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Background RNA sequencing (RNA-Seq) is a powerful technique for transcriptome profiling of the

organisms that uses the capabilities of next-generation sequencing (NGS) technologies. Recent advances

in NGS let to measure the expression levels of tens to thousands of transcripts simultaneously. Using

such information, developing expression-based classification algorithms is an emerging powerful method

for diagnosis, disease classification and monitoring at molecular level, as well as providing potential

markers of disease. Microarray based classifiers cannot be directly applied due to the discrete nature of

RNA-Seq data. One way is to develop count-based classifiers, such as poisson linear discriminant analysis

(PLDA) and negative binomial linear discriminant analysis (NBLDA). Other way is to transform the data

hierarchically closer to microarrays and apply microarray-based classifiers. In most of the studies, the

data overdispersion seems to be an another challenge in modeling RNA-Seq data. In this study, we aimed

to examine the effect of dispersion parameter and classification algorithms on RNA-Seq classification. We

also considered the effect of other parameters (i) sample size, (ii) number of genes, (iii) number of class,

(iv) DE (differential expression) rate, (v) transformation method on classification performance.

Methods We designed a comprehensive simulation study, also used two miRNA and two mRNA

experimental datasets. Simulated datasets are generated from negative binomial distribution under

different scenarios and real datasets are obtained from publicly available resources. We compared the

results of several classifiers including PLDA with and without power transformation, NBLDA, single SVM,

bagging SVM (bagSVM), classification and regression trees (CART), and random forests (RF).

Results Results from the simulated and real datasets revealed that increasing the sample size,

differential expression rate, number of genes and decreasing the dispersion parameter and number of

groups lead to an increase in the classification accuracy. To make an overall assessment, power

transformed PLDA, RF and SVM classifiers performed the highest classification accuracies.

Discussion Overdispersion seems to be an important challenge in RNA-Seq classification studies. Similar

with differential expression studies, classification of RNA-Seq data requires careful attention on handling

data overdispersion. We conclude that, as a count-based classifier, power transformed PLDA; as a

microarray based classifier vst or rlog transformed RF and SVM (bagSVM for high sample sized data)

classifiers may be a good choice for classification. However, there is still a need to develop novel

classifiers or transformation approaches for classification of RNA-Seq data. An R/BIOCONDUCTOR

package MLSeq with a vignette is freely available at
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16 Abstract

17 Background

18 RNA sequencing (RNA-Seq) is a powerful technique for transcriptome profiling of the 

19 organisms that uses the capabilities of next-generation sequencing (NGS) technologies. Recent 

20 advances in NGS let to measure the expression levels of tens to thousands of transcripts 

21 simultaneously. Using such information, developing expression-based classification algorithms 

22 is an emerging powerful method for diagnosis, disease classification and monitoring at molecular 

23 level, as well as providing potential markers of disease. Microarray based classifiers cannot be 

24 directly applied due to the discrete nature of RNA-Seq data. One way is to develop count-based 

25 classifiers, such as poisson linear discriminant analysis (PLDA) and negative binomial linear 

26 discriminant analysis (NBLDA). Other way is to transform the data hierarchically closer to 

27 microarrays and apply microarray-based classifiers. In most of the studies, the data 

28 overdispersion seems to be an another challenge in modeling RNA-Seq data. In this study, we 

29 aimed to examine the effect of dispersion parameter and classification algorithms on RNA-Seq 

30 classification. We also considered the effect of other parameters (i) sample size, (ii) number of 

31 genes, (iii) number of class, (iv) DE (differential expression) rate, (v) transformation method on 

32 classification performance.

33 Methods

34 We designed a comprehensive simulation study, also used two miRNA and two mRNA 

35 experimental datasets. Simulated datasets are generated from negative binomial distribution 

36 under different scenarios and real datasets are obtained from publicly available resources. Data 

37 normalization is applied using deseq median ratio approach. A variance stabilizing 

38 transformation (vst) and regularized logarithmic transformation (rlog) methods are used before 
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39 applying microarray-based classifiers. We compared the results of several classifiers including 

40 PLDA with and without power transformation, NBLDA, single SVM, bagging SVM (bagSVM), 

41 classification and regression trees (CART), and random forests (RF).

42 Results

43 Results from the simulated and real datasets revealed that increasing the sample size, differential 

44 expression rate, number of genes and decreasing the dispersion parameter and number of groups 

45 lead to an increase in the classification accuracy. To make an overall assessment, power 

46 transformed PLDA, RF and SVM classifiers performed the highest classification accuracies.

47 Discussion

48 Overdispersion seems to be an important challenge in RNA-Seq classification studies. Similar 

49 with differential expression studies, classification of RNA-Seq data requires careful attention on 

50 handling data overdispersion. We conclude that, as a count-based classifier, power transformed 

51 PLDA; as a microarray based classifier vst or rlog transformed RF and SVM (bagSVM for high 

52 sample sized data) classifiers may be a good choice for classification. However, there is still a 

53 need to develop novel classifiers or transformation approaches for classification of RNA-Seq 

54 data. An R/BIOCONDUCTOR package MLSeq with a vignette is freely available at 

55 http://www.bioconductor.org/packages/2.14/bioc/html/MLSeq.html.
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56 Introduction

57 With the advent of high-throughput NGS technologies, transcriptome sequencing (RNA-Seq) has 

58 become one of the central experimental approaches for generating a comprehensive catalog of 

59 protein-coding genes and non-coding RNAs and examining the transcriptional activity of 

60 genomes. Furthermore, RNA-Seq has already proved itself to be a promising tool with a 

61 remarkably diverse range of applications; (i) discovering novel transcripts, (ii) detection and 

62 quantification of spliced isoforms, (iii) fusion detection, (iv) reveal sequence variations (e.g., 

63 SNPs, indels) (Wang, Gerstein & Snyder, 2009).Additionally, beyond these general applications, 

64 RNA-Seq holds great promise for gene expression-based classification to identify the significant 

65 transcripts, distinguish biological samples and predict clinical or other outcomes due to large 

66 amounts of data, which can be generated in a single run. This classification is widely used in 

67 medicine for diagnostic purpose and refers to the detection of small subset of genes that achieves 

68 the maximal predictive performance. These genes are used afterwards for classification of new 

69 observations into the disease classes (or tumor classes, cancer subtypes, cancer stage, etc.).

