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The task-based approach has gained much attention to use modern heterogeneous
computing nodes. It allows parallelizing with an abstraction of the hardware by delegating
task distribution and load balancing to a dynamic scheduler. In this organization, the
scheduler is the most critical component that solves the DAG-scheduling problem in order
to select the right processing unit for the computation of each task. In this work, we
extend our Heteroprio scheduler that was originally created to execute the fast multipole
method on multi-GPUs nodes. We improve Heteroprio by taking into account data locality
during task assignation. The main principle is to use diûerent task-lists for the diûerent
memory nodes and to investigate how locality aûnity between the tasks and the diûerent
memory nodes can be evaluated without looking at the tasks' dependencies. The interest
of the present method was evaluated on two linear algebra applications and a stencil code.
It was deduced that simple heuristics can provide signiûcant performance improvement
and cut by more than half the total memory transfer of an execution.
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ABSTRACT9

The task-based approach has gained much attention to use modern heterogeneous computing nodes. It

allows parallelizing with an abstraction of the hardware by delegating task distribution and load balancing

to a dynamic scheduler. In this organization, the scheduler is the most critical component that solves

the DAG-scheduling problem in order to select the right processing unit for the computation of each

task. In this work, we extend our Heteroprio scheduler that was originally created to execute the fast

multipole method on multi-GPUs nodes. We improve Heteroprio by taking into account data locality during

task assignation. The main principle is to use different task-lists for the different memory nodes and to

investigate how locality affinity between the tasks and the different memory nodes can be evaluated

without looking at the tasks’ dependencies. The interest of the present method was evaluated on two

linear algebra applications and a stencil code. It was deduced that simple heuristics can provide significant

performance improvement and cut by more than half the total memory transfer of an execution.
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1 INTRODUCTION21

High-performance computing (HPC) is crucial to make advances and discoveries in numerous domains.22

However, while supercomputers are becoming more powerful, their complexity and heterogeneity also23

increase; In 2018, a quarter of the most powerful supercomputers in the world are equipped with24

accelerators 1, and the majority of them (including the top two on the list) uses NVidia GPUs in addition25

to traditional multi-core CPUs. The efficient use of these machines and their programmability are ongoing26

research topics. The objectives are to allow the development of efficient computational kernels for the27

different processing units and to create the mechanisms to balance the workload and copy/distribute the28

data between the CPUs and the devices. Furthermore, this complexity constrained some of the scientific29

computing developers because it forces them to parallelized their applications by alternating computation30

on CPUs or GPUs, but never use both at the same time. This naive parallelization scheme usually provides31

a speedup compared to a CPU-only execution, but it ends in wastage of computational resources and32

utilization of extra barrier synchronizations.33

Meanwhile, the HPC community has proposed several strategies to parallelize applications on hetero-34

geneous computing nodes with the aim of using all available resources. Among the existing methods, the35

task-based approach has gained popularity: it allows parallelizing with an abstraction of the hardware by36

delegating the task distribution and load balancing to dynamic schedulers. In this method, the workload37

is split into inter-dependent computational elements and it is managed by a runtime system (RS). There38

are several RS reported in the literature, see [1, 2, 3, 4, 5, 6], and each of them has its own specificity39

and interface. We refer to [7] for a detailed description and a comparison of RS. Task-based method is40

one of the best solutions so far to use modern heterogeneous computing nodes and alternate computation41

between CPU and devices. Furthermore, its potential has already been proven on numerous computational42

methods. In the task-based method, the scheduler is in charge of the most important decisions, as it has to43

1see https://www.top500.org/
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decide the order of computation of the ready tasks (the tasks that have their dependencies satisfied) as44

well as where those tasks should be computed. In the present study, we implemented our scheduler inside45

a runtime system called StarPU [8], which supports heterogeneous architectures and allows to customize46

the scheduler in an elegant manner.47

In our previous work, we created the Heteroprio scheduler to execute the fast multipole method48

(FMM) using StarPU on computing nodes equipped with multiple GPUs, see [9]. Heteroprio was first49

implemented inside ScalFMM [10], and it was later included in StarPU. It signifies that it is publicly50

available and usable by any StarPU-based code. In fact, Heteroprio was later used in linear algebra51

applications where it demonstrated its robustness and potential, see QrMUMPS [11] and SpLDLT [12].52

Moreover, it was also the subject of theoretical studies, as in [13, 14, 15, 16], which revealed its advantages53

and gave a positive theoretical insight on the performance. However, the original Heteroprio scheduler54

does not take into account data locality, which means that the distribution of the tasks is done without55

considering the distribution of the data. Therefore, depending on the applications and the test cases,56

Heteroprio can not only lead to huge data movement between CPUs and GPUs but also between GPUs,57

which dramatically penalizes the executions. The current work proposed different mechanisms to consider58

data locality in order to reduce the data transfers and the makespan.59

The contributions of this paper are as follows:60

" We summarize the main ideas of the Heteroprio scheduler and explain how it can be implemented61

in a simple and efficient manner;62

" We propose new mechanisms to include data locality in the Heteroprio scheduler’s decision model ;63

" We define different formulas to express the locality affinity for a given task relative to the different64

memory nodes. Those formulas are based on general information regarding the hardware or the65

data accesses ;66

" We evaluate our approach on two linear algebra applications, QrMumps and SpLDLT, and a stencil67

application, and analyze the effect it has on different parameters.68

The rest of the paper is organized as follows. In Section 2, we introduce the task-based parallelization69

and the original Heteroprio scheduler. Then, in Section 3, we detail our new methods to use data locality70

and the different mechanisms of our locality-aware Heteroprio (LAHeteroprio) scheduler. Finally, we71

evaluate our approach in Section 4 by plugging in the LAHeteroprio inside StarPU to execute two different72

linear algebra applications using up to 4 GPUs.73

2 BACKGROUND74

2.1 Task-based Parallelization75

The task-based approach consists in dividing an application into interdependent sections, called tasks, and76

providing the dependencies between them. These dependencies allow to obtain valid parallel executions,77

i.e., with a correct execution order of the tasks and without race conditions. This description can be78

viewed as a graph where the nodes represent the tasks and the edges represent the dependencies. If the79

edges represent a relation of precedence between the tasks the resulting graph is a direct acyclic graph80

