
Approximate String Searching with Fast

Fourier Transforms and Simplexes

Daniel Liu1

1Torrey Pines High School, San Diego, CA

Corresponding author:

Daniel Liu1

Email address: daniel.liu02@gmail.com

ABSTRACT

Previous algorithms for solving the approximate string matching with Hamming distance problem with

wildcard (”don’t care”) characters have been shown to take O(|Σ|N logM) time, where N is the length of

the text, M is the length of the pattern, and |Σ| is the size of the alphabet. They make use of the Fast

Fourier Transform for efficiently calculating convolutions. We describe a novel approach of the problem,

which makes use of special encoding schemes that depend on (|Σ|−1)-simplexes in (|Σ|−1)-dimensional

space.

INTRODUCTION

Approximate string searching has been subject to rigorous research due their applications in bioinformatics

and text retrieval. One such problem involves finding the hamming distance (i.e., number of mismatches)

at each location i in a text T of length N with a pattern P of length M, where M ≤ N. Additionally,

we have an alphabet Σ where ∀i ∈ {1 . . .N}, Ti ∈ Σ and ∀ j ∈ {1 . . .M}, P j ∈ Σ. Also, we wish to

allow wildcard (or ”don’t care”) characters denoted by ⋆ to match any character in the alphabet Σ. More

formally, we wish to find the following sum:

Ci =
M

∑
j=1

δ (Ti+ j,P j), ∀i ∈ {1 . . .N −M+1} (1)

where the δ is defined as

δ (x,y) =

{

1, if x = y or x = ⋆ or y = ⋆

0, otherwise
(2)

Fischer and Paterson (1974) first noticed that Fast Fourier Transforms can be used to solve the exact

matching problem in O(N logM log |Σ|). Their ideas can be extended to handle wildcards (”don’t cares”)

and to calculate Hamming distances at each location in the text. Clifford and Clifford (2007) proposed

a simple solution that lowered the time to O(N logM) for exact matching with wildcards. Clifford et al.

(2010) discussed algorithms for handling matches with bounded number of mismatches and wildcards.

In terms of calculating Hamming distance at each location in the text, Linhart and Shamir (2009)

proposed the use of prime encodings for a slight speedup over the straightforward extension of Fischer

and Paterson (1974)’s ideas. Schoenmeyr and Zhang (2005) also achieved a 2 times speedup by mapping

alphabet characters to roots of unity.

In this paper, we present two algorithms for approximate string searching with Hamming distance and

wildcard characters. Though they do not represent significant speedups compared to previous results, they

contain ideas that are of theoretical interest.

FAST FOURIER TRANSFORM

The Fast Fourier Transform F is an efficient method for transforming a discrete input signal (or any

arbitrary sequence) into frequency space (the opposite is also possible, with the inverse transform F−1).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27615v1 | CC BY 4.0 Open Access | rec: 27 Mar 2019, publ: 27 Mar 2019

This allows the convolution of two arbitrary sequences a and b of complex values (i.e., ∀i∈ {1 . . . |a|}, ai ∈
C and ∀ j ∈ {1 . . . |b|}, b j ∈ C) to be efficiently calculated through the convolution theorem:

a∗b = F
−1
(
F (a)⊙F (b)

)
(3)

where the ∗ operator indicates convolution and the ⊙ operator indicates element-wise multiplication.

The time complexity of the FFT operation takes O(|a| log |a|) time for a sequence a of length |a|, but

this can be reduced to O(|a| log |b|) by splitting a into smaller segments.

In this paper, we focus more on the string searching aspect of the problem, and less on further speedups

for the FFT algorithm itself, as there already is a large body of work on improving the FFT algorithm.

BASIC ENCODING

First, we present an overview of basic extensions to Fischer and Paterson (1974)’s ideas to solve the

matching with Hamming distance problem in O(|Σ|N logM) time. This method relies on the the so-called

”one-hot encoding” of each letter ∈ Σ:

e1 =
(
1 0 0 0 · · · 0

)

e2 =
(
0 1 0 0 · · · 0

)

e3 =
(
0 0 1 0 · · · 0

)

...

e|Σ| =
(
0 0 0 0 · · · 1

)

︸ ︷︷ ︸

|Σ| values

(4)

The alphabet encodings are used to create T ′ and P ′, which are of length |Σ|N and |Σ|M, re-

spectively. Both T ′ and P ′ are concatenations of the encodings: T ′ = eT1
eT2

eT3
. . .eTN

and P ′ =

eP1
eP2

eP3
. . .ePM

(for simplicity, we consider the characters in the alphabet as numbers). To search for

P in T , we calculate the following sum (convolution):

C
′
i =

|Σ|M

∑
j=1

T
′

i+ jP
′
j, ∀i ∈ {1 . . . |Σ|N −|Σ|M+1}

= T
′ ∗P

′

(5)

We will refer to the sum C ′
i as the score at each index i.

