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As a rule, the limitations of specialized modeling languages for acausal modeling of the
complex dynamical systems are: limited applicability, poor interoperability with the third
party software packages, the high cost of learning, the complexity of the implementation
of hybrid modeling and modeling systems with the variable structure, the complexity of
the modiûcations and improvements. In order to solve these problems, it is proposed to
develop the easy-to-understand and to modify component-oriented acausal hybrid
modeling system that is based on: (1) the general-purpose programming language Python,
(2) the description of components by Python classes, (3) the description of components
behavior by diûerence equations using declarative tools SymPy, (4) the event generation
using Python imperative constructs, (5) composing and solving the system of algebraic
equations in each discrete time point of the simulation. The classes that allow creating the
models in Python without the need to study and apply specialized modeling languages are
developed. These classes can also be used to automate the construction of the system of
diûerence equations, describing the behavior of the model in a symbolic form. The basic
set of mechanical components is developed 4 1D translational components "mass",
"spring-damper", "force". Using these components, the models of sucker rods string are
developed and simulated. These simulation results are compared with the simulation
results in Modelica language. The replacement of diûerential equations by diûerence
equations allow simplifying the implementation of the hybrid modeling and the
requirements for the modules for symbolic mathematics and for solving equations.
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17 Abstract

18 As a rule, the limitations of specialized modeling languages for acausal modeling of the complex 

19 dynamical systems are: limited applicability, poor interoperability with the third party software 

20 packages, the high cost of learning, the complexity of the implementation of hybrid modeling 

21 and modeling systems with the variable structure, the complexity of the modifications and 

22 improvements. In order to solve these problems, it is proposed to develop the easy-to-understand 

23 and to modify component-oriented acausal hybrid modeling system that is based on: (1) the 

24 general-purpose programming language Python, (2) the description of components by Python 

25 classes, (3) the description of components behavior by difference equations using declarative 

26 tools SymPy, (4) the event generation using Python imperative constructs, (5) composing and 

27 solving the system of algebraic equations in each discrete time point of the simulation. The 

28 classes that allow creating the models in Python without the need to study and apply specialized 

29 modeling languages are developed. These classes can also be used to automate the construction 

30 of the system of difference equations, describing the behavior of the model in a symbolic form. 

31 The basic set of mechanical components is developed 4 1D translational components "mass", 

32 "spring-damper", "force". Using these components, the models of sucker rods string are 

33 developed and simulated. These simulation results are compared with the simulation results in 

34 Modelica language. The replacement of differential equations by difference equations allow 

35 simplifying the implementation of the hybrid modeling and the requirements for the modules for 

36 symbolic mathematics and for solving equations.

37

38 Introduction
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39 As known, component-oriented simulation modeling is based on the separation of a complex 

40 system model into simple components. The component describes the mathematical model of the 

41 corresponding physical object (mass, spring, electrical resistance, hydraulic resistance, hydraulic 

42 motor, etc.), which is formulated as an algebraic, differential or difference equation. Components 

43 are connected with one another through ports (pins, flanges), which define a set of variables for 

44 the interaction between components (Elmqvist, 1978; Fritzson, 2015). Components and ports are 

45 stored in software libraries. Usually, it is possible to develop new components. The multi-domain 

46 modeling allows to use together of components which differ in the physical nature (mechanical, 

47 hydraulic, electric, etc.). The component-oriented modeling can be based on causal modeling or 

48 acausal modeling (Fritzson, 2015). In the first case, the component receives the signal x at the 

49 input, performs a certain mathematical operation f(x) on it and returns the result y to the output. 

50 In this case, the modeling is realized by imperative programming by assigning the value of the 

51 expression f(x) to the variable y. In the second case, the signal of the connected components can 

52 be transmitted in two directions. Such modeling is realized by declarative programming by 

53 solving the equation y=f(x), where the unknown can be x or y. Here, the variables x and y are 

54 some physical quantities, and the equation y=f(x) is the physical law that describes their 

55 relationship. It allows us to simplify the creation of the model, to focus on the physical 

56 formulation of the problem, but not on the algorithm for solving it. It is also possible to avoid 

57 errors that are typical for imperative programming.

58 Most often, the behavior of these models is described by the system of differential equations, 

59 which are solved by the finite difference method 4 numerical method based on the replacement 

60 of differential operators by difference schemes. As a result, the system of differential equations is 

61 replaced by the system of algebraic equations.