(DAG) of tasks. However, this is not the case when an inter-tasks dependency relation is used, such as a81

mechanism to express that an operation is commutative as shown in [17]. In the paper, we consider graphs82

of the form G = (V,E) with a set of nodes V and a set of edges E. Considering t1, t2 *V , there exists a83

relation (t1, t2) * E - also written t1 ³ t2 - if the task t2 can be executed only after the task t1 is over.84

A task t is a computational element that is executable on one or (potentially) several different hardware;85

When t is created, it incorporates different interchangeable kernels where each of them targets a different86

architecture. For example, consider a matrix-matrix multiplication task in linear algebra: it is either a87

call to cuBLAS and executed on a GPU, or a call to Intel MKL and executed on a CPU, but both kernels88

return a result that is considered equivalent. Task t accesses data either in read, read-write or write and in89

the rest of the paper we simplified this by considering equivalent the read-write and the write accesses.90

We denote t.data the set of data elements that t will access during its execution. From this information,91

i.e. G = (V,E) and the portability of the tasks, the scheduler must decide the order of computation and92

where to execute the tasks.93
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2.2 Task Scheduling and Related Work94

Scheduling can be done statically or dynamically, and in both cases, finding an optimal distribution of the95

tasks is usually NP complete since the solution must find the best computing order and the best processing96

unit for each task, see [18].97

The static approaches analyze the complete set of tasks before starting their execution, and also use98

expensive mechanisms to analyze the relationship between the tasks. We refer to [19] for an example of99

static scheduling and to [20] for an example of an advanced strategy applied to a complete graph in order100

to replace some communications by the duplication of tasks. It is worth mentioning that these strategies101

can have significant overhead compared to their benefit and the execution time of the tasks, which make102

them unusable in real applications. Static scheduling requires performance models, so it can predict the103

duration of the tasks on the different architectures and the duration of the communications. Even, if it104

is possible to build such systems, they require costly calibration/evaluation stages and their resulting105

prediction models are not always accurate, especially in the case of irregular applications. Moreover,106

these approaches cannot adapt their executions to the noises generated by the OS or the hardware.107

This is why most task-based applications use runtime systems that are powered with dynamic108

scheduling strategies [21, 22, 23, 24, 9]. In this case, the scheduler focuses only on the ready tasks and109

decides during the execution on how to distribute them. It has been demonstrated that these strategies are110

able to deliver high performance with reduced overhead. The scheduler becomes a critical layer of the111

runtime system, at the boundary between the dependencies manager and the workers, see Figure 1. We112

follow the StarPU’s terminology and consider that a scheduler has an entry point where the ready tasks113

are pushed, and it provides a request method where workers pop the tasks to execute. In StarPU, both114

pop/push methods are directly called by the workers that either release the dependencies or ask for a task.115

Consequently, assigning a task to a given worker means to return this task when the worker calls the pop116

method.117

Dependency 

manager

STF
Scheduler

Ready

Tasks

(Push)

Worker 0

Worker 1

Worker 2

Worker 3

Pop

Release dependencies

Figure 1. Schematic view of task-based runtime system organization. A program can be described using

the sequential task flow (STF) model and converted into tasks/dependencies by the RS. When

dependencies are released, the newly-ready tasks are pushed into the scheduler. When a worker is idle, it

calls the pop function of the scheduler to request a task to execute.

As an intuitive example, consider a priority-based scheduler designed to manage priorities with118

one task-list per priority. The push method can simply store a newly-ready task t in the right list119

list[t.priority].push back(t). Meanwhile, the pop method can iterate over the lists and when it finds one120

non-empty list, it pops a task from it. Furthermore, in the case of heterogeneous computing, a pop must121

return a task compatible with the worker that performs the request.122

Managing data locality was already a challenge before the use of heterogeneous computing because123

of NUMA hardware. In [25], the authors proposd a simple scheduling strategy to improve data locality124

on the NUMA nodes. They introduced a distance-aware work stealing scheduling heuristics within the125

OmpSs runtime, targeting dense linear algebra applications on homogeneous x86 hardware. While they126

obtained a significant speedup, they do not take into account the different data accesses and they do not127

look at the cache levels to find data replication.128

In [26], the authors described the importance of data locality moving forward with exascale computing,129

especially for task-based runtime systems. The authors also reminded that data movement is now the130

primary source of energy consumption in HPC.131
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In the era of heterogeneous computing, the community has provided various strategies to schedule132

graphs of tasks on this kind of architecture, and one of the most famous is the Heterogeneous Earliest133

Finish Time (HEFT) scheduler, see [27]. In HEFT, the tasks are prioritized based on a heuristic that134

takes into account a prediction of the duration of the tasks and the data transfers between tasks. Different135

models exist, but on a heterogeneous computing node, the duration of a task can be the average duration136

of the task on the different types of processing unit. More advanced ranking models had been defined137

as in [28]. However, this scheduler has two limitations that we would like to alleviate: First, it uses a138

prediction system, which may need an important tuning stage and may be inaccurate, as we previously139

argued. Second, even if ranking a set of tasks can be amortized and beneficial, re-ranking the tasks to140

consider new information concerning the ongoing execution can add a dramatic overhead. This is why we141

have proposed an alternative scheduler.142

2.3 Heteroprio143

2.3.1 Multi-priorities144

Within Heteroprio, we assign one priority per processing unit type to each task, such that a task has several145

priorities. Each worker pops the task that has the highest priority for the hardware type it uses, which146

are CPU or GPU in the present study. With this mechanism, each type of processing unit has its own147

priority space. This allows to continue using priorities to manage the critical path, and also to promote the148

consumption of tasks by the more appropriate workers: workers do first what they are good at.149