It is easy to see that for any two encodings that match, then the they contribute 1 to the score, and for

any two encodings that do not match, they contribute 0 to the score. Therefore, the resulting Hamming

distances for each match in location T , C , is

Ci = |P|−C
′
|Σ|(i−1)+1, ∀i ∈ {1 . . .N} (6)

To handle wildcard characters, we encode each wildcard character in T as
(
1 1 1 1 · · · 1

)

︸ ︷︷ ︸

|Σ| values

(7)

and each wildcard character in P as
(
0 0 0 0 · · · 0

)

︸ ︷︷ ︸

|Σ| values

(8)

The sum we calculate also needs to be changed to handle the wildcard characters:

C
′
i =

|Σ|M

∑
j=1

¬T
′

i+ jP
′
j, ∀i ∈ {1 . . . |Σ|N −|Σ|M+1}

=
|Σ|M

∑
j=1

(1−T
′

i+ j)P
′
j

Ci = C
′
|Σ|(i−1)+1, ∀i ∈ {1 . . .N}

(9)

2/5PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27615v1 | CC BY 4.0 Open Access | rec: 27 Mar 2019, publ: 27 Mar 2019

Overall, wildcard characters are always encoded as a vector of zeros, with or without the negation. This

allows wildcard characters to never contribute in increasing the the values in C . Also, the negation of T

allows matching encodings to contribute zero to the score, while disagreeing encodings increase the score

by exactly one. Therefore, C represents the desired Hamming distances at each index.

Note that character sets in T can also be handled. A character set matches only a character out of a

subset of Σ at a certain location in T . For each character set C (where C ⊆ Σ), the encoding is the same

as the wildcard characters in T . The only difference is that the bit in the encoding that represents each

character c ∈ Σ,c /∈C is flipped from the original wildcard character encoding in T (i.e., from 1 to 0). To

handle character sets in the pattern, encodings for wildcard characters must all be flipped and P must be

negated instead of T in the sum.

The overall time complexity of the aforementioned approaches are the same when no character sets

are used:

O
(
|Σ|N + |Σ|M+ |Σ|N log(|Σ|M)

)

= O
(
|Σ|N + |Σ|M+ |Σ|N(log |Σ|+ logM)

)

= O(|Σ|N logM)

(10)

since M ≤ N, and if |Σ|> M, the extra characters in the alphabet that are not in P can be encoded into

one ”other” character that does not match the encoding of any existing character in P , which ensures that

|Σ|= O(M). When character sets are used, the time complexity deteriorates very slightly.

SIMPLEX-BASED METHODS

One way to reduce the run time complexity of the basic encoding technique is to attempt to decrease

the length of the encodings. First, each set of |Σ| possible encodings for the characters in |Σ| can be

seen as vectors in R
k space, where k represents the number of dimensions, which is also the length the

encoding. In the basic encoding technique, k = |Σ|. The goal is to minimize k while ensuring that the

distance between character encoding matches and mismatches is distinguishable (and obviously, encoding

matches and mismatches must be indicative of actual character matches and mismatches). The distance

between two encoding vectors will be defined as the Lp norm between those two vectors (i.e., ||v−u||p),

for some chosen p.

Such a set of vectors can be represented using vertices on a simplex. In this case, we informally define

a (regular) k-simplex ∆k as a set of k+1 points in R
k, where the distance (Lp norm) between each pair of

points is the same, and the points lie on a k-dimensional unit ball defined by the Lp norm. Returning to the

original problem, the set of |Σ| points that define a (|Σ|−1)-simplex can be used as the encoding vectors.

They satisfy the requirement where the distance for matches and mismatches must be distinguishable, as

encodings that do not match will have the same Lp norm. Unfortunately, better compression using this

technique cannot be achieved since it is known that no more than k+1 pairwise equidistant points can be

present in R
k space.

Let each pair (k, p) represent the set of k+ 1 encodings that uses the Lp norm. We examine how

(|Σ| − 1,0) (Hamming) encodings and (|Σ| − 1,2) (Euclidean) encodings can be applied to the string

Hamming distance problem.