70 Although microarray-based gene expression classification have become very popular during last 

71 decades, more recently, RNA-Seq replaced microarrays as the technology of choice in 

72 quantifying gene expression due to some advantages as providing less noisy data, detecting novel 

73 transcripts and isoforms, and unnecessary of prearranged transcripts of interest (Furey et al., 

74 2000; Zhu & Hastie, 2004; Uriarte & de Andres, 2006; Rapaport et al., 2007).However, to 

75 measure gene expression, microarray technology provides continuous data, while RNA-Seq 

76 technology generates discrete count data, which corresponds to the abundance of mRNA 

77 transcripts (Witten, 2011).Another issue is the overdispersion problem, where the variance 

78 exceeds the mean (Nagalakshmi et al., 2008). Various studies have been employed to deal with 
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79 the overdispersion problem for differential expression (DE) analysis of RNA-Seq data (Anders & 

80 Huber, 2010; Robinson, McCarthy & Smyth, 2010; Di et al., 2011; Soneson & Delorenzi, 2013; 

81 Love, Huber & Anders, 2014).

82 One way is to use discrete probability distributions (e.g. poisson, negative binomial) to deal with 

83 huge amount of RNA-Seq data for expression-based classification purpose. Witten et al. (Witten, 

84 2011)proposed the sparse Poisson linear discriminant analysis (PLDA) classifier by extending 

85 the popular microarray classifier, nearest shrunken centroids algorithm, to discrete RNA-Seq 

86 data. The authors also suggested applying a power transformation, since Poisson distribution 

87 underestimates the variation observed from the data. Dong et al. (Dong et al., 2016) proposed 

88 negative binomial distribution by extending PLDA with the use of negative binomial 

89 distribution. Another choice may be to use some transformation approaches (e.g. vst–variance 

90 stabilizing transformation- or rlog–regularized logarithmic transformation-) to bring RNA-Seq 

91 samples hierarchically closer to microarrays and apply known algorithms for classification 

92 applications (Nagalakshmi et al., 2008; Anders & Huber, 2010; Robinson, McCarthy & Smyth, 

93 2010).

94 In this study, we designed a comprehensive simulation study, also used four real datasets to 

95 examine the effect of dispersion parameter and classification algorithms on RNA-Seq 

96 classification. We also considered the effect of other parameters (i) sample size, (ii) number of 

97 genes, (iii) number of class, (iv) DE rate, (v) transformation method on classification 

98 performance. For each scenario, we performed PLDA and NBLDA as well as other machine 

99 learning algorithms i.e. support vector machines (SVM), bagging support vector machines 

100 (bagSVM), random forests (RF) and classification and regression trees (CART) algorithms.
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101 Materials and Methods

102 A workflow for RNA-Seq classification 

103 Providing a pipeline for classification algorithm of RNA-Seq data gives us a quick snapshot view 

104 of how to handle the large-scale transcriptome data and establish a robust inference by using 

105 computer-assisted learning algorithms. Therefore, we outlined the count-based classification 

106 pipeline for RNA-Seq data in Fig. 1. NGS platforms produce millions of raw sequence reads 

107 with quality scores corresponding to each base-call. The first step in RNA-Seq data analysis is to 

108 assess the quality of the raw sequencing data for meaningful downstream analysis. The 

109 conversion of raw sequence data into ready-to-use clean sequence reads needs a number of 

110 processes such as removing the poor-quality sequences, low-quality reads with more than five 

111 unknown bases, and trimming the sequencing adaptors and primers. In quality assessment and 

112 filtering, the current popular tools are FASTQC 

113 (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/), HTSeq (Anders, Pyl & Huber, 

114 2015), R ShortRead package (Morgan et al., 2009), PRINSEQ (http://edwards.sdsu.edu/cgi-

115 bin/prinseq/prinseq.cgi), FASTX Toolkit (http://hannonlab.cshl.edu/fastx_toolkit/) and QTrim 

116 (Shrestha et al., 2014). Following these procedures, next step is to align the high-quality reads to 

117 a reference genome or transcriptome. It has been reported that the number of reads mapped to the 

118 reference genome is linearly related to the transcript abundance. Thus, transcript quantification 

119 (calculated from the total number of mapped reads) is a prerequisite for further analysis. Splice-

120 aware short read aligners such as Tophat2 (Kim et al., 2013), MapSplice (Wang et al., 2010) or 

121 Star (Dobin et al., 2012) can be prefered instead of unspliced aligners (BWA, Bowtie, etc.). After 

122 obtaining the mapped reads, next step is counting how many reads mapped to each transcript. In 

123 this way, gene expression levels can be inferred for each sample for downstream analysis. This 
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124 step can be accomplished with HTSeq (Anders, Pyl & Huber, 2015), bedtools (Quinlan & Hall, 

125 2010) and FeatureCounts (Liao, Smyth & Shi, 2014) softwares. However, these counts cannot be 

126 directly used for further analysis and should be normalized to adjust between-sample differences. 

127 There is no standard tool for normalization, but the popular ones include deseq median ratio 

128 (Anders & Huber, 2010), trimmed mean of M values (TMM) (Robinson & Oshlack, 2010), reads 

129 per kilobase per million mapped reads (RPKM) (Mortazavi et al., 2008) and quantile (Bullard, 

130 2010). For transformation, vst (Anders & Huber, 2010), rlog (Love, Huber & Anders, 2014) and 

131 voom (Law et al., 2014) methods can be a method of choice. Apart from these approaches, 

132 Witten considered power transformation to decrease the dispersion of data, before applying 

133 PLDA classifier (Witten, 2011). Once all mapped reads per transcripts are counted and 

134 normalized, we obtain gene-expression levels for each sample.