The tasks are stored inside the buckets, where each bucket corresponds to a priority set. Then each150

worker uses an indirect access array to know the order in which it should access the buckets. Moreover,151

all the tasks inside a bucket must be compatible with all the processing units that may access it (at least).152

This allows an efficient implementation. As a result, we have a constant complexity for the push and153

complexity of O(B) for the pop, where B is the number of buckets. The number of buckets B corresponds154

to the number of priority groups, which is equal to the number of different operation types in most cases.155

A schematic view of the scheduler is provided in Figure 2.156

For illustration, let us consider an application with 4 different types of task TA, TB, TC and TC2 (here157

TC and TC2 can be the same operation but with data of small or large granularity, respectively). Tasks158

of types TA, TC and TC2 provide a kernel for CPU and GPU and thus are executable on both, but tasks159

of type TB are only compatible with CPUs. Consequently, we know that GPU workers do not access160

the bucket where TB tasks are stored. Then, we consider that the priorities on CPU are PCPU (TA) = 0,161

PCPU (TB) = 1, PCPU (TC) = 2 and PCPU (TC2) = 3; on GPU the priorities are PGPU (TA) = 1, PGPU (TC) = 0162

and PGPU (TC2) = 0. We highlight that TC and TC2 have the same priority for GPU workers. From this163

configuration, we end with four buckets: B0 = {TA}, B1 = {TB}, B2 = {TC} and B3 = {TC2}. Finally, the164

indirect access arrays are ACPU = {0,1,2,3} and AGPU = {3,2,0} with AGPU = {2,3,0} being valid as165

well.166

Dependency 

manager

STF
Ready

Tasks

(Push)

GPU 0

GPU 1

CPU 0

CPU 1

Pop

Release dependencies

4 buckets

CPU order

GPU order

Figure 2. Heteroprio schematic view. The tasks are pushed inside the buckets. The workers iterate on

the buckets based on the priorities for the hardware they use.

2.3.2 Speedup factors167

The speedup factors are used to manage the critical moments when a low number of ready tasks are168

available. The idea is to forbid some workers to pop a task from a set of buckets when their corresponding169
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hardware type is not the fastest to compute the buckets’ tasks. To do so, the type of processing unit that is170

the fastest in average to execute the bucket’s tasks, is provided for each bucket. Additionally, we input171

a number that indicates by how much this processing unit type is faster compared to the other types of172

processing units. These numbers are used to define a limit under which the slow workers cannot pick a173

task.174

As an illustration, let us consider two types of processing units: CPU and GPU. Let Si be the speedup175

factor for bucket i and let GPU be the fastest type to compute the task stored in i. A CPU worker can take a176

task from bucket i if there are more than NGPU ×Si available tasks in it, where NGPU is the number of GPU177

workers. For example, if there are 3 GPU workers and that a GPU is 2 times faster in average than a CPU178

to perform a given operation, then a CPU worker takes a task only if there are six or more tasks available.179

Otherwise, it considers the bucket empty and continues to the next ones to find a task to compute. This180

means that for the example given in Section 2.3.1, we have two arrays of four items for the different181

operations, one to tell which processing units is the fastest, and a second one to provide the speedup. The182

description of the example tells us that the GPU cannot compute TA, so CPU are the fastest by default,183

and that TC and TC2 are the same operation but with different granularities, such that the speedup for the184

GPU will be higher for TC2 than TC. As a results, the arrays could be Best = {CPU,GPU,GPU,GPU}185

and Speedup = {1,1.1,1.4,3}.186

This system is used for each bucket individually and not globally. Therefore, if the number of buckets187

is large, this can lead to overflowing some workers and artificially keeping others idle. However, we found188

that in practice it provides beneficial results especially at the end of simulations.189

3 INTRODUCING LAHETEROPRIO190

3.1 2D Task-list Grid by Splitting the Buckets per Memory Nodes191

Our first step in managing data locality is to subdivide each bucket into M different task lists; set up one192

list for each of the M memory nodes. For example, if the machine is composed of 2 GPUs and 1 CPU, we193

have three task-lists per bucket by considering NUMA memory nodes as a single one, without loss of194

generality. We obtain a 2D grid of task lists G where the different buckets are in the first dimension and the195

memory nodes are in the second dimension, as illustrated in Figure 3. We store in the list G(b,m) all the196

tasks of the bucket index b for which we consider that an execution by a processing unit connected to the197

memory node m will have the lowest memory transfer cost. At that point, we also put in the list G(b,m)198

the tasks that the workers that are connected to the memory node m cannot compute; this can happen199

when m is a GPU and those tasks of the bucket index b do not provide a GPU function. Nevertheless,200

when workers steal tasks from G(b,m), we know that they have the highest affinity for the memory node201

m even if it is impossible to compute these tasks on a related processing unit. From this description, we202

must provide a mechanism to figure out what the best memory node is for every newly-ready task to push203

each task in the right list, and also decide how the workers should iterate on G and select a task during the204

pop.205

Extending the example from Sections 2.3.1 and 2.3.2, this means that the number of tasks list in each206

of the four buckets is hardware specific and will be equal to the number of memory nodes.207

3.2 Task Insertion in the Grid with Locality Evaluation (push)208

In the original Heteroprio, there is no choice where a given task has to be stored, as it must be in the209

list of its corresponding bucket, i.e. in scheduler.list[task.bucket].push back(task). On the other hand, in210

LAHeteroprio we have to decide in which list of the selected bucket we should put the task; we have211

to find the best m in scheduler.list[task.bucket][m].push back(task). Therefore, we propose different212

formulas to estimate the locality of a task regarding the memory nodes and the distribution of the data it213

uses.214

The specificity of this approach is to determine the most suitable memory node without looking at the215

algorithm itself. We only look at each task individually without following the links it has with some other216

tasks and without making a prediction of how the pieces of data are going to move.217