62 The solution of non-stationary problems by the finite difference method is the iterative process 

63 4 at each iteration find the solution of the stationary problem for the given time point. Explicit 

64 and implicit difference schemes are used for this purpose. Explicit schemes immediately find 

65 unknown values, using information from previous iterations. Using of the implicit scheme 

66 requires the solution of a difference equation because unknown values can be in the right and left 

67 sides of the equation. The explicit Euler difference scheme is simple to implement, but it often 

68 has numerical instability and low accuracy. To improve accuracy and stability it is desirable to 

69 apply modified Euler methods, such as the Runge-Kutta method (Runge, 1895).
70

71 Statement of the problem

72 For the simulation of complex dynamic multi-domain systems such specialized modeling 

73 languages are developed: Dymola (Elmqvist, 1978), APMonitor (Hedengren et al., 2014), 

74 ASCEND (Piela, McKelvey & Westerberg, 1993), gPROMS (Barton & Pantelides, 1994), 

75 Modelica (Fritzson & Engelson, 1998) , MKL, Modelyze (Broman, 2010). Among them, 

76 Modelica is the most popular free language for component-oriented modeling of such systems. 

77 Its main features: free, object-oriented, declarative, focused on hybrid (continuous and discrete) 

78 component-oriented modeling of complex multi-domain physical systems, it supports the 
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79 construction of hierarchical models, adapted for visual programming, widely used for research in 

80 various fields (Fritzson, 2015). Free Modelica Standard Library has about 1280 components. 

81 There are free and commercial simulation environments in Modelica language 4 

82 OpenModelica, JModelica.org, Wolfram SystemModeler, SimulationX, MapleSim, Dymola, 

83 LMS Imagine.Lab AMESim.

84 As a rule, the limitations of such modeling languages are: limited applicability, poor 

85 interoperability with the third party software packages, the high cost of learning, the complexity 

86 of the modifications and improvements, the complexity of the implementation of hybrid 

87 modeling and modeling variable structure systems where the structure and number of equations 

88 can change at run-time (Fritzson, Broman & Cellier, 2008; Nikoli�, 2016).  Some problems can 

89 be solved by using interfaces to general-purpose languages (Akesson et al., 2010; Hedengren et 

90 al., 2014). But it is usually more difficult to learn a new language than to learn a component or 

91 library of a familiar programming language.

92 These problems are less common in modeling systems that are based on general-purpose 

93 programming languages: GEKKO (Beal et al., 2018), Ariadne (Benvenuti et al., 2014), SimuPy 

94 (Margolis, 2017), Sims.jl (Short, 2017), Modia.jl (Elmqvist, Henningsson & Otter, 2016), 

95 PyDSTool (Clewley et al., 2007), DAE Tools (Nikoli�, 2016), Assimulo (Andersson, Führer & 

96 Åkesson, 2015). The implementation of such systems can be simplified if the difference 

97 equations are used to describe the model instead of differential equations. Many high-level 

98 general-purpose languages are suitable for implementing component-based modeling because 

99 they have convenient imperative and object-oriented constructions and allow declarative 

100 programming. The advantages of modeling systems based on general-purpose programming 

101 languages are described in detail in paper (Nikoli�, 2016). Python language (Van Rossum & 

102 Drake, 1995) is a good choice mainly due to its features: multi-paradigm, object-oriented, 

103 intuitive with code readability and improved programmer9s productivity, highly extensible, 

104 portable, open source, large community and extensive libraries as mathematical libraries SymPy 

105 and SciPy. SymPy is a Python library for symbolic mathematics (Meurer et al., 2017). SciPy is a 

106 fundamental library for scientific computing (Jones et al., 2001).

107 The purpose of this work is to develop of the easy-to-understand and to modify component-

108 oriented acausal hybrid modeling system that is based on: (1) the use of general-purpose 

109 programming language Python, (2) the description of components by Python classes, (3) the 

110 description of components behavior by difference equations using declarative tools SymPy, (4) 

111 the event generation using Python imperative constructs, (5) composing and solving a system of 

112 algebraic equations in each discrete time point of the simulation. The principles of the system are 

113 described using the example of the model of the sucker rod string that is used in the oil industry 

114 to join together the surface and downhole components of a rod pumping system. Let9s take a 

115 look the steel rod string, in which the length is 1500 m and sucker rod diameter is 19 mm. This 

116 column will have a mass of 3402 kg, a weight in the liquid of 29204 N, a spring constant of 

117 39694 N/m, a damping constant of 1856 N;s/m. Liquid weight above the pump with a diameter 

118 of 38 mm will be 16688 N.
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119

120 Model in Modelica language

121 First, we will simulate the free vibrations of the string using the Modelica language. We will 

122 develop the model of the simple mechanical translational oscillator, which consists of such 

