are not as fast as proactive ones, but, no extra843

information on routing tables is required and so, it does not exhaust the memory space of the data plane844

elements.845

5 OPEN RESEARCH CHALLENGES846

This paper suggests several future directions that researchers can undertake to meet the requirement847

of SDN fault tolerance and therefore the SDN dependability. Since the current research focused on848

either protection or restoration mechanisms to mask link failures, some certain scalability drawbacks are849

associated with both mechanisms as follows:850

• Memory: memory space consumption is the main key challenge that impedes protection techniques.851

This issue becomes particularly critical for large scale networks as huge number of backup flow852

entries need to be installed and therefore memory space is needed to store such a huge number of853

forwarding rules. Based on the literature, most of the proposed solutions rely on the OpenFlow854

implementation schemes such as VLANs, however, such solutions affects the use of VLANs itself.855

In other words, utilising VLANs for fault tolerance purposes will cancel the actual function of856

VLANs. Therefore, more investigation is required.857
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• Time: failure recovery with restoration strategy is time consuming because the network controller858

will need to update the affected routes after detecting a broken connection. This issue becomes more859

particularly critical for large scale networks as the longer path, the more time to update. Based on860

the literature, most of the proposed solutions who tackled this issue failed to guarantee the shortest861

path as an alternative. Therefore, more research is required to investigate whether it is possible to862

accelerate the recovery process as well as guarantee the alternative shortest path at same time.863

• Policy interaction: Most of the current solutions only consider the only recovery aspect without864

taking into account some other important properties such as the security policy. Traditionally, the865

interaction between fault tolerance and security has been considered (e.g. (Price, 1999)). However,866

in SDNs this topic still awaits further investigation, for instance, a proposed solution must avoid867

policy violations by installing new alternative paths that should not bypass security policies.868

6 CONCLUSION869

This paper surveys several prominent and promising methods that have been proposed to tackle and solve870

the issue of data plane fault tolerance. The paper first reviewed the past exerted efforts towards favoring871

programmable networks down to the age of software-defined networking. Dependable systems in terms of872

communications paradigm is covered with highlights on the fault tolerance attribute and failure recovery873

schemes in computer networks in general and SDN in particular. Then, the pros and cons of literature874

on SDN fault tolerance and failure recovery are summarised with an emphasis on the current challenges875

that hamper the SDNs in the context of performance and resource utilisation. The paper also presented a876

classification of the various factors that impacting the process of failure recovery for better understanding877

about the relationship between the existing body of SDN research as well as to identify the cutting edge878

research issues. Finally, the current issues and challenges are discussed and categorized into four groups879

with several questions still remain to be answered and therefore more research is necessary to fill the880

remaining gaps.881

Notwithstanding large literature on SDNs, there are still some issues and challenges related to882

SDN dependability by means of fault tolerance where more investigation is needed to address the open883

challenges of scalability and resilience.884
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Dinh, K. T., Kukliński, S., Kujawa, W., and Ulaski, M. (2016). Msdn-te: Multipath based traffic936

engineering for sdn. In Asian Conference on Intelligent Information and Database Systems, pages937

630–639. Springer.938

Erickson, D. (2013). The beacon openflow controller. In Proceedings of the second ACM SIGCOMM939

workshop on Hot topics in software defined networking, pages 13–18. ACM.940

Feamster, N., Balakrishnan, H., Rexford, J., Shaikh, A., and Van Der Merwe, J. (2004). The case for941

separating routing from routers. In Proceedings of the ACM SIGCOMM workshop on Future directions942

in network architecture, pages 5–12. ACM.943

Feamster, N., Rexford, J., and Zegura, E. (2014). The road to sdn: an intellectual history of programmable944

networks. ACM SIGCOMM Computer Communication Review, 44(2):87–98.945

Floyd, R. W. (1962). Algorithm 97: shortest path. Communications of the ACM, 5(6):345.946

Gebre-Amlak, H., Banala, G., Song, S., Choi, B.-Y., Choi, T., and Zhu, H. (2017). Tarman: Topology-947

aware reliability management for softwarized network systems. In Local and Metropolitan Area948

Networks (LANMAN), 2017 IEEE International Symposium on, pages 1–6. IEEE.949

Greenberg, A., Hjalmtysson, G., Maltz, D. A., Myers, A., Rexford, J., Xie, G., Yan, H., Zhan, J., and950

Zhang, H. (2005). A clean slate 4d approach to network control and management. ACM SIGCOMM951

Computer Communication Review, 35(5):41–54.952

Gude, N., Koponen, T., Pettit, J., Pfaff, B., Casado, M., McKeown, N., and Shenker, S. (2008). Nox:953

towards an operating system for networks. ACM SIGCOMM Computer Communication Review,954

38(3):105–110.955

Hakiri, A., Gokhale, A., Berthou, P., Schmidt, D. C., and Gayraud, T. (2014). Software-defined networking:956

Challenges and research opportunities for future internet. Computer Networks, 75:453–471.957

Hedrick, C. L. (1988). Routing information protocol. Technical report.958

Jin, X., Liu, H. H., Gandhi, R., Kandula, S., Mahajan, R., Zhang, M., Rexford, J., and Wattenhofer, R.959

(2014). Dynamic scheduling of network updates. In ACM SIGCOMM Computer Communication960

Review, volume 44, pages 539–550. ACM.961

Jinyao, Y., Hailong, Z., Qianjun, S., Bo, L., and Xiao, G. (2015). Hiqos: An sdn-based multipath qos962

22/26PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27624v1 | CC BY 4.0 Open Access | rec: 1 Apr 2019, publ: 1 Apr 2019



solution. China Communications, 12(5):123–133.963

Katz, D. and Ward, D. (2010). Bidirectional forwarding detection (bfd). Technical report.964

Kim, H., Schlansker, M., Santos, J. R., Tourrilhes, J., Turner, Y., and Feamster, N. (2012). Coronet: Fault965

tolerance for software defined networks. In Network Protocols (ICNP), 2012 20th IEEE International966

Conference on, pages 1–2. IEEE.967

Kitsuwan, N., McGettrick, S., Slyne, F., Payne, D. B., and Ruffini, M. (2015). Independent transient plane968

design for protection in openflow-based networks. IEEE/OSA Journal of Optical Communications and969

Networking, 7(4):264–275.970

Kitsuwan, N., Payne, D. B., and Ruffini, M. (2014). A novel protection design for openflow-based971

networks. In Transparent Optical Networks (ICTON), 2014 16th International Conference on, pages972

1–5. IEEE.973

Kreutz, D., Ramos, F. M., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S., and Uhlig, S. (2015).974

Software-defined networking: A comprehensive survey. Proceedings of the IEEE, 103(1):14–76.975

Kurtz, F. and Wietfeld, C. (2017). Advanced controller resiliency in software-defined networking enabled976

critical infrastructure communications. In Information and Communication Technology Convergence977

(ICTC), 2017 International Conference on, pages 673–678. IEEE.978
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