Last recently used (LaRU) In this strategy, we consider that the memory node related to the work that218

pushes the task is considered to be the more local; A newly-ready task t released by worker w is pushed219

into G(t.bucket id,w.memory node). Indeed, t and the last task executed by w share at least one data in220

common, and this data is already on the memory node if it has not been evicted. The main advantage of221
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Figure 3. LAHeteroprio schematic view of a grid composed of 4 buckets and 3 memory nodes. The

decision that the scheduler has to do is to put the tasks in the more appropriate lists and to decide how the

workers iterate on the grid.

this technique is its simplicity and low overhead, however, it is obviously far from accurate. For example,222

it does not evaluate the amount of data that is already available on the memory node compared to the total223

amount of data that t will use.224

It seems natural to consider that the best memory node is the one that will allow moving the data in225

the shortest time. StarPU provides the function starpu task expected data transfer time for that predicts226

this transfer duration by looking where the pieces of data are and the possible transfer paths between the227

memory nodes. From this prediction, we obtain a moving cost and we refer to it as MC StarPU.228

Data locality affinity formulas (DLAF) StarPU’s prediction has two potential drawbacks: The first is229

that it treats all data dependencies similarly without making a distinction if the dependencies are read230

or write, and the second is that the memory transfer predictions are difficult to achieve since they are231

based on models that can be inaccurate and influenced by the on-going execution. Therefore, we propose232

different formulas to estimate the locality of a task and we obtain either a locality score for each memory233

node (the higher the better), or a moving cost (the lower the better). This information is used to decide234

where to put the newly ready tasks in the grid.235

In our next formulas, we use the following notations

Dt,m = t.data+m.data , (1)

Dt,¬m = t.data+¬m.data , (2)

DREAD
t,m = t.data+m.data+READ , (3)

DWRIT E
t,m = t.data+m.data+WRIT E , (4)

READ+WRIT E = /0 . (5)

Here, Dt,m is the set of data used by task t and that exist on memory node m, whereas Dt,¬m represents the236

set of data used by t that is not on m. DREAD
t,m and DWRIT E

t,m are the sets of data used by t that exist on m and237

that are accessed in read mode and write mode, respectively.238

We define the sum of all the pieces of data hosted (LS SDH) score by

LS SDH(m, t) = ∑d*Dt,m
d.size . (6)

The core idea of LS SDH is to consider that the memory node that already hosts the largest amount of239

data (in volume) needed by t is the one where t has to be executed.240

If all the tasks use different/independent pieces of data and each of them is used once, then we except241

that both MC StarPU and LS SDH(m, t) return meaningful scores. However, there are other aspects to242

consider. For example, if there is a piece of data duplicated on every node it should be ignored. Moreover,243

we can also consider that a piece of data used in read is less critical than the ones used in write for244

multiple reasons. A piece of data used in read might be used by several tasks (in read) at the same time,245

and thus the transfer cost only impacts the first task to be executed on the memory node. In addition, a246

piece of data in write is expected to be used in read later on, which means that moving a piece of data247

6/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27616v1 | CC BY 4.0 Open Access | rec: 27 Mar 2019, publ: 27 Mar 2019



Tasks(Data/ MN0 MN1 MN2 LS SDH LS SDH2 LS SDHB LC SMWB

access mode/size, ...) hosts hosts hosts winner winner winner winner

T(A/R/1, B/W/1) A A B MN{0,1,2} MN{0,1,2} MN2 MN2

T(A/R/1, B/W/1) A A B B MN1 MN1 MN1 MN1

T(A/W/1, B/W/1, A B C A C MN2 MN2 MN2 MN2

C/W/2)

T(A/W/1, B/W/1, A B A B A C MN{0,1,2} MN{0,1,2} MN{0,1,2} MN{0,1,2}
C/W/1)

T(A/R/2, B/R/1, A B A C C D MN2 MN2 MN2 MN2

C/W/2, D/W/2)

T(A/W/10, B/W/11, A D C B D MN2 MN1 MN2 MN2

C/W/18, D/W/11)

T(A/W/10, B/W/11, A D C B D MN{1,2} MN1 MN2 MN{1,2}
C/W/22, D/W/11)

Table 1. Examples of memory node selection by the proposed DLAF for different tasks and data

configurations. The memory nodes are labeled MN and in the case of draw scores the ids of all the

selected memory nodes are written inside brackets.

that will be accessed in write on a memory node, partially guarantees that this data will be re-used soon.248

Finally, writing on a set of data invalidates all copies on other memory nodes. Thus, we define three249

different formulas based on these principles where the load for the different pieces of data based on their250

corresponding data access and replication with a main common principle of giving more weight to the251

write accesses to reduce the importance of the read accesses is balanced.252

The LS SDH2 is the score given by summing the amount of data already on a node, but the difference

with LS SDH is that each data in write is counted in a quadratic manner

LS SDH2(m, t) =
(

∑d*DREAD
t,m

d.size
)

+
(

∑d*DWRIT E
t,m

d.size2
)

. (7)

Alternatively, we propose the LS SDHB score where we sum the amount of data on a node but we

balance the data in write with a coefficient θ . Moreover, we consider that for the same amount of data on

two memory nodes, the one that has more pieces of data should be prioritized. In other words, transferring

the same amount of data but with more items is considered more expensive. The formula is given by

LS SDHB(m, t) =
(

∑d*DREAD
t,m

d.size
)

+
(

θ ×Ω(DWRIT E
t,m )×∑d*DWRIT E

t,m
d.size

)

. (8)

We set θ = 1000 for the rest of the study as it provides an important load to the data in write without253

canceling the cost of huge transfer for data in read.254

Finally, we propose the LC SMWB cost formula

LC SMWB(m, t) =
(

∑d*DREAD
t,¬m

d.size
)