123 components as Mass, SpringDamper and Fixed (Fig. 1). Component SpringDamper is 

124 designed to simulate the elastic-damper properties of the string. Component Mass simulates the 

125 inertial properties of the string. Component Fixed simulates the fixed point at the top of the 

126 string. The module code which describes this model is shown below (Listing S1). In order to 

127 simplify the model, these classes differ slightly from the corresponding classes of the standard 

128 Modelica library (Fritzson, 2015).

129

130 connector Flange // class-connector

131   Real s; // variable (positions at the flange are equal)

132   flow Real f; // variable (sum of forces at the flange is zero)

133 end Flange;

134

135 model Fixed // class-model

136   parameter Real s0=0; // parameter (constant in time) 

137   Flange flange; // object of class Flange

138 equation // model equations 

139   flange.s = s0; 

140 end Fixed;

141

142 partial model Transl // class-model

143   Flange flange_a; // object of class Flange

144   Flange flange_b; // object of class Flange

145 end Transl;

146

147 model Mass // class-model

148   extends Transl; // inheritance of class Transl

149   parameter Real m(min=0, start=1); // parameter 

150   Real s; // variable

151   Real v(start=0); // variable with initial condition 

152   Real a(start=0); // variable with initial condition 

153 equation // model equations 

154   v = der(s);

155   a = der(v);

156   m*a = flange_a.f + flange_b.f;

157   flange_a.s = s;

158   flange_b.s = s;

159 end Mass;

160

161 model SpringDamper // class-model
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162   extends Transl; // inheritance of class Transl

163   parameter Real c(final min=0, start=1); // parameter 

164   parameter Real d(final min=0, start=1); // parameter 

165   Real s_rel(start=0); // variable

166   Real v_rel(start=0); // variable

167   Real f; // variable

168 equation // model equations 

169   f = c*s_rel+d*v_rel;

170   s_rel = flange_b.s - flange_a.s;

171   v_rel = der(s_rel);

172   flange_b.f = f;

173   flange_a.f = -f;

174 end SpringDamper;

175

176 model Oscillator // class-model

177   Mass mass1(s(start=-1), v(start=0), m=3402.0); // object with 

178 initial conditions

179   SpringDamper spring1(c=39694.0, d=1856.0); // object

180   Fixed fixed1(s0=0); // object

181 equation // additional equations

182   // creates a system of equations (see Flange class)

183   connect(fixed1.flange, spring1.flange_a);

184   connect(spring1.flange_b, mass1.flange_a);

185 end Oscillator;

186

187 The Modelica language class describes the set of similar objects (components). The Flange 

188 class describes the concept of a mechanical flange. Its real-type variable s corresponds to the 

189 absolute position of the flange. Its value should be equal to the value of the variables s of the 

190 other flanges connected to this flange. The real-type variable f corresponds to the force on the 

191 flange. It is marked by the flow keyword, which means that the sum of all forces at the 

192 connection point is equal to zero. The Fixed class describes the concept of a fixed component 

193 with one flange, for example fixed1 (Fig. 1). It has the real-type variable s0, which 

194 corresponds to the absolute position of the flange, and the object flange of the Flange class, 

195 designed to connect this component to others. The variable s0 is marked by the parameter 

196 keyword, which means that it can be changed only at the start of the simulation. After the 

197 equation keyword, an equation describing the behavior of this component is declared 4 the 

198 flange object position must be equal to the s0 value. The Transl class describes an abstract 

199 component that has two flanges 4 flange_a and flange_b. It is the base class for 

200 mechanical translational components with two flanges. The Mass class inherits the class 

201 Transl and describes the sliding mass with inertia. The example of such component is mass1 

202 (Fig. 1). The command extends Transl means inheriting members of the Transl class in 

203 such a way that they become members of the Mass class. That is, the Mass components will 
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204 also have two flanges flange_a and flange_b. In addition, this class has the parameter m 

205 (mass) and variables s (position), v (speed), a (acceleration). Expression start=0 is the 

206 default initial condition. After equation keyword the system of the differential and algebraic 

207 equations which describes behavior of this component is given. The keyword der means the 

208 derivative with respect to time t (v=ds/dt, a=dv/dt).

209 The class SpringDamper inherits the class Transl and describes the linear 1D translational 

210 spring and damper in parallel. The example of such component is springDamper1 (Fig. 1). 

211 Class has the parameters c (spring constant), d (damping constant) and the variables s_rel 

212 (relative position), v_rel (relative speed), f (force at flange_b). After equation keyword 

213 the system of differential-algebraic equations of this component is given.