135 First way is to apply the count based classifiers, e.g. PLDA (Witten, 2011) and NBLDA (Dong et 

136 al., 2016) directly to the count data or to the power transformed data. Second way is to use the 

137 same workflow of microarray classification after transforming the data hierarchically to 

138 microarrays. The crucial steps of classification can be written as feature selection, building 

139 classification model and model validation. In feature selection step, we aim to work with an 

140 optimal subset of data. This process is crucial to reduce the computational cost, decrease of noise 

141 and improve the accuracy for classification of phenotypes, also to work with more interpretable 

142 features to better understand the domain (Ding & Peng, 2005). Various feature selection methods 

143 have been reviewed in detail and compared in (Xing, Jordan & Karp, 2001). Next step is model 

144 building, which refers to the application of a machine-learning algorithm and to learn the 

145 parameters of classifiers from training data. Thus, the built model can be used to predict class 
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146 memberships of new biological samples. The commonly used classifiers include SVM, RF and 

147 other tree-based classifiers, artificial neural networks and k-nearest neighbors.

148 In many real life problems, it is possible to experience that a classification algorithm may 

149 perform well and perfectly classify training samples, however perform poorly when classifying 

150 new samples. This problem is called as overfitting and independent test samples should be used 

151 to avoid overfitting and to generalize classification results. Holdout, k-fold cross-validation, 

152 leave-one-out cross-validation and bootsrapping are among the recommended approaches for 

153 model validation.

154 Implementation of classifiers

155 Simulation study

156 Simulation setup

157 A comprehensive simulation is conducted to investigate the effect of several parameters. 

158 Simulated datasets are generated under 864 different scenarios using a negative binomial model 

159 as follows:

160                                  (1)𝑿𝒊𝒋|𝒚𝒊 = 𝒌~𝑵𝑩(𝒔𝒊𝒈𝒋𝒅𝒌𝒋,𝝓) �
161 where, si is the number of counts per sample, gj is the number of counts per gene, dkj is the 

162 differential expression probability of jth gene between classes k and φ is the dispersion parameter. 

163 The datasets contain all possible combination of:

164  different dispersion parameters as φ=0.01 (very slightly overdispersed), φ=0.1 

165 (substantially overdispersed), φ=1 (highly overdispersed);

166  number of biological samples (n) changing as 40, 60, 80, 100;

167  number of differentially expressed genes (p’) as 25, 50, 75, 100;

168  differential expression probability (dkj) as 1%, 5% and 10%;
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169  number of classes (k) as 2, 3, 4;

170  method of transformation as rlog and vst.

171 In simulation setup, si and gj are distributed identically and independently as si and gj 

172 respectively. Simulated datasets are generated using the CountDataSet function of PoiClaClu 

173 package of R software (Witten, 2013) and manipulated based on the details given above. Seed 

174 number is set to ‘10072013’ in all analysis steps.

175 Evaluation process

176 All datasets are initially simulated for p=10,000 genes. Next, the data are split into training 

177 (70%) and test sets (30%). All model building processes are applied in training datasets, model 

178 performances are evaluated in test sets. We applied near-zero filtering to training data to filter the 

179 genes with low counts to eliminate the effect of this genes for further analysis (Kuhn, 

180 2008).Genes are filtered based on two criteria: (i) the frequency ratio of the most frequent value 

181 to the second most frequent value is higher than 19 (95/5), (ii) the ratio of the number of unique 

182 values to the sample size is less than 10%. Filtered genes are also excluded from the test datasets. 

183 Next, DESeq2 method is applied to detect the most DE 25, 50, 75 and 100 genes (Love, Huber & 

184 Anders, 2014). Selected genes are also selected in test datasets.

185 After selecting the DE genes, training data is normalized using median ratio approach to adjust 

186 sample specific differences (Love, Huber & Anders, 2014). After normalization, datasets are 

187 transformed using either rlog or vst transformation for SVM, bagSVM, RF and CART 

188 algorithms. Classical logarithmic transformation approach transforms the data into a less skewed 

189 distribution with less extreme values as well, however the genewise variances are still 

190 unstabilized (Love, Huber & Anders, 2014). Normalized count datasets are directly used for 

191 PLDA and NBLDA algorithms, since both algorithms use discrete probability distributions to fit 
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192 the models. In another scenario, a power transformation is applied to minimize the effect of 

193 overdispersion and PLDA algorithms is applied to this transformed data. This approach is 

194 defined as PLDA2 in Results section. Note that, test datasets are normalized and transformed 

195 using the same parameters as training datasets. Since, training and test datasets should be in same 

196 scale and homoscedastic to each other. For instance, to normalize the test datasets, size factors of 

197 test datasets are calculated based on the geometric means of training data. Dispersion estimations 

198 are applied based on the training models as well.

199 After normalization and transformation processes, the parameters of each classifier are optimized 

200 to avoid overfitting and underfitting. A five-fold cross-validation is applied to training data and 

201 the parameters that achieves the highest accuracy rate are selected as optimal parameters. Same 

202 folds are used for each classifier to make the results comparable. Each classifier is fit with the 

203 optimal parameters. Fitted models are used in test datasets for prediction and performance 

204 evaluation.

205 The sample sizes are very low relative to the number of genes, since we mimic the real datasets. 

206 Thus, the model performances may vary depending on the split of training and test sets. To 

207 overcome this limitation, we repeated the entire process 50 times and summarized the results in 

208 single statistics, i.e. accuracy rates.

209 Application to real datasets

210 In addition to the simulated data, four real datasets, including both miRNA and mRNA datasets, 

211 were also used as real life examples (Table 1).

212 Experimental datasets

213 Cervical dataset: Cervical dataset is a miRNA sequencing dataset obtained from (Witten et al., 

214 2010). miRNAs are non-coding small RNA molecules with average 21-23 bp length and take 
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215 role in the regulation of gene expression. The objective of this study was to both identify the 

216 novel miRNAs and to detect the differentially expressed ones between normal and tumor 

217 cervical tissue samples. For this purpose, the authors constructed 58 small RNA libraries, 

218 prepared from 29 cervical cancer and 29 matched control tissues. After deep sequencing with 

219 Solexa/Illumina sequencing platform, they obtained a total of 25 Mb and 17 Mb RNA sequences 

220 from the normal and cancer libraries respectively. Of these 29 tumor samples, 21 of them had a 

221 diagnosis of squamous cell carcinomas, 6 of them had adenocarcinomas and 2 were unclassified. 