+

(

∑d*DWRIT E
t,¬m

d.size×2×
Ω(t.data+WRIT E)

Ω(t.data)

)

. (9)

In LC SMWB, we sum the amount of data that is going to be moved, but we use an extra coefficient for255

the data in write. This coefficient takes the value 1 if all the data used by t are in write, but it gets closer to256

2 as the number of data dependencies in read gets larger than the number of data dependencies in write.257

Examples of memory node selection It is illustrated in Table 1 how the formulas behave and which258

memory nodes are selected for different configurations. This example shows that the formulas can select259

different memory nodes depending both on the number of data dependencies in read/write and their sizes.260

3.3 Automatic DLAF selection261

We propose several DLAF but only one of them is used to find out the best memory node when a262

newly-ready task is pushed into the scheduler. We describe here our mechanism to automatically select a263

DLAF during the execution by comparing their best memory node difference (BMD) values. A BMD264

value indicates the robustness of a DLAF by counting how many times it returns a different node id when265
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a task is pushed or popped. More precisely, every time a task t is pushed, we call a DLAF to know which266

of the memory node seems the more appropriate to execute the task, and we store this information inside267

the scheduler. Then, every time a task is popped, we call again the same DLAF to know which of the268

memory node seems the more appropriate to execute the task, and we compare this value with the one269

obtained at the push time, as illustrated by Figure 4. If both values are different we increase the BMD270

counter. A low BMD value means that the DLAF is robust to the changes in the memory during the271

push/pop elapsed time. We consider that this robustness is a good metric to automatically select a DLAF,272

and thus we continually compared the BMD counters of all DLAF and use the one that has the lowest273

value to decide in which list the newly-ready tasks are pushed.274

3 memory nodes

CPU GPU 0 GPU 1

DLAF

4
 b

u
c
k
e

ts

GPU 0

GPU 1

CPU 0

CPU 1

Pop

DLAF

BMC (b) 

Figure 4. View of the best memory node difference (BMD), which is computed by counting the number

of difference returned by the DLAF between the moment when a task is pushed or popped.

3.4 Iterating Order on the Lists of the Grid (pop)275

In this section, it is narrated how the workers iterate over the task-lists of G.276

3.4.1 Distance between memory nodes277

First, we built a distance matrix between the memory nodes. We defined the data transfer speed between

memory nodes as an inverse of the distance; the distance is given by StarPU and it is the time that takes to

move a piece of data from one memory node to another

distancetrans f er(i, j) = normalize(starpu trans f er predict( j, i,10243)) . (10)

However, it is important to remember that our scheduler is based on priorities and thus we also use a

second metric to look at the difference in terms of priorities between the workers of different memory

nodes. More precisely, we define a priority distance between workers of different memory nodes by

distancepriority(i, j) = 12
∑

B
k=1 |P(i,k)2P( j,k)|

(max(NPi,NPj)+1)× (max(NPi,NPj)+2)/2
. (11)

The numerator of the fraction provides a difference factor between i and j, whereas the denominator part278

ensures that the values stays between 0 and 1. The value 0 is obtained when two workers used the same279

priority indexes. They access the same buckets in the same order. In Table 2, we provide examples of the280

priority distance for two array indexes.281

Finally, we use both distance coefficients to find a balance between priorities and memory transfer

capacities, and we obtain the final measure with

distance(i, j) = (distancepriority(i, j)×α)+
(

distancetrans f er(i, j)× (12α)
)

. (12)

From Equation 12, two memory nodes are close if they are well connected and if their priorities (how282

their workers iterate on the buckets) are different.283

3.4.2 Prioritizing locality/priorities in the access orders284

Using the distance matrix between the memory nodes, two straightforward access orders can be considered.285

In the first one, we consider that data locality is more critical than the priority of the tasks; In this case, a286
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Priorities for i Priorities for j distancepriority(i, j)
0 1 2 2 1 0 1 - 0.4

0 1 2 0 1 1 - 0.2

0 1 2 0 1 2 1 - 0

0 3 1 2 0 1 2 3 1 - 0.26

0 3 1 2 0 1 3 2 1 - 0.26

0 3 1 2 0 3 2 1 1 - 0.13

Table 2. Priority distance examples between buckets/priorities indexes of i and j.

worker iterates on all the lists related to its memory node following the priority order, and only if it cannot287

find a ready task it looks at the lists of the second closest memory node. The workers iterate over G(b,m)288

with an outer loop of indexes m and an inner loop of index b (column-by-column). In a second case, we289

chose priority over data locality; In this case, a worker iterates with an outer loop of indexes b and an290

inner loop of index m (row-by-row). One drawback of the locality-oriented access is that it pushes the291

priorities in the background, which means that a local task of low priority should always be done before a292

less local task of higher priority. On the other hand, the priority oriented access breaks the locality benefit293

because a worker looks at all the memory nodes’ task lists one priority after the other. Hence, because of294

these solid loopholes, both approaches are balanced using subgroups in this study.295

3.4.3 Memory node subgroups296

We propose that each memory node sees the others as two separate groups. The idea is to maximize the297

exchanges with the first group of size S, and use the second group only to steal tasks to avoid being idle.298

To do so, we use a locality coefficient l that correspond to the number of consecutive buckets that are299

queried before going to the next memory node. The iterations on the grid G are done so that the worker300

looks at the l first buckets of its memory node, then at the l first buckets of its S closest memory nodes.301