214 The Oscillator class describes spring-mass system (Fig. 1). It contains three components 

215 mass1, spring1, fixed1, which are described by the classes Mass, SpringDamper and 

216 Fixed, respectively. The values of parameters and initial conditions of these components are 

217 shown in round brackets. The additional equations which are obtained from component 

218 connections are given after equation keyword. So, for example 

219 connect(fixed1.flange, spring1.flange_a) command connects the flanges of 

220 the fixed1 and spring1 components and creates the additional system of equations:

221

222 fixed1.flange.s = spring1.flange_a.s;

223 fixed1.flange.f = -spring1.flange_a.f

224

225 The model code can be prepared using any text editor or the Modelica Development Tooling 

226 (MDT) module (Pop et al., 2006) of the Eclipse development environment. Simulation of model 

227 requires the OpenModelica environment (Fritzson et al., 2005). To start calculations enter this in 

228 MDT console:

229

230 simulate(Oscillator, stopTime=10)

231

232 To plot the curve that describes the position of mass1 component with time enter the following into the 

233 console:

234

235 plot(mass1.s)

236

237 Model in Python language

238 Description of components by Python-classes

239 Now we will develop the module pycodyn with similar components in Python (Listing S2). In 

240 addition, we will develop the Force class for simulating the external forces acting on the string. 

241 The behaviour of the components will be described by means of the difference equations. As a 

242 result, the system of components connected by flanges will be described by the system of the 

243 difference equations.
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244 First, we9ll import the sympy module and the standard mathematical module math. It is 

245 important to distinguish the functions of these modules.

246

247 from sympy import *

248 import math

249

250 Create the global variable dt (time step).
251

252 dt=0.1

253

254 If you only need to obtain the system of equations in a symbolic form, then this variable must be 

255 an instance of the Symbol class of the sympy module:
256

257 dt=Symbol('dt')

258

259 Translational1D is the basic class of mechanical 1D components that have translational 

260 motion. The constructor function __init__ is called when an object of this class is created and 

261 has two parameters 4 name of the component name and the dictionary of its attributes args. 

262 For component attribute naming, we use the following notation. The symbols x, v, a, f at the 

263 beginning of the name mean position, speed, acceleration and force, respectively. The symbol p 

264 at the end of the name means the value at time t-dt. The numerical index at the end 

265 corresponds to the flange number. To distinguish the variables of various components in the 

266 system, each of them begins with the name of the component followed by the symbol "_". For 

267 example, the name s1_x2p means the position of the second flange of the component s1 at 

268 time t-dt. The constructor for each name-value pair of the dictionary args (except name and 

269 self) creates SymPy variables. The symbolic variable of the Symbol class is created if its 

270 value is not known. The numeric variable of the Number class is created if its value is known. 

271 The self.eqs list contains the component equations, and the self.pins list contains the 

272 component flanges. Each equation is created using SymPy class Eq. Each flange is described by 

273 a dictionary whose keys are x, xp, f, and the values are the corresponding attributes of the 

274 component (see Mass, SpringDamper, Force classes). The pinEqs function returns a list 

275 of equations for the component flange that is connected to the flanges of the other components. It 

276 has the parameter pindex 4 the index of the flange (for example 0), and the parameter pins 

277 4 the list of flanges of the other components. Always the positions of the mechanical 1D 

278 translational components on the flange are equal, and the sum of the forces on this flange is zero. 

279 For example, if the flange 2 of the component s1 is connected to the flange 1 of the component 

280 m1 then pinEqs function of the s1 component returns the list of equations[s1_x2==m1_x1, 

281 s1_x2p==m1_x1p, s1_f2==-m1_f1].
282

283 class Translational1D(object):
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284     def __init__(self, name, args):

285         self.name=name # component name

286         for k,v in args.iteritems(): # for each key-value pair

287             if k in ['name','self']: continue # except name and self

288             if v==None: # if value is None

289                 # create symbolic variable with name name+'_'+k

290                 self.__dict__[k]=Symbol(name+'_'+k) 

291             elif type(v) in [float,Float]: # if value is float

292                 self.__dict__[k]=Number(v) # create constant

293         self.eqs=[] # equations list

294         self.pins=[] # pins list

295

296     def pinEqs(self,pindex,pins):

297         eqs=[] # equation list of the flange

298         f=Number(0) # sum of forces on flanges of other components

299         for pin in pins: # for each flange of the other components

300             # add equations describing the equality on the flange:

301             # positions

302             eqs.append(Eq(self.pins[pindex]['x'], pin['x']))

303             # positions at time t-dt

304             eqs.append(Eq(self.pins[pindex]['xp'], pin['xp']))

305             f+=pin['f'] # add to the sum of forces

306         # equality to zero the sum of forces on the flange

307         eqs.append(Eq(self.pins[pindex]['f'], -f))

308         return eqs

309

310 The class Mass describes the mass concentrated at a point, which has translational motion. It 

311 inherits Translational1D class. The constructor __init__ calls the constructor of the 

312 base class Translational1D and send to it the parameters name and locals(). The latter 

313 is a dictionary of local variables self, name, m, x, xp, v, vp, a, f1, f2. The behavior of this 

314 component is described by a system of equations self.eqs. For example, for the component 

315 m1:
316

317 [m1_m*m1_a == m1_f1+m1_f2, m1_a == (m1_v- m1_vp)/dt,

318 m1_v == (m1_x-m1_xp)/dt]

319

320 A list of additional equations can be generated for each component flange using the function 

321 pinEqs described above. The first element of the self.pins list is the dictionary 

322 dict(x=self.x, xp=self.xp, f=self.f1) which means that the positions x, xp on 

323 the flange will be equal to the self.x, self.xp attributes of this component respectively, 

324 and the force f on the flange will be equal to the self.f1 attribute. The same applies to the 

325 second element of the list.

326
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327 class Mass(Translational1D):

328     def __init__(self, name, m=1.0, x=None, xp=None, v=None, vp=None, 

329 a=None, f1=None, f2=None):

330          # base class constructor call
331         Translational1D.__init__(self, name, locals())

332         # system of equations

333         self.eqs=[Eq(self.m*self.a, self.f1+self.f2),

334                   Eq(self.a, (self.v-self.vp)/dt),

335                   Eq(self.v, (self.x-self.xp)/dt)]

336         # two flanges

337         self.pins=[dict(x=self.x, xp=self.xp, f=self.f1), 

338 dict(x=self.x, xp=self.xp, f=self.f2)]

339

340 The SpringDamper class describes the translational 1D spring and damper, which are 

341 connected in parallel. It inherits Translational1D class. In addition to the attributes 

342 described above, it has the following attributes: spring constant c, damping constant d, relative 

343 velocity between flanges vrel. The behavior of this component is described by a system of 

344 equations self.eqs. For example, for the component s1:

345

346 [s1_c*( s1_x2-s1_x1)+ s1_d*s1_vrel == s1_f2, -s1_f2 == s1_f1,

347 s1_vrel == (s1_x2-s1_x2p)/dt-(s1_x1-s1_x1p)/dt]

348

349 This component also has two flanges and it is possible to generate a list of additional equations 

350 using the pinEqs function.

351

352 class SpringDamper(Translational1D):

353     def __init__(self, name, c=1.0, d=0.1, x1=None, x2=None, x1p=None, 

354 x2p=None, vrel=None, f1=None, f2=None):

355         Translational1D.__init__(self, name, locals())

356         # system of equations

357         self.eqs=[Eq(self.c*(self.x2-self.x1)+self.d*self.vrel, 

358 self.f2), Eq(-self.f2, self.f1), Eq(self.vrel, (self.x2-self.x2p)/dt-

359 (self.x1-self.x1p)/dt)]

360         # two flanges

361         self.pins=[dict(x=self.x1, xp=self.x1p, f=self.f1), 

362 dict(x=self.x2, xp=self.x2p, f=self.f2)]

363

364 The Force class describes a 1D force whose application point has translational motion. The 

365 value of the force f can be constant or variable. It inherits Translational1D class and has 

366 one flange.

367

368 class Force(Translational1D):

369     def __init__(self,name,f=None,x=None,xp=None):
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370         Translational1D.__init__(self, name, locals())

371         self.pins=[dict(x=self.x, xp=self.xp, f=-self.f)] # one flange

372

373 The class System describes the system of components connected by flanges. The constructor 

374 __init__ gets two parameters 4 the list of components els and the list of additional 

375 equations eqs, which usually are created using pinEqs functions. The system components are 

376 stored in the self.els list and the self.elsd dictionary. The list self.eqs contains all 

377 system equations and is created by joining the equations of all components with additional 

378 equations eqs. 