222 In our analysis, we used the data that contains the sequence read counts of 714 miRNAs 

223 belonging to 58 human cervical tissue samples, where 29 tumor and 29 non-tumor samples are 

224 treated as two distinct classes for prediction.

225 Alzheimer dataset: This dataset is another miRNA dataset provided by Leidinger et al. 

226 (Leidinger et al., 2013). The authors aimed to discover potential miRNAs from blood in 

227 diagnosing alzheimer and related neurological diseases. In this purpose, the authors obtained 

228 blood samples from 48 alzheimer patients that were evaluated after undergoing some tests 

229 including Alzheimer Disease Assessment Scale-cognitive subscale (ADAS-Cog), Wechsler 

230 Memory Scale (WMS), and Mini-Mental State Exam (MMSE) and Clinical Dementia Rating 

231 (CDR). A total of 22 age-matched control samples were obtained and all sample libraries were 

232 sequenced using 53 Illumina HiSeq2000 platform. After obtaining the raw read counts, the 

233 authors filtered the miRNAs with less than 50 counts in each group. We used the data including 

234 416 miRNA read counts of 70 samples, where 48 alzheimer and 22 control samples are 

235 considered as two separate classes for classification. 

236 Renal cell cancer dataset: Renal cell cancer (RCC) dataset is an RNA-Seq dataset that is 

237 obtained from The Cancer Genome Atlas (TCGA) (Saleem et al., 2013). TCGA is a 
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238 comprehensive community resource platform for researchers to explore, download, and analyze 

239 datasets. We downloaded this dataset (with options level 3, RNASeqV2 data) from this database 

240 and obtained the raw 20,531 known human RNA transcript counts belonging to 1,020 RCC 

241 samples. This RNA-Seq data has 606, 323 and 91 specimens from kidney renal papillary cell 

242 (KIRP), kidney renal clear cell (KIRC) and kidney chromophobe carcinomas (KICH), 

243 respectively. These three classes are referred as the most common subtypes of RCC (account for 

244 nearly 90%-95% of the total malignant kidney tumors in adults) and treated as three separate 

245 classes in our analysis (Goyal et al., 2013). 

246 Lung cancer dataset: Lung cancer is another RNA-Seq dataset provided from TCGA platform. 

247 Same options were used in the download process. The resulting count file contains the read 

248 counts of 20,531 transcripts of 1,128 samples. The dataset has two distinct classes including lung 

249 adenocarcinoma (LUAD) and lung squamous cell with carcinoma (LUSC) with 576 and 552 

250 class sizes, respectively. These two classes are used as class labels in our analysis. 

251 Evaluation process

252 A similar procedure is applied with the simulation study. Model building is applied in training 

253 (70%) and tested in the test (30%) sets. Near-zero filtering is applied to the training set. Filtered 

254 genes are also removed fromthe test set. For renal cell cancer and lung cancer datasets, 5,000 

255 genes with highest variances are selected to eliminate the effect of non-informative mRNAs. All 

256 miRNA’s are used in model building process for cervical and alzheimer datasets. Differential 

257 expression was performed to training data using DESeq2 method and genes are ranked from the 

258 most significant to the less with increasing number of genes in steps of 25 up to 250 genes. 

259 Selected differentially expressed genes in the training data are also selected in the test datasets. 

260 Differentially expressed genes in training data are normalized using median ratio approach and 
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261 transformed using either vst or rlog approaches. Similar to simulation experiments, test datasets 

262 are normalized based on the parameters obtained from the training data to make them in same 

263 scale and homoscedastic to each other. Since, the sample size of cervical and alzheimer miRNA 

264 datasets are relatively small, entire process is applied 50 times. Seed numbers in data selections 

265 are set between 1 to 50 and results are summarized based on these 50 repeats. Other model 

266 building process are applied as same as the simulation study.

267 Implementation of classifiers

268 Seven different algorithms are applied to both simulated and real datasets. In this section, we 

269 summarize the background and use of each method.

270 SVM:SVM is a classification method based on statistical learning theory, which is developed by 

271 Vapnik and his colleges, and has taken great attention because of its strong mathematical 

272 background, learning capability and good generalization ability (Vapnik, 2000). Moreover, SVM 

273 is capable of nonlinear classification and deal with high-dimensional data. Thus, it has been 

274 applied in many fields such as computational biology, text classification, image segmentation 

275 and cancer classification (Vapnik, 2000; Korkmaz, Zararsiz & Goksuluk, 2015). 

276 In linearly separable cases, the decision function that correctly classifies the data points by their 

277 true class labels represented by:

278 𝒇𝒘,𝒃 = 𝒔𝒊𝒈𝒏(𝒘.𝒙𝒊 + 𝒃)(𝟐)

279 𝒊 = 𝟏,𝟐,…,𝒏
280 In binary classification, SVM finds an optimal separating hyperplane in the feature space, which 

281 maximizes the margin and minimizes the probability of misclassification by choosing w and b in 

282 equation (2).For the linearly non-separable cases, slack variables {ξ1,…,ξn}, which is a penalty 

283 introduced by Cortes and Vapnik, can be used to allow misclassified data points, where 
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284 ξi>0(Cortes & Vapnik, 1995). In many classification problems, the separation surface is 

285 nonlinear. In this case, SVM uses an implicit mapping Φ of the input vectors to a high-

286 dimensional space defined by a kernel function (K(x,y)=Φ(xi)Φ(xj)) and the linear classification 

287 then takes place in this high-dimensional space. The most widely used kernel functions are linear 

288 :K(x,y)=xixj, polynomial: K(x,y)=(xixj+1)d, radial basis function:    K(x,y)=exp(-γ‖‖ xi-xj‖‖2) and 

289 sigmoidal: K(x,y)=tanh(k(xixj)-c), where d is the degree, γ>0 sometimes parametrized as 

290 γ=1⁄2σ2, and c is a constant. Normalized and transformed (either using vst or rlog) datasets are 

291 used as input to SVM classifier. Radial basis kernel function is used in the analysis.