This is done until all buckets of the worker’s memory node and the S subgroup has been scanned. Then,302

in a second stage, the other memory nodes, from S+1 to M, are scanned bucket after bucket. Both S and303

l parameters can be different for each memory nodes.304

An example of this access order strategy can be seen in Table 3. With the settings given in the example,305

we use l = 2 for the CPU workers, see Table 3b. Consequently, the CPU workers look at two buckets of306

the CPU memory node lists, before looking at the GPU lists.307

4 PERFORMANCE STUDY308

4.1 Configuration309

The following software configuration was used: GNU compiler 6.2, CUDA Tookit 9.0, Intel MKL 2019310

and StarPU 2. We set the environment variables STARPU CUDA PIPELINE=4, STARPU PREFETCH=1311

and STARPU DISABLE PINNING=0. From Equation 12, we defined α = 0.5, and as a result the312

closest memory node to any GPU was always the CPU. StarPU supports multi-streaming capability313

of modern GPUs by running multiple CPU-threads to compute on the same GPU. This is controlled314

by STARPU NWORKER PER CUDA and we used different values depending on the hardware and the315

application that was run. The set values were application specific. The automatic DLAF selection,316

described in Section 3.3, was based on LS SDH, LS SDH2, LS SDHB and LC SMWB, but excluded317

LaRU and MC StarPU.318

Hardware We used two different configurations and we refer to each of them using their corresponding319

GPU model.320

" P100 Is composed of 2 × Dodeca-core Haswell Intel Xeon E5-2683 v4 2,10 GHz, and 2 × P100321

GPU (DP 4.7 TeraFLOPS).322

" K40 Is composed of 2 × Dodeca-core Haswell Intel Xeon E5-2680 v3 2,50 GHz and 4 × K40323

GPU (DP 1.43 TeraFLOPS).324

2We created our scheduler on the master branch of the official repository https://scm.gforge.inria.fr/anonscm/git/starpu/starpu.git

at commit id 22e8e132e0e6c09c9a5d4539d46b3d59503749e7
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CPU GPU-0 GPU-1

CPU 0 0.5 1

GPU-0 0.5 0 1

GPU-1 0.5 1 0

(a) Distance matrix from Equation 12

Priorities Buckets G(*,CPU) G(*,GPU-0) G(*,GPU-1)

3 G(3,*) 7 11 10

2 G(2,*) 6 9 8

1 G(1,*) 1 5 4

0 G(0,*) 0 3 2

(b) Access order for CPU workers

Priorities Buckets G(*,CPU) G(*,GPU-0) G(*,GPU-1)

2 G(1,*) 5 4 8

1 G(2,*) 3 1 7

0 G(3,*) 2 0 6

(c) Access order for GPU-0 workers

Priorities Buckets G(*,CPU) G(*,GPU-0) G(*,GPU-1)

2 G(1,*) 5 8 4

1 G(2,*) 3 7 1

0 G(3,*) 2 6 0

(d) Access order for GPU-1 workers

Table 3. Access list examples for a configuration with one CPU and two GPUs (three memory nodes in

total). We use four buckets, but the tasks of bucket 0 are only active on CPU. The priorities - the order of

access to the buckets - is reversed for the GPU workers. S, the size of closed memory node subgroup, is

set to 2 for the CPU and to 1 for the GPUs. Finally, the locality factor l is 2 for both.

Applications We studied three applications to assess our method. Two of them were linear algebra325

applications that already used StarPU and Heteroprio. Hence, no further development was needed inside326

the applications since the interfaces of Heteroprio and LAHeteroprio is similar. The third one was a327

stencil application that we modified to be able to use Heteroprio/LAHeteroprio.328

" QrMumps This application uses 4 different types of tasks and 3 of them can be run on the GPUs.329

We used STARPU NWORKER PER CUDA=16 on P100, and STARPU NWORKER PER CUDA=7330

on K40. The test case was the factorization of the TF18 matrix 3.331

" SpLDLT This application uses 4 different types of tasks and only 1 of them can run on the332

GPUs. Consequently, to select a task for a GPU, there is no choice in terms of bucket/priority333

but only in terms of memory node. We used STARPU NWORKER PER CUDA=18 on P100, and334

STARPU NWORKER PER CUDA=11 on K40. The test case was the Cholesky factorization of a335

20000×20000 matrix.336

" StarPU-Stencil This application is a stencil simulation of the game life, which is available as337

an example in the StarPU repository. It uses only one type of tasks that can run on CPU or338

GPU. Consequently, to select a task for any of the processing unit, there is no choice in terms of339

bucket/priority but only in terms of memory node. We used STARPU NWORKER PER CUDA=3340

on P100 and K40. The test case was a grid of dimension 10243 executed for 32 iterations.341

Metrics In our tests, we evaluated two different speedups. The first was the speedup-from-average342

(SFA), which represents the average execution times of Heteroprio based for six executions, divided by343

the average execution times of a target for six executions. The second was the speedup-from-minimum344

(SFM), which represents the lowest execution time of Heteroprio divided by the lowest execution time345

3The matrix had been taken from the SuiteSparse Matrix Collection at https://sparse.tamu.edu/
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of a target, therefore, both were obtained from a single execution. The SFA provides information of the346

average performance that can be expected whereas the SFM provides information about the variability347

and gives us an idea of what could be achieved if the executions were always perfect.348

4.2 Evaluation of the Locality Coefficient for all DLAF349

We first evaluated the effect of the locality coefficient l, described in Section 3.4.3, on the execution350

time and summarized the results in Figure 5. Then, we looked at the speedup of LAHeteroprio against351

Heteroprio for different l settings with three different comparisons. In the first one, we used all the average352

execution times obtained using LAHeteroprio without dissociating the different DLAF; in the second one353

we computed the speedup using only the best DLAF (with the lowest average), and in the third one we354

compared the unique best execution over all of both Heteroprio and LAHeteroprio.355

Focusing on QrMumps, it can be seen in Figures 5(a) and 5(b) that the best performance was obtained356

when we prioritized the locality for the GPU with lGPU = 3. The locality coefficient for the CPU seems357

less critical and the speedup is more or less the same for all lCPU values. When the number of GPUs358

increases, the influence of l decreases, and we had similar executions with two P100 GPUs or four359