379 The function of this class solve solves a stationary problem. It returns the solution of a system 

380 of equations with conditions ics 4 a dictionary with known values of variables. To solve a 

381 system of equations, it can use the SymPy solve function, but its algorithm is very slow. It is 

382 possible to use fast algorithms for solving equations, for example, the function 

383 scipy.optimize.root from the SciPy library, which supports many effective methods for 

384 solving systems of equations. In this case, the call of the SymPy function solve(eqs) must be 

385 replaced with the call of the function self.solveN(eqs), which adapts the system of 

386 equations for SciPy and solves it using scipy.optimize.root.

387 The function solveDyn solves a non-stationary problem. It receives three parameters 4 the 

388 dictionary with initial conditions d, the final time value timeEnd and the function fnBC that 

389 returns the dictionary to update the boundary conditions. First, the time variable t is assigned an 

390 initial value. In the while loop with the condition t<timeEnd, the following instructions are 

391 executed: the positions and velocities of the components in the previous steps xp, x1p, x2p, vp 

392 are assigned the values of the initial conditions d, the values of the boundary conditions are 

393 updated, the system of equations is solved by calling the solve function, solutions are assigned 

394 to the dictionary d, the results are saved, the time value increases by dt. After the loop is 

395 completed, the function returns the results as T and Res lists. These results can be represented in 

396 the form of plots using the matplotlib library.

397

398 class System(object):

399     def __init__(self, els, eqs):

400         self.els=els # components list

401         self.elsd=dict([(e.name,e) for e in els]) # same, but dict.

402         self.eqs=[] # list of system equations

403         for e in self.els: # for each component

404             self.eqs+=e.eqs # join with component equations

405         self.eqs=self.eqs+eqs # join with additional equations

406

407     def solveN(self, eqs): # solves the static problem
408         # code is not shown here

409

410     def solve(self, ics): # solves the dynamic problem
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411         eqs=[e.subs(ics) for e in self.eqs] # substitution of ics 

412         # discard all degenerate equations

413         eqs=[e for e in eqs if e not in (True,False)]

414         # solve the system of equations by:

415         #sol=solve(eqs) # SymPy (slow)

416         sol=self.solveN(eqs) # SciPy (faster)

417         sol.update(ics) # update dictionary by dictionary ics

418         return sol

419

420     def solveDyn(self, d, timeEnd, fnBC):

421         t=0.0 # time variable

422         T=[] # list of time values

423         Res=[] # list of results

424         ics={} # dictionary with values of variables

425         while t<timeEnd: # while t < final time value

426             for e in self.els: # for each component

427                 # save positions and velocities

428                 if 'x' in e.__dict__:

429                     ics.update({e.xp:d[e.x]})

430                 if 'x1' in e.__dict__:

431                     ics.update({e.x1p:d[e.x1]})

432                 if 'x2' in e.__dict__:

433                     ics.update({e.x2p:d[e.x2]})

434                 if 'v' in e.__dict__:

435                     ics.update({e.vp:d[e.v]})

436             ics.update(fnBC(self.elsd, d, t)) # update BC

437             d=self.solve(ics) # solve the problem

438             print t

439             T.append(t)

440             Res.append(d) # save results

441             t+=dt # increase time value

442             #if some_condition: # changing the system structure

443             #    self.__init__(new_els, new_eqs)

444         return T,Res

445

446 You can easily implement modeling of variable structure systems by overriding the solveDyn 

447 method and calling in it the constructor of the System class with new values of arguments els, 

448 eqs. Usually this call should occur after a certain condition.

449

450 Simulation of free vibrations of the sucker rod string

451 Let's perform the simulation of free vibrations of the sucker rod string (Fig. 1). In the separate 

452 module (Listing S3) we will create the components: spring-damper s1 and mass m1. In round 

453 brackets there are the values of the attributes 4 the name and the known parameters values.

454
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455 from pycodyn import *

456 s1=SpringDamper(name='s1', c=39694.0, d=1856.0)

457 m1=Mass(name='m1',m=3402.0)

458

459 Create the list of additional equations, formed by connecting the flanges of the components. 

460 Then create the object of the component system.
461

462 peqs=s1.pinEqs(1,[m1.pins[0]])

463 s=System(els=[s1,m1], eqs=peqs)

464

465 A list of the model equations can be printed using the command print s.eqs. To obtain 

466 equations only in the symbolic form, the numerical values of the constructors parameters c, d, m 

467 should be replaced by None:

468

469 [s1_c*(-s1_x1 + s1_x2) + s1_d*s1_vrel == s1_f2,

470 -s1_f2 == s1_f1,

471 s1_vrel == -(s1_x1 - s1_x1p)/dt + (s1_x2 - s1_x2p)/dt,

472 m1_a*m1_m == m1_f1 + m1_f2,

473 m1_a == (m1_v - m1_vp)/dt,

474 m1_v == (m1_x - m1_xp)/dt,

475 s1_x2 == m1_x, s1_x2p == m1_xp, s1_f2 == -m1_f1]