292 BagSVM: BagSVM is a bootstrap ensemble method, which creates individuals for its ensemble 

293 by training each SVM classifier (learning algorithm) on a random subset of the training set. For a 

294 given data set, multiple SVM classifiers are trained independently through a bootstrap method 

295 and they are aggregated via an aggregation technique. To construct the SVM ensemble, k 

296 replicated training sets are generated by randomly re-sampling, but with replacement, from the 

297 given training set repeatedly. Each sample, xi, in the given training set, may appear repeated 

298 times, or not at all, in any particular replicate training set. Each replicate training set will be used 

299 to train a specific SVM classifier. Normalized and transformed (either using vst or rlog) datasets 

300 are used as input to BagSVM classifier. Number of bootstrap samples were set to 101, since 

301 small changes were observed over this number.

302 CART: CART, which is introduced by Breiman et al., is one of the most popular tree classifiers 

303 and applied in many fields (Breiman et al., 1986). It uses Gini index to choose the split which 

304 maximizes the decrease in impurity at each node. If p(i|j) is the probability of classi at node j, 

305 then the Gini index is 1-∑I p2 (i|j). When CART grows a maximal tree, this tree is pruned upward 

306 to get a decreasing sequence of subtrees. Then, a cross-validation is used to identify the subtree 
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307 that having the lowest estimated misclassification rate. Finally, the assignment of each terminal 

308 node to a class is performed by choosing the class that minimizes the resubstitution estimate of 

309 the misclassification probability(Breiman et al., 1984; Dudoit & Fridlyand, 2003). Normalized 

310 and transformed (either using vst or rlog) datasets are used as input to CART classifier.

311 RF: A random forest is a collection of many CART trees combined by averaging the predictions 

312 of individual trees in the forest (Breiman, 2001).The idea behind the RF is to combine many 

313 weak classifiers to produce a significantly better strong classifier. For each tree, a training set is 

314 generated by bootstrap sample from the original data. This bootstrap sample includes 2/3 of the 

315 original data. The remaining of the cases are used as a test set to predict out-of-bag error of 

316 classification. If there are m features, mtry out of m features are randomly selected at each node 

317 and the best split is used to split the node. Different splitting criteria can be used such as Gini 

318 index, information gain and node impurity. The value of mtry is chosen to be approximately either 

319 or or 2 and constant during the forest growing. An unpruned tree is grown for each of 
𝑚
2

𝑚 𝑚
320 the bootstrap sample, unlike CART. Finally, new data is predicted by aggregating, i.e. majority 

321 votes, the predictions of all trees (Liaw & Wiener, 2002; Okun & Priisalu, 2007). Normalized 

322 and transformed (either using vst or rlog) datasets are used as input to RF classifier. Number of 

323 trees was set to 500 in the analysis.

324 PLDA1 and PLDA2: Let X be an nxp matrix of sequencing data, where n is number of 

325 observations and p is number of features. For sequencing data, Xij indicates the total number of 

326 reads mapping to gene j in observation i.  Therefore, Poisson log-linear model can be used for 

327 sequencing data,

328 , (3)𝑋𝑖𝑗 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖𝑗 ) 𝑁𝑖𝑗 = 𝑠𝑖𝑔𝑗
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329 where si is total number of reads per sample and gj is total number of reads per region of interest. 

330 For RNA-Seq data, equation (3) can be extended as follows,

331 ,  (4)𝑋𝑖𝑗|𝑦𝑖 = 𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖𝑗𝑑𝑗𝑘 ) 𝑁𝑖𝑗 = 𝑠𝑖𝑔𝑗
332 where   is the class of the  observation, and  terms allow the  𝑦𝑖 ∈ {1, . . . ,𝐾} 𝑖𝑡ℎ 𝑑1𝑗 , . . . , 𝑑𝐾𝑗 𝑗𝑡ℎ
333 feature to be differentially expressed between classes.

334 Let  be a training set and  be a test set. Using the Bayes’ rule (𝑥𝑖,𝑦𝑖),𝑖 = 1,…,𝑛, 𝑥 ∗
= (𝑋 ∗

1 ,…,𝑋 ∗𝑝 )
𝑇

335 as follows,

336 (5)𝑃(𝑦 ∗
= 𝑘|𝑥 ∗

) ∝  𝑓𝑘(𝑥 ∗
)𝜋𝑘

337 where  denotes the unknown class label,  is the density of an observation in class  and  is 𝑦 ∗ 𝑓𝑘 𝑘 𝜋𝑘
338 the prior probability that an observation belongs to class . If  is a normal density with a class-𝑘 𝑓𝑘
339 specific mean and common variance then a standard LDA is used for assigning a new 

340 observation to the class (Hastie, Tibshirani & Friedman, 2009). In case of the observations are 

341 normally distributed with a class-specific mean and a common diagonal matrix, then diagonal 

342 LDA methodology is used for the classification (Dudoit, Fridlyand & Speed, 2001). However, 

343 neither normality nor common covariance matrix assumptions are not appropriate for sequencing 

344 data. Instead, Witten (Witten, 2011) assumes that the data arise from following: Poisson model,

345  (6)𝑋𝑖𝑗|𝑦𝑖 = 𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑁𝑖𝑗𝑑𝑘𝑗),        𝑁𝑖𝑗 = 𝑠𝑖𝑔𝑗
346 where  represents the class of the  observation and the features are independent. The equation 𝑦𝑖 𝑖𝑡ℎ
347 (4) specifies that . First, the size factors for the training data, 𝑋 ∗𝑗 |𝑦 ∗

 =  𝑘 ∼ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝑠 ∗ 𝑔𝑗𝑑𝑘𝑗 )
348 , is estimated. Then , ,  and  are estimated as described in (Witten, 2011). 𝑠1,…,𝑠𝑛 𝑠 ∗ 𝑔𝑗 𝑑𝑘𝑗 𝜋𝑘
349 Substituting these estimations into equation (4) and recalling independent features assumption, 

350 equation (5) produces,
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351 𝑙𝑜𝑔𝑃(𝑦 ∗
= 𝑘|𝑥 ∗ ) = log 𝑓𝑘(𝑥 ∗ ) + log 𝜋𝑘 +  𝑐

352 , (7)= ∑𝑝𝑗 = 1𝑋 ∗𝑗 𝑙𝑜𝑔𝑑𝑘𝑗 ‒ 𝑠 ∗ ∑𝑝𝑗 = 1𝑔𝑗𝑙𝑜𝑔𝑑𝑘𝑗 + log 𝜋𝑘 +  𝑐'

353 where  and  are constants and do not depend on the class label. The classification rule that 𝑐 𝑐'

354 assigns a new observation to the one of the classes for which equation (7) is the largest and it is 

355 linear in (Witten, 2011).𝑥 ∗
356 Normalized count data is used as input to PLDA1 classifier. After normalization, a power 

357 transformation ( ) is applied to reduce the overdispersion effect and make genes 𝑋 '𝑖𝑗 = 𝑋𝑖𝑗 + 3 8

358 have constant variance. These normalized and power transformed datasets are used as input to 

359 PLDA2 classifier. To optimize the tuning parameter, a grid search (30 searches) is applied and 

360 the sparsest model with the highest accuracy rates are selected for classification.