Hamming Encodings

A (|Σ| − 1,0) encoding set can be seen as a set of |Σ| binary vectors that have the same pairwise L0

distance. I.e., ||v− u||0 = d, ∀u,v ∈ (|Σ| − 1,0) encoding set, where u 6= v and d is a fixed constant

distance. Note that the L0 norm essentially counts the number of nonzero elements in a vector. Since

the vectors are binary vectors, the distance operation can be seen as a bit count of the XOR of the bit

vectors u and v, which can be represented using AND and OR operations: u⊕ v = (¬u∧ v)∨ (u∧¬v).
Representing this as summation for over each encoding in T ′ and P ′, we get

C
′
i =

(|Σ|−1)M

∑
j=1

¬T
′

i+ jP
′
j +T

′
i+ j¬P

′
j, ∀i ∈ {1 . . .(|Σ|−1)N − (|Σ|−1)M+1}

=
(|Σ|−1)M

∑
j=1

(1−T
′

i+ j)P
′
j +T

′
i+ j(1−P

′
j), ∀i ∈ {1 . . .(|Σ|−1)N − (|Σ|−1)M+1}

(11)

3/5PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27615v1 | CC BY 4.0 Open Access | rec: 27 Mar 2019, publ: 27 Mar 2019

which can be computed using FFTs in O(|Σ|N logM) time. Since each encoding mismatch contributes d

to the score and each match contributes 0, the Hamming distance at each location in T is

Ci =
1

d
C

′
(|Σ|−1)(i−1)+1, ∀i ∈ {1 . . .N} (12)

To handle wildcard characters, we create two new vectors T ′′ and P ′′ of length (|Σ| − 1)N and

(|Σ|−1)M, respectively. They can be formed by mapping characters to vectors and concatenating those

vectors. ∀c ∈ Σ, we map c to

(
1 1 1 1 · · · 1

)

︸ ︷︷ ︸

|Σ|−1 values

(13)

and wildcards (⋆) are mapped to

(
0 0 0 0 · · · 0

)

︸ ︷︷ ︸

|Σ|−1 values

(14)

This mapping allows each position that match the wildcard characters to always result in Σ−1 zeros

in the summation due to the special T ′′ and P ′′ encodings:

C
′
i =

(|Σ|−1)M

∑
j=1

T
′′

i+ jP
′′
j

[
(1−T

′
i+ j)P

′
j+T

′
i+ j(1−P

′
j)
]
, ∀i∈ {1 . . .(|Σ|−1)N−(|Σ|−1)M+1} (15)

To implement this using FFTs, we must expand out the products:

C
′
i =

(|Σ|−1)M

∑
j=1

T
′′

i+ jP
′′
j (1−T

′
i+ j)P

′
j +T

′′
i+ jP

′′
j T

′
i+ j(1−P

′
j)

=
(|Σ|−1)M

∑
j=1

T
′′

i+ jP
′′
j P

′
j −T

′′
i+ jP

′′
j T

′
i+ jP

′
j +T

′′
i+ jP

′′
j T

′
i+ j −T

′′
i+ jP

′′
j T

′
i+ jP

′
j

=
(|Σ|−1)M

∑
j=1

T
′′

i+ jP
′′
j P

′
j +T

′′
i+ jP

′′
j T

′
i+ j −2T

′′
i+ jP

′′
j T

′
i+ jP

′
j

(16)

Since the indexes match for T ′
i+ jT

′′
i+ j and P ′

iP
′′
i multiplications, they can be precalculated before the

FFTs. The overall time complexity of the algorithm is unchanged when wildcard characters are used.

We have shown that string searching with wildcards can be done with (|Σ|−1,0) encodings. However,

we have yet to discuss how to generate those encodings. One way to solve this problem involves |Σ|−1

graphs G1,G2,G3, . . . ,G|Σ|−1, where each graph Gi = (Vi,Ei),∀i ∈ {1 . . . |Σ| − 1}. Each graph’s set of

vertices Vi contains all 2|Σ|−1 possible binary vectors of length |Σ|−1. In a graph Gi, two vertices u and v

are connected by an edge iff ||v−u||0 = i. Then, the problem of finding pairwise equidistant points can

be thought of as finding the max clique in each graph Gi. A clique is a subset of nodes, where each node

is connected to all other nodes in the set, and we wish to find the largest node subset that forms a clique.