K40 GPUs for all l values. However, the speedup against Heteroprio was still significant, which means360

that splitting the buckets into several lists is beneficial as soon as the workers pick first in the list that361

corresponds to their memory node for their highest priority bucket. Also, it seems that the way they iterate362

on the grid does not have any effect.363

The results for SpLDLT are provided in Figures 5(c) and 5(d). Here, the impact of l seems to be limited,364

but it is worth remembering that the GPU can only compute one type of task. On the other hand, the365

speedup obtained using all DLAF was unstable and significantly lower compared to the speedups obtained366

when we used only the best DLAF. This suggests that there are significant differences in performance367

among the different DLAF and also that some of them are certainly not efficient. The results that we368

obtained in the next section corroborates this hypothesis.369

The results for StarPU-Stencil are provided in Figures 5(e) and 5(f). There is no choice in the370

value l because there is only one type of task. The speedup obtained using all DLAF was unstable and371

significantly lower compared to the speedups obtained when we used only the best DLAF, which again372

suggests that the different DLAF provide heterogeneous efficiency.373

4.3 Execution Details374

Using the performance results of Section 4.2, we used a l = (1,3) for QrMumps, and a l = (3,1) for375

SpLDLT. We evaluated the performance of the different DLAF described in Section 3.2, looking for the376

speedup against Heteroprio, the amount of memory transfer, and the BMD, see Figures 6, 7 and 8.377

Speedup We provide the speedup obtained with our method against Heteroprio in Figures 6(a) and 6(b)378

for QrMumps, Figures 7(a) and 7(b) for SpLDLT, and Figures 8(a) and 8(b) for StarPU-Stencil. For379

all configurations, the LaRU and MC StarPU formulas did not significantly improve the execution,380

furthermore, they were slower than Heteroprio in some cases. For LaRU , this means that having one piece381

of data already on the memory node and neglect the others is not efficient. Meanwhile, for MC StarPU ,382

it means that putting a task on the memory node for which it is the cheapest in terms of data transfer is383

not the best choice. This is not surprising, since this kind of decision would make sense if we have only384

one task to compute. However, we clearly see that in the present study, when we had to deal with a graph385

of tasks, where the data were used concurrently and could be re-used by other tasks, this was not accurate.386

Nevertheless, this result could also have been affected from inaccurate predictions made by StarPU.387

Comparing the different DLAF, it can be seen that both LS SDH2 and LS SDHB significantly im-388

proved the three applications. LC SMWB was competitive for QrMumps and StarPU-Stencil but not389

for SpLDLT, and LS SDH was competitive for StarPU-Stencil but not for QrMumps and it had poor390

performance for SpLDLT. The main difference between LS SDH2/LS SDHB and LC SMWB/LS SDH is391

that the second ones are not giving an important load to the pieces of data used in write, and LS SDH does392

not even make a distinction between read and write. It seems that taking into account write is important393

for QrMumps and SpLDLT but not for StarPU-stencil. On the two linear algebra applications, the tasks394

transform the blocks of the matrix, and many of the blocks are written several times before being read395

multiple times. Whereas, in StarPU-stencil, each block is written once per iteration and read only to396

compute the close neighbors.397
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While the results from the different DLAF are diverse, our automatic formula selection, described in398

Section 3.3, was efficient and always close to the best execution. Consequently, there is no need to try the399

different DLAF as the automatic selection is reliable.400

Transfer The total amount of memory transfer obtained with our method and Heteroprio are provided401

in Figures 6(c) and 6(d) for QrMumps, Figures 7(c) and 7(d) for SpLDLT, and Figures 8(c) and 8(d) for402

StarPU-Stencil.403

For QrMumps, all approaches used in this study reduced the total memory transfer. However, a404

decrease of the memory transfer does not necessary means better in performance. For example, for the405

K40 configuration, and with either 1 or 2 GPUs, MC StarPU drastically reduced the amount of data406

transfer compared to Heteroprio, see Figure 6(c), but it had a negative speedup, see Figure 6(a). It means407

that, even if in all LAHeteroprio-based executions the workers iterated similarly on G, the placement of408

the tasks on the grid can be quite efficient in terms of transfer, but it penalized the whole execution.409

In the case of SpLDLT, the memory transfer did not decrease compared to Heteroprio when MC StarPU ,410

LaRU , or LS SDH were used. This further supports our idea that the data in write should count more than411

the data in read. Moreover, LC SMWB balances the data in write but only with a factor 2 at most; even if412

it reduced the memory transfer compared to Heteroprio, the reduction was not as large compared with413

LS SDH2/LS SDHB. Finally, when we used SpLDLT the amount of memory transfer and the execution414

time were reduced.415

Looking at the results of StarPU-Stencil, the memory transfer reduction was not as strong as for416

QrMumps. In addition, there is a correlation between the transfer reduction and the resulting speedup,417

such that the lowest amount of transfer were obtained with LS SDH, LS SMWB and LS SDHB for most418

of the configurations.419

Again, the automatic mode is efficient and even when one of the DLAF is not competitive, for instance420

LC SMWB in the case of QrMumps/SpLDLT or LC SDH2 for StarPU-Stencil, the automatic system is421

robust enough to make correct decisions and remains competitive.422

BMD We provide the BMD values for the different DLAF in Figures 6(e) and 6(f) for QrMumps,423

Figures 7(e) and 7(f) for SpLDLT, and Figures 8(e) and 8(f) for StarPU-Stencil.424

For QrMumps, the BMD values were low for all formulas except LS SDH and LaRU . These measures425

proof that LS SDH is sensitive to the data changes that happen in the time that takes a pushed task to be426

popped. Furthermore, this is due to its formula as it considers the data in read or write to be the same. On427

the other hand, MC StarPU was stable with a small BMD value. However, this is surprising, because the428

high value for LS SDH illustrates the volatility of the data, and thus MC StarPU should also be sensitive429

to the changes that happened between push/pop.430

For SpLDLT and StarPU-Stencil, we observed a clear relation between the BMD values and the431

speedup. The formulas that did not provide a speedup are the ones with the highest BMD values. This432

validates the construction of our automatic method that uses the DLAF with the lowest BDM.433