476

477 Let's solve the static problem 4 the column is stretched by 1 m.
478

479 ics={m1.x:-1.0,m1.v:0.0,m1.a:0.0,s1.x1:0.0,s1.x1p:0.0,m1.vp:0.0}

480 d=s.solve(ics)

481

482 The boundary conditions depend on the type of the problem. If this is the problem of free 

483 oscillations, then the position of the string top point elsd['s1'].x1 and the force on the 

484 plunger elsd['m1'].f2 are zero. Create the function to update the boundary conditions at 

485 time t for the elsd components. Then solve the dynamic problem 4 free vibrations of the 

486 string.

487

488 def fnBC(elsd, d, t):

489     return {elsd['s1'].x1:0.0, elsd['s1'].x1p:0.0, elsd['m1'].f2:0.0}

490 T,R=s.solveDyn(d, timeEnd=10, fnBC=fnBC)

491

492 The comparison of oscillator simulation results for Python and Modelica is shown in Fig. 2. The 

493 differences are explained by the use of unequal difference schemes in the Python model and the 

494 Modelica solver. It is possible to improve the results in the Python model by using the more 

495 accurate but more complex difference schemes. For example, if the trapezoidal rule is used 
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496 (Listing S4, Listing S5), the second equation for the Mass should be 

497 Eq((self.a+self.ap)/2, (self.v-self.vp)/dt).

498

499 Simulation of the pumping process by the two-section string

500 Now in the new module (Listing S6) we will create the model of the sucker rod string, which 

501 contains two sections. The model of each section consists of three 1D mechanical translational 

502 components: SpringDamper, Mass and Force (Fig. 3). The SpringDamper component is 

503 designed to simulate the elastic-damper properties of the string section, the Mass component 

504 simulates the inertial properties of the section, and the Force component simulates the section 

505 weight in the fluid and other external forces acting on the section.

506 Assign values to the variable of sections weights fs and the variable of liquid weight above the 

507 plunger fr.

508

509 from pycodyn import *

510 fs=(-14602.0, -14602.0)

511 fr=-16688.0

512

513 Let's create the components: the spring-damper of the first section s1, the mass of the first 

514 section m1, the weight of the first section f1, the spring-damper of the second section s2, the 

515 mass of the second section m2, the weight of the second section with the weight of the liquid f2.

516

517 s1=SpringDamper(name='s1', c=79388.0, d=3712.0)

518 m1=Mass(name='m1',m=1701.0)

519 f1=Force(name='f1', f=fs[0]) 

520 s2=SpringDamper(name='s2', c=79388.0, d=3712.0)

521 m2=Mass(name='m2', m=1701.0)

522 f2=Force(name='f2', f=fs[1]+fr)

523

524 Form the list of the additional equations of the string model, formed by connecting of the 

525 components flanges. And create the object of the component system (string model).

526

527 peqs=s1.pinEqs(1,[m1.pins[0]])

528 peqs+=m1.pinEqs(1,[s2.pins[0],f1.pins[0]])

529 peqs+=s2.pinEqs(1,[m2.pins[0]])

530 peqs+=m2.pinEqs(1,[f2.pins[0]])

531 s=System(els=[s1,m1,s2,m2,f1,f2], eqs=peqs)

532

533 The complete list of equations for this system s.eqs in the SymPy format:
534

535 [s1_c*(-s1_x1 + s1_x2) + s1_d*s1_vrel == s1_f2,

536 -s1_f2 == s1_f1,

537 s1_vrel == -(s1_x1 - s1_x1p)/dt + (s1_x2 - s1_x2p)/dt,
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538 m1_a*m1_m == m1_f1 + m1_f2,

539 m1_a == (m1_v - m1_vp)/dt,

540 m1_v == (m1_x - m1_xp)/dt,

541 s2_c*(-s2_x1 + s2_x2) + s2_d*s2_vrel == s2_f2,

542 -s2_f2 == s2_f1,

543 s2_vrel == -(s2_x1 - s2_x1p)/dt + (s2_x2 - s2_x2p)/dt,

544 m2_a*m2_m == m2_f1 + m2_f2,

545 m2_a == (m2_v - m2_vp)/dt,

546 m2_v == (m2_x - m2_xp)/dt,

547 s1_x2 == m1_x, s1_x2p == m1_xp,

548 s1_f2 == -m1_f1, m1_x == s2_x1,

549 m1_xp == s2_x1p, m1_x == f1_x,

550 m1_xp == f1_xp, m1_f2 == f1_f - s2_f1,

551 s2_x2 == m2_x, s2_x2p == m2_xp,

552 s2_f2 == -m2_f1, m2_x == f2_x,

553 m2_xp == f2_xp, m2_f2 == f2_f]