361 NBLDA: Dong et al. generalized that PLDA using an extra dispersion parameter (φ) of negative 

362 binomial distribution and named the method as negative binomial linear discriminant analysis 

363 (NBLDA)(Dong et al., 2016). This extra dispersion parameter is estimated using a shrinkage 

364 approach detailed in (Yu, Huber & Vitek, 2013). A new test observation will be assigned to its 

365 class based on the following NBLDA discriminating function:

366 𝑙𝑜𝑔𝑃(𝑦 ∗
= 𝑘|𝑥 ∗ ) =

𝑝∑𝑗 = 1

𝑋 ∗𝑗 [𝑙𝑜𝑔𝑑𝑘𝑗 ‒ log (1 + 𝑠 ∗ 𝑔𝑗𝑑𝑘𝑗𝜙𝑗)] ‒
367 ,           (8)∑𝑝𝑗 = 1𝜙 ‒ 1𝑗 log (1 + 𝑠 ∗ 𝑔𝑗𝑑𝑘𝑗𝜙𝑗) + log 𝜋𝑘 +  𝑐'

368 Decreasing the dispersion parameter will approximate the data distribution from negative 

369 binomial to poisson, thus will approximate NBLDA to PLDA. More details about this method 

370 can be found in (Dong et al., 2016).

371 Evaluation criteria
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372 To validate each classifier model, 5-fold cross-validation was used, repeated 10 times and 

373 accuracy rates were calculated to evaluate the performance of each model. Same folds are used 

374 for all classifiers to make the results comparable to each other. Accuracy rates are calculated as 

375  based on the confusion matrices of test set class labels and test set predictions. For (𝑇𝑃 + 𝑇𝑁)/𝑛
376 multiclass scenarios, these measures are calculated via one-versus-all approach. Since, class sizes 

377 are unbalanced in alzheimer and renal cell cancer datasets, accuracies are balanced using the 

378 formula: .(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 +  𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) / 2
379 MLSeq R/BIOCONDUCTOR Package 

380 We presented an R package in BIOCONDUCTOR network to make RNA-Seq classification less 

381 complicated for researchers and allow users to fit classifiers using single functions. MLSeq 

382 package requires from users to upload their raw count data in which can be obtained from feature 

383 counting tools (e.g. HTSeq (Anders, Pyl & Huber, 2014), bedtools (Quinlan & Hall, 2010) and 

384 FeatureCounts (Liao, Smyth & Shi, 2014) etc.) and allow them to normalize, transform and build 

385 classifiers including SVM, bagSVM, RF and CART. Users can access MLSeq package from 

386 https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html .
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387 Results and Discussion

388 Datasets and Classifiers

389 A comprehensive simulation study is designed under 864 different scenarios. Negative binomial 

390 distribution is used in all simulation settings. Simulated datasets contain possible combinations 

391 of different dispersion parameters, number of biological samples, number of differentially 

392 expressed genes, differential expression rate, number of class and transformation method. 

393 Moreover, four real mRNA (lung and renal cell cancer) and miRNA (alzheimer and cervical 

394 cancer) datasets were used alongside the simulated datasets (Table 1).Support vector machines 

395 (SVM), bagging support vector machines (bagSVM), random forests (RF), classification and 

396 regression trees (CART), Poisson linear discriminant analysis without power transformation 

397 (PLDA1), Poisson linear discriminant analysis with power transformation (PLDA2) and negative 

398 binomial linear discriminant analysis (NBLDA) classifiers were applied to each simulated and 

399 real datasets. More detailed information about the datasets, classifiers and analysis settings can 

400 be found in Methods section. 

401 Experimental Results and Discussion

402 Genewise dispersion parameters are estimated for each classifier with method of moments 

403 approach and given in Fig. 2. It is seen from the figure that cervical and alzheimer miRNA 

404 datasets are very highly overdispersed, while lung and renal cell cancer datasets are substantially 

405 overdispersed. Simulation results for k=2, dkj=10% for vst and rlog transformations are given in 

406 Fig. 3 and Fig. 4. All other simulation results are given in 

407 http://www.biosoft.hacettepe.edu.tr/MLSeqSupplementary/ and in Supp. file-1. More detailed 

408 results are given in Supp. file-2. Results for real datasets are given in Fig. 5.

409 Effect of simulation parameters
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410 Since combining each significant gene on class conditions is equivalent to combining their 

411 predictive abilities, increased number of differentially expressed genes leads to an increase in the 

412 classification accuracy (Fig. 4-5). Similarly, in most scenarios, working with more samples and 

413 genes has a positive impact on the overall model accuracies. This relationship between number 

414 of genes and accuracy is mostly available in dkj=10% scenarios. Likewise, slight increases is 

415 observed in real dataset classification accuracies, since this leads to an increase in the probability 

416 of a differentially expressed gene to be included into classification model. For PLDA classifier, 

417 high number of selected genes provides alternative options for the lasso shrinkage method to test 

418 more genes in classification models. On the other hand, RF builds trees with bagging approach, 

419 thus using more genes, and enhances its probability to specify the optimal tree. Increasing 

420 sample size improves the discrimination power, as well as the classification accuracy. 

421 Conversely, overall accuracies decrease as the number of classes increases. This is due to the fact 

422 that the misclassification probability of an observation may be arised depending on the increase 

423 in class number.