A clique in graph Gi means that every node in that clique is the same distance i to all other nodes. Note

that it may not always be possible to find a clique of size |Σ| in any of the graphs.

As an example, for |Σ|= 4, the following binary vectors are possible (|Σ|−1,0) encodings, where

d = 2:

e1 =
(
0 0 0

)

e2 =
(
1 0 1

)

e3 =
(
1 1 0

)

e4 =
(
0 1 1

)

(17)

4/5PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27615v1 | CC BY 4.0 Open Access | rec: 27 Mar 2019, publ: 27 Mar 2019

Euclidean Encodings

Since it may not be always possible to generate (|Σ|−1,0) encodings, which uses binary vectors, we can

use real numbers and attempt to calculate the L2 norm using FFTs. For two encoding vectors u and v,

||v−u||2 =

√

∑
|Σ|−1

i=1 (vi −ui)2 = d, where d is a constant distance. For simplicity, we consider d2, which

is also a constant, to get rid of the square root operation. Then, the sum of squared L2 distances that we

want can be expressed as

C
′
i =

(|Σ|−1)M

∑
j=1

(T ′
i+ j −P

′
j)

2, ∀i ∈ {1 . . .(|Σ|−1)N − (|Σ|−1)M+1}

=
(|Σ|−1)M

∑
j=1

T
′2

i+ j −2T
′

i+ jP
′
j +P

′2
j

(18)

This can be computed using FFTs. Also, though the overall equation is similar to that of Clifford and

Clifford (2007), the underlying idea for their purpose is different. To convert squared distance to Hamming

distance, we do the following:

Ci =
1

d2
C

′
(|Σ|−1)(i−1)+1, ∀i ∈ {1 . . .N} (19)

To handle wildcard characters, we can use a technique similar to handling wildcards with Hamming

encodings. We create T ′′ and P ′′ as binary vectors in the same way as described in Hamming encodings,

and multiply them to the distance calculation:

C
′
i =

(|Σ|−1)M

∑
j=1

T
′′

i+ jP
′′
j

[
T

′2
i+ j −2T

′
i+ jP

′
j +P

′2
j

]
, ∀i ∈ {1 . . .(|Σ|−1)N − (|Σ|−1)M+1}

=
(|Σ|−1)M

∑
j=1

T
′′

i+ jP
′′
j T

′2
i+ j −2T

′′
i+ jP

′′
j T

′
i+ jP

′
j +T

′′
i+ jP

′′
j P

′2
j

(20)

Like with Hamming encodings, multiplications of vectors that have matching indexes can be precomputed

before the FFTs. The T ′′ and P ′′ encodings allow the distance to be zero if the character in T or P are

wildcards at a certain position. Note that the overall time complexity is still O(|Σ|N logM).
Constructing the (|Σ|−1)-simplexes with the L2 norm for the encoding vectors can be easily done by

first generating the |Σ|−1 one-hot vectors/points and adding an additional point that is equidistant to all

of the |Σ|−1 points.

CONCLUSION

We discussed two new encoding methods and how it can be applied to finding the Hamming distance

between a pattern string and a text string at each location in the text. Though it may not result in practical

speedups, the theoretical ideas behind the approaches are novel. The main drawback is that they require

multiple FFT calculations, which outweighs the benefits of the slightly shortened encoding vectors.

Pattern searching has many applications in bioinformatics and other fields. In particular, fast algorithms

are necessary for searching DNA sequences due to the immense amount of DNA data present. Our work

represents a step in constructing faster searching algorithms using the Fast Fourier Transform.

REFERENCES

Clifford, P. and Clifford, R. (2007). Simple deterministic wildcard matching. Information Processing

Letters, 101(2):53–54.

Clifford, R., Efremenko, K., Porat, E., and Rothschild, A. (2010). Pattern matching with don’t cares and

few errors. Journal of Computer and System Sciences, 76(2):115–124.

Fischer, M. J. and Paterson, M. S. (1974). String-matching and other products. Technical report,

Massachusetts Institute of Technology, Cambridge, MA, USA.

Linhart, C. and Shamir, R. (2009). Faster pattern matching with character classes using prime number

encoding. Journal of Computer and System Sciences, 75(3):155–162.

Schoenmeyr, T. and Zhang, D. Y. (2005). FFT-based algorithms for the string matching with mismatches

problem. Journal of Algorithms, 57(2):130–139.

5/5PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27615v1 | CC BY 4.0 Open Access | rec: 27 Mar 2019, publ: 27 Mar 2019

	References