554

555 Let's solve the static problem 4 the string under the maximum static loads.

556

557 ics={m1.v:0.0, m1.a:0.0, m2.v:0.0, m2.a:0.0} 

558 ics.update({s1.x1:0.0, s1.x1p:0.0})

559 d=s.solve(ics)

560

561 Dictionary d contains the results. To display the position value for the bottom point of the 

562 second section, enter the command print d[m2.x]. We get the result -0.972. This is the 

563 elongation value of the string under maximum load. Let's solve the dynamic problem 4 the 

564 upper point has a harmonic motion. The stroke length of the upper point is 3 m, the number of 

565 double strokes per minute is 6.5. The motion function describes the harmonic motion of the 

566 upper point and returns its position at time t.

567

568 def motion(t):

569     A=3.0/2 # amplitude

570     n=6.5/60 # frequency

571     return A*math.sin(2*math.pi*n*t) # position

572

573 The force function returns the value of the force on the pump plunger F, depending on the 

574 value of its speed v. If the speed is less than zero (downstroke of the string), the function returns 

575 the weight value of the second section. Otherwise, the function returns the sum of the second 

576 section weight and the liquid weight above the plunger. This function should be smoothed when 

577 the sign of the velocity changes, for example, using the hyperbolic tangent function 

578 math.tanh.

579
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580 def force(v):

581     F=fs[1] # weight of the second section

582     if v>0: # if upperstroke

583         F+=fr # increase the force by value of the fluid weight 

584     return F*math.tanh(abs(v)/0.01) # smoothing near the point v=0

585

586 Create the function to update the boundary conditions at time t for elsd components. Here d is 

587 the dictionary of the results calculated in the previous step. Then solve the problem.

588

589 def fnBC(elsd, d, t):

590     return {elsd['s1'].x1:motion(t), elsd['f2'].f:force(d[m2.v])}

591 T,R=s.solveDyn(d, timeEnd=2*60/6.5, fnBC=fnBC)

592

593 The results (Fig. 4) correspond to practical dynamometer cards obtained on real wells. The 

594 simulation of the variable structure system (the breakage of the sucker rod string) is implemented 

595 in Listing S7. This is done by overriding the solveDyn method. The simulation results are 

596 shown in Fig. 5.

597

598 Conclusions

599 The Python-classes that allow creating the models in Python without the need to study and apply 

600 specialized modeling languages are developed. These classes can also be used to automate the 

601 construction of the system of difference equations, describing the behavior of the model, in a 

602 symbolic form. To fully describe the behavior of the model, these equations must be 

603 supplemented with initial and boundary conditions, which are described by certain functions 

604 (motion, force, fnBC). These functions may contain any imperative code and it simplifies 

605 integration with the third party software packages. Composing and solving the system of 

606 algebraic equations at each discrete time point of the simulation using SymPy and SciPy is quite 

607 slow, but it makes easier to implement variable structure systems modeling. For example, by 

608 changing the values of system attributes in the solveDyn function. The replacement of 

609 differential equations by difference equations allows simplifying the implementation of the 

610 hybrid modeling and the requirements for the modules for symbolic mathematics and for solving 

611 equations. However, the problem in the form of difference equations is usually more difficult to 

612 formulate. In the future it is planned to extend the set of the components, optimize the algorithm 

613 for solving equations and develop support for hierarchical models and the tools for building 

614 models using block diagrams. The source code is available on the GitHub 

615 (https://github.com/vkopey/pycodyn).

616
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Figure 1(on next page)

Block diagram of the oscillator model.
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Figure 2(on next page)

Plunger position (x) during free oscillation of the string.

() Euler method with time step dt=0.1 s; (5) Euler method with time step dt=0.01 s; (---)
Trapezoidal rule with time step dt=0.1 s; (....) Runge3Kutta method, order 4 (Modelica-
model).
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Figure 3(on next page)

Block diagram of the model with two sections.
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Figure 4(on next page)

Simulation results 3 the wellhead (at the top) and plunger (at the bottom) dynamometer
cards.
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Figure 5(on next page)

The simulation of the breakage of the sucker rod string (wellhead dynamometer card).
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