424 Dispersion effect on classification accuracies

425 The performance of each method was increasing depending on the decrease in dispersion 

426 parameter. In fact, only decreasing the dispersion parameter makes a significant contribution to 

427 classification accuracy, even for the same data and the same scenario. This is mostly clear in k=2 

428 and dkj=10% scenarios. When the data is overdispersed, the variance increases; thus we need 

429 more sample sizes to achieve the same discrimination power. When we stabilize the sample size 

430 and increase the dispersion parameter, this will decrease the discrimination power and lead to a 

431 decrease in the classification accuracies. Nagalakshmi et al. mentioned that using biological 

432 replicates instead of technical replicates leads to an increase in the dispersion of the data 
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433 (Nagalakshmi et al., 2008). Based on this idea, increasing the biological variance of the 

434 observations will lead to an increase in the data dispersion, thus the classification of observations 

435 will be much harder. In differential expression studies of RNA-Seq data, overdispersion is one of 

436 the major problems in analysis settings. Many studies are made to overcome this problem 

437 (Robinson, McCarthy & Smyth, 2010; Robinson & Oshlack, 2010; Love, Huber & Anders, 

438 2014; Anders & Huber, 2012; Law et al., 2014). When we look at the classification accuracy 

439 results, overdispersion seems to be a major challenge in classification studies as well. Unless we 

440 work with technical replicates, RNA-Seq data is overdispersed and that leads for same gene, 

441 counts from different biological replicates have variance exceeding the mean (Nagalakshmi et 

442 al., 2008). This overdispersion can be seen in other studies (Robinson & Smyth, 2007, Bloom et 

443 al., 2009; Robinson, McCarthy & Smyth, 2010; Zhou, Xia & Wright, 2011; Auer & Doerge, 

444 2011). Results of our study revealed that overdispersion has a significant and negative effect on 

445 classification accuracies and should be taken into account before model building.

446 Microarray based classifiers and transformation effect on classification accuracies

447 Hundreds of microarray based classifiers are developed and able to work in large p and small n 

448 settings. However, the technological improvements makes RNA-Seq state-of-the-art approach 

449 for quantified transcriptomics. Currently, much of these microarray based classifiers are no 

450 longer to be applied to RNA-Seq data, because of the different data types of microarrays and 

451 RNA-Seq. Microarray data consists the continuous log-intensities of probes, while RNA-Seq 

452 data consists the discrete and overdispersed mapped read counts of sequencing technologies. 

453 Results of this study revealed that, transforming the data hierarchically to microarrays (e.g. 

454 through rlog and vst) will be a proper approach to recover these classifiers for RNA-Seq 

455 classification. 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.2761v2 | CC BY 4.0 Open Access | rec: 31 Aug 2017, publ: 31 Aug 2017



456 Witten et al. stated that normalization strategy has little impact on the classification performance 

457 but may be important in differential expression analysis (Witten, 2011). However, data 

458 transformation has a direct effect on classification results, by changing the distribution of data. In 

459 this study, we used deseq normalization with vst and rlog transformations and had satisfactory 

460 classification performances. Love et al. discussed that vst transformation does not consider the 

461 size factors during the transformation (Love, Huber & Anders, 2014). However, there were no 

462 substantial differences between rlog and vst transformation approaches on classification 

463 accuracies. Both transformations can be applied with microarray based classifiers.

464 Power transformed PLDA and other count based classifiers

465 Without transformation, PLDA seemed to perform well in very slightly overdispersed datasets. 

466 This can be seen in both simulated and real datasets (Fig. 5). For instance, in renal cell carcinoma 

467 dataset, the dispersion parameter is very low and the data seem to follow a Poisson distribution. 

468 In this dataset, PLDA1 and PLDA2 shows similar performances (Fig. 5). However, the 

469 performance of this method decreases, when the data becomes more overdispersed. The reason is 

470 that PLDA classifies the data using a model based on Poisson distribution. It minimizes the 

471 dispersion parameter and makes a significant improvement on classification accuracy using a 

472 power transformation (Witten, 2011). Therefore, we suggest that this transformation is very 

473 useful and should be applied to be used with PLDA classifier, even in very slightly overdispersed 

474 datasets. NBLDA extends this classifier using a negative binomial model. However, 

475 classification accuracies of this method is not as higher as PLDA with power transformation. 

476 Hence, we believe that this may be due to the dispersion parameter estimation or the unsparsed 

477 property of the classifier. We conclude that, novel count-based classifiers are still needed for 

478 accurate and robust classification of RNA-Seq data.
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479 Overall performances of classifiers

480 In simulated datasets, power transformed PLDA performed to be the best classifier. RF and 

481 NBLDA performed moderately similar. On the other hand, SVM and bagSVM performed the 

482 highest classification accuracies in real datasets. PLDA2, RF and NBLDA have still comparable 

483 and high classification accuracies, but lower than SVM and bagSVM. This slight differences 

484 may arise from the differences between negative binomial distribution which is used in 

485 simulation settings and exact distributions of real RNA-Seq data. In real datasets, SVM and 

486 bagSVM classifiers put forward their classification abilities. Moreover, it can be seen from the 

487 simulated and real datasets that, the performance of bagSVM classifier increases as the sample 

488 size increases. A possible explanation for such observation is that bagSVM uses bootstrap 

489 technique and trains better models in datasets with high number of samples. The performance of 

490 CART and PLDA1 were seemed to be lower than the other classifiers.

491 All assessments in this study are made based on the classification accuracies. Another important 

492 measure may be the sparsity of classifiers. Since we included mostly the unsparsed classifiers to 

493 this study, we leave the effect of dispersion parameter on sparsity as a topic for further research.
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494 Conclusions

495 A considerable amount of evidence collected from genome-wide gene expression studies 

496 suggests that the identification and comparison of differentially expressed genes have been a 

497 promising approach of cancer classification for diagnosis and prognosis purposes. Although 

498 microarray-based gene expression studies through a combination of classification algorithms 

499 such as SVM and feature selection techniques have recently been widely used for new 

500 biomarkers for cancer diagnosis (Lee, 2008; Statnikov, Wang & Aliferis, 2008; Anand & 

501 Suganthan, 2009; George & Raj, 2011), it has its own limitations in terms of novel transcript 

502 discovery and abundance estimation with large dynamic range. Thus, one choice is to utilize the 

503 power of RNA-Seq techniques in the analysis of transcriptome for diagnostic classification to 

504 surpass the limitations of microarray-based experiment. As mentioned in earlier sections, 

505 working with less noisy data can enhance the predictive performance of classifiers, and the novel 

506 transcripts may be a biomarker in interested disease or phenotypes.