In the three applications, the LaRU has a special meaning when looking at the BMD value. When a434

task is pushed, LaRU returns the id of the memory node of the worker that push the task and similarly,435

when a task is popped, LaRU returns the id of the memory node of the worker that pop the task. Therefore,436

the LaRU’s BDM value is the percentage of tasks that are pushed and popped by worker related to437

different memory nodes. Therefore, we see that in QrMumps up to 30% of the tasks were stolen but this438

number grow up to 50% for StarPU-Stencil and 80% for SpLDLT.439

All in all The speedup obtained with LAHeteroprio was really significant. In most cases, there was a440

proportional relation between memory transfer and execution time, which means that reducing memory441

transfer caused a reduction in the time needed to execute the task. The BMD metric is valuable to evaluate442

the robustness of DLAF and it can be used to predict its performance. Moreover, our automatic DLAF443

selection based on BMD was highly competitive with a speedup close to the best-achieved executions.444

Finally, LAHeteroprio reduced the amount of memory transfer with any number of GPUs for the three445

applications.446

5 CONCLUSION447

We have improved our Heteroprio scheduler with a new mechanism that considers data locality. The new448

system divides the task buckets into as many lists as there are memory nodes. We have created different449
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formulas to evaluate the locality of a task regarding a memory node, and we found that formulas that450

omit many parameters (as the use of the StarPU prediction functions) provide a low performance; this is451

probably due to the neglect of the type of accesses of the tasks on the data. Nevertheless, we have shown452

that locality evaluation is more sensitive to write accesses and this has been validated with the results of453

the BMD metric. Concerning the pop strategy, it is necessary to set the locality coefficient to the largest454

value for the GPUs, to ensure that workers focus on locality before priorities. It is possible to use our455

new scheduler, without introducing additional information or modification, using our automatic DLAF456

selection system, which is close to the best executions in most cases. Finally, our new scheduler improves457

the performance of QrMumps, SpLDLT and StarPU-Stencil by 30%, 80% and 30% respectively. It also458

reduces the data transfer more than 50%.459

In terms of perspective, the scheduler could be studied and may be improved on different points. It460

could be beneficial to change the distance between the memory nodes at runtime; which means changing461

the victims of the work stealing and even having workers of the same memory node that steal the tasks462

on other memory nodes. In addition, the original priorities of the scheduler are set per architecture, and463

the new locality heuristic is set per memory node, but a finer approach could be interesting even if it has464

a challenging tuning and setup. For example, we could have one worker per GPU that uses a different465

access order over the buckets with the objective of avoiding some transfers. Finally, the present work466

paved the ways to study LAHeteroprio on other kinds of applications with more diverse types of tasks.467
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Figure 5. Speedup results of LAHeteroprio against Heteroprio for QrMumps, SpLDLT and

StarPU-Stencil on K40 or P100 configurations. The x-axis is used of the different l pairs of the form

(lCPU , lGPU ). The gray bars (�) represent SFA for all DLAF and gives an idea of the speedup of

LAHeteroprio, here each configuration is executed six times. The light gray bars (�) represent the SFM

of the DLAF with the best speedup in average. The lines (2"2) represent the SFM using the best

execution times among all DLAF, that is the speedup when we compare the best single execution using

Heteroprio and LAHeteroprio.
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Figure 6. Execution details for QrMumps on K40 or P100 configurations for a locality coefficient

l = (3,3). The speedup includes SFA (�) and SFM (2"2). The memory transfers and BMD are average

values.
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Figure 7. Execution details for SpLDLT on K40 or P100 configurations for a locality coefficient

l = (2,1). The speedup includes SFA (�) and SFM (2"2). The memory transfers and BMD are average

values.

18/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27616v1 | CC BY 4.0 Open Access | rec: 27 Mar 2019, publ: 27 Mar 2019



Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Schedulers/Push strategies

1.000

1.025

1.050

1.075

1.100

1.125

1.150

1.175

1.200

Sp
ee

du
p 

vs
. H

et
er

op
rio

1 GPUs

2 GPUs
3 GPUs 4 GPUs

(a) StarPU-Stencil/K40 - Speedup

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Schedulers/Push strategies

1.0

1.1

1.2

1.3

1.4

1.5

1.6

Sp
ee

du
p 

vs
. H

et
er

op
rio

1 GPUs 2 GPUs

(b) StarPU-Stencil/P100 -
Speedup

Hete
rop

rio

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Hete
rop

rio

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Hete
rop

rio

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Hete
rop

rio

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Schedulers/Push strategies

0

20

40

60

80

100

120

Tr
an

sf
er

 (G
B)

1 GPUs 2 GPUs
3 GPUs

4 GPUs

(c) StarPU-Stencil/K40 - Memory transfer

Hete
rop

rio

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Hete
rop

rio

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Schedulers/Push strategies

0

10

20

30

40

50

60

70

Tr
an

sf
er

 (G
B)

1 GPUs 2 GPUs

(d) StarPU-Stencil/P100 - Mem-
ory transfer

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Schedulers/Push strategies

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f d
iff

er
en

ce
s (

%
)

1 GPUs
2 GPUs 3 GPUs

4 GPUs

(e) StarPU-Stencil/K40 - BMD

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Auto
mati

c

LS_
SD

H

LS_
SD

H2

LC
_SM

WB

LS_
SD

HB

MC_St
arP

U
LaR

U

Schedulers/Push strategies

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Pe
rc

en
ta

ge
 o

f d
iff

er
en

ce
s (

%
)

1 GPUs
2 GPUs

(f) StarPU-Stencil/P100 - BMD

Figure 8. Execution details for StarPU-Stencil on K40 or P100 configurations for a locality coefficient

l = (2,1). The speedup includes SFA (�) and SFM (2"2). The memory transfers and BMD are average

values.
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