507 Hundreds of studies are published for microarray based classification. The goal of these studies 

508 were to develop or adapt novel approaches to identify a small subset of genes and predict the 

509 class labels of a new observation. This has a particular importance in biomedical studies for 

510 molecular diagnosis of diseases. In this study, we demonstrated how researchers can classify the 

511 RNA-Seq data, which is the state-of-the-art technique for quantification of gene expression. We 

512 designed a comprehensive simulation study and also used four real experimental miRNA and 

513 mRNA datasets.

514 Besides its technological advantages of RNA-Seq as compared to microarrays, the data obtained 

515 from this method is overdispersed due to the inherent variability. This overdispersion seemed to 

516 be a drawback for differential expression studies of RNA-Seq data. In this study, we showed that 
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517 this overdispersion is also a drawback for classification studies, since an increase in the variance 

518 will lead to a decrease in the discrimination power. We reach a conclusion that three solutions 

519 are available to handle classification of overdispersed RNA-Seq data: (i) increasing the sample 

520 size, (ii) transforming the data hierarchically closer to microarrays with variance stabilizers, e.g. 

521 vst and rlog transformations, (iii)using count based classifiers, e.g. PLDA2 and NBLDA.Our 

522 simulation study revealed that both microarray based classifiers after an rlog/vst transformations 

523 and count based classifiers (that are dealing with the overdispersion) can be efficiently used for 

524 classification of RNA-Seq data.

525 To make an overall assessment for the performances of classifiers, PLDA after a power 

526 transformation may be a good choice as a count based classifier. Furthermore, its sparsity seems 

527 to be an advantage for researchers, however further researches are needed. Surprisingly, the 

528 performance of the NBLDA was not satisfactory enough as a count based classifier. Dong et al. 

529 mentioned that NBLDA has a better performance than PLDA in moderate and highly 

530 overdispersed data (Dong et al., 2016). However, these comparisons are made with same number 

531 of genes. Our analysis are performed based on the sparse PLDA classifiers, where the best subset 

532 of genes are used in classification. Sparse PLDA classifier after a power transformation 

533 performed more accurately in all dispersion settings. We believe that extending NBLDA 

534 algorithm into a sparse classifier may improve its classification performance by selecting the 

535 most significant genomic features.

536 Moreover, an alternative option may be to transform the data hierarchically closer to microarrays 

537 and perform microarray based classifiers. Our results revealed that RF, SVM and bagSVM may 

538 perform accurate results after an rlog or vst transformation. Moreover, the efficiency of the 

539 bagSVM is improved observably with the increasing sample size.  
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540 We conclude that, the data with less overdispersion, highly differentially expressed genes, lower 

541 number of groups and large sample size may improve the accuracy of the classifiers. Finally, we 

542 developed an R/BIOCONDUCTOR package, MLSeq, to make the computation less complicated 

543 for researchers and allow them to learn a classification model using various classifiers with one 

544 single function. This package can be accessed and downloaded through 

545 https://www.bioconductor.org/packages/release/bioc/html/MLSeq.html.
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697 Figure legends

698 Fig. 1. RNA-Seq classification workflow

699 Fig. 2. Genewise dispersion estimations for real datasets

700 Fig. 3. Simulation results fork=2,dkj=10%, transformation: vst. Figure shows the performance 

701 results of classifiers with changing parameters of sample size (n), number of genes (p) and type 

702 of dispersion (φ=0.01: very slight, φ=0.1: substantial, φ=1: very high)

703 Fig. 4. Simulation results for k=2,dkj=10%, transformation: rlog. Figure shows the performance 

704 results of classifiers with changing parameters of sample size (n), number of genes (p) and type 

705 of dispersion (φ=0.01: very slight, φ=0.1: substantial, φ=1: very high)

706 Fig. 5. Results obtained from real datasets. Figure shows the performance results of classifiers 

707 for datasets with changing number of most significant number of genes
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1 Table

2 Table 1  - Description of real RNA-Seq datasets used in this study

Dataset Number of groups Sample size Number of features

Cervical cancer (Witten et al., 2010) 2 58 (29 cervical cancer, 29 control) 714 miRNAs

Alzheimer (Leidinger et al., 2013) 2 70 (48 alzheimer, 22 control) 416 miRNAs

Renal cell cancer (Saleem et al., 2013) 3 1,020 (606 KIRP, 323 KIRC, 91 KICH) 20,531 mRNAs

Lung cancer (Saleem et al., 2013) 2 1,128 (576 LUAD, 552 LUSC) 20,531 mRNAs

3
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RNA-Seq classification workflow
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Genewise dispersion estimations for real datasets

Fig 2 - Genewise dispersion estimations for real datasets
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Simulation results fork=2,dkj=10%, transformation: vst. Figure shows the performance

results of classifiers with changing parameters of sample size (n), number of genes (p)

and type of dispersion (φ=0.01: very sligh

Fig 3 - Simulation results fork=2,dkj=10%, transformation: vst. Figure shows the performance

results of classifiers with changing parameters of sample size (n), number of genes (p) and

type of dispersion (φ=0.01: very slight, φ=0.1: substantial, φ=1: very high)
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Simulation results for k=2,dkj=10%, transformation: rlog. Figure shows the performance

results of classifiers with changing parameters of sample size (n), number of genes (p)

and type of dispersion (φ=0.01: very sli

Fig 4 - Simulation results for k=2,dkj=10%, transformation: rlog. Figure shows the

performance results of classifiers with changing parameters of sample size (n), number of

genes (p) and type of dispersion (φ=0.01: very slight, φ=0.1: substantial, φ=1: very high)
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Results obtained from real datasets. Figure shows the performance results of classifiers

for datasets with changing number of most significant number of genes

Fig 5 - Results obtained from real datasets. Figure shows the performance results of

classifiers for datasets with changing number of most significant number of genes
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