

A peer-reviewed version of this preprint was published in PeerJ
on 28 October 2019.

View the peer-reviewed version (peerj.com/articles/cs-227), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Kopei VB, Onysko OR, Panchuk VG. 2019. Component-oriented acausal
modeling of the dynamical systems in Python language on the example
of the model of the sucker rod string. PeerJ Computer Science 5:e227
https://doi.org/10.7717/peerj-cs.227

https://doi.org/10.7717/peerj-cs.227
https://doi.org/10.7717/peerj-cs.227

Component-oriented acausal modeling of the dynamical
systems in Python language on the example of the model of
the sucker rod string
Volodymyr B Kopei Corresp., 1 , Oleh R Onysko 1 , Vitalii G Panchuk 1

1 Department of Computerized Mechanical Engineering, Ivano-Frankivsk National Technical University of Oil and Gas, Ivano-Frankivsk, Ukraine

Corresponding Author: Volodymyr B Kopei
Email address: volodymyr.kopey@nung.edu.ua

As a rule, the limitations of specialized modeling languages for acausal modeling of the
complex dynamical systems are: limited applicability, poor interoperability with the third
party software packages, the high cost of learning, the complexity of the implementation
of hybrid modeling and modeling systems with the variable structure, the complexity of
the modiûcations and improvements. In order to solve these problems, it is proposed to
develop the easy-to-understand and to modify component-oriented acausal hybrid
modeling system that is based on: (1) the general-purpose programming language Python,
(2) the description of components by Python classes, (3) the description of components
behavior by diûerence equations using declarative tools SymPy, (4) the event generation
using Python imperative constructs, (5) composing and solving the system of algebraic
equations in each discrete time point of the simulation. The classes that allow creating the
models in Python without the need to study and apply specialized modeling languages are
developed. These classes can also be used to automate the construction of the system of
diûerence equations, describing the behavior of the model in a symbolic form. The basic
set of mechanical components is developed 4 1D translational components "mass",
"spring-damper", "force". Using these components, the models of sucker rods string are
developed and simulated. These simulation results are compared with the simulation
results in Modelica language. The replacement of diûerential equations by diûerence
equations allow simplifying the implementation of the hybrid modeling and the
requirements for the modules for symbolic mathematics and for solving equations.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

1

2 Component-oriented acausal modeling of the

3 dynamical systems in Python language on the

4 example of the model of the sucker rod string
5

6

7 Volodymyr Bohdanovych Kopei1, Oleh Romanovych Onysko1, Vitalii Georgievich Panchuk1

8

9 1 Department of Computerized Mechanical Engineering, Ivano-Frankivsk National Technical

10 University of Oil and Gas, Ivano-Frankivsk, Ukraine

11

12 Corresponding Author:

13 Volodymyr Kopei1

14 15 Karpatska Street, Ivano-Frankivsk, 76019, Ukraine

15 Email address: volodymyr.kopey@nung.edu.ua
16

17 Abstract

18 As a rule, the limitations of specialized modeling languages for acausal modeling of the complex

19 dynamical systems are: limited applicability, poor interoperability with the third party software

20 packages, the high cost of learning, the complexity of the implementation of hybrid modeling

21 and modeling systems with the variable structure, the complexity of the modifications and

22 improvements. In order to solve these problems, it is proposed to develop the easy-to-understand

23 and to modify component-oriented acausal hybrid modeling system that is based on: (1) the

24 general-purpose programming language Python, (2) the description of components by Python

25 classes, (3) the description of components behavior by difference equations using declarative

26 tools SymPy, (4) the event generation using Python imperative constructs, (5) composing and

27 solving the system of algebraic equations in each discrete time point of the simulation. The

28 classes that allow creating the models in Python without the need to study and apply specialized

29 modeling languages are developed. These classes can also be used to automate the construction

30 of the system of difference equations, describing the behavior of the model in a symbolic form.

31 The basic set of mechanical components is developed 4 1D translational components "mass",

32 "spring-damper", "force". Using these components, the models of sucker rods string are

33 developed and simulated. These simulation results are compared with the simulation results in

34 Modelica language. The replacement of differential equations by difference equations allow

35 simplifying the implementation of the hybrid modeling and the requirements for the modules for

36 symbolic mathematics and for solving equations.

37

38 Introduction

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

39 As known, component-oriented simulation modeling is based on the separation of a complex

40 system model into simple components. The component describes the mathematical model of the

41 corresponding physical object (mass, spring, electrical resistance, hydraulic resistance, hydraulic

42 motor, etc.), which is formulated as an algebraic, differential or difference equation. Components

43 are connected with one another through ports (pins, flanges), which define a set of variables for

44 the interaction between components (Elmqvist, 1978; Fritzson, 2015). Components and ports are

45 stored in software libraries. Usually, it is possible to develop new components. The multi-domain

46 modeling allows to use together of components which differ in the physical nature (mechanical,

47 hydraulic, electric, etc.). The component-oriented modeling can be based on causal modeling or

48 acausal modeling (Fritzson, 2015). In the first case, the component receives the signal x at the

49 input, performs a certain mathematical operation f(x) on it and returns the result y to the output.

50 In this case, the modeling is realized by imperative programming by assigning the value of the

51 expression f(x) to the variable y. In the second case, the signal of the connected components can

52 be transmitted in two directions. Such modeling is realized by declarative programming by

53 solving the equation y=f(x), where the unknown can be x or y. Here, the variables x and y are

54 some physical quantities, and the equation y=f(x) is the physical law that describes their

55 relationship. It allows us to simplify the creation of the model, to focus on the physical

56 formulation of the problem, but not on the algorithm for solving it. It is also possible to avoid

57 errors that are typical for imperative programming.

58 Most often, the behavior of these models is described by the system of differential equations,

59 which are solved by the finite difference method 4 numerical method based on the replacement

60 of differential operators by difference schemes. As a result, the system of differential equations is

61 replaced by the system of algebraic equations.

62 The solution of non-stationary problems by the finite difference method is the iterative process

63 4 at each iteration find the solution of the stationary problem for the given time point. Explicit

64 and implicit difference schemes are used for this purpose. Explicit schemes immediately find

65 unknown values, using information from previous iterations. Using of the implicit scheme

66 requires the solution of a difference equation because unknown values can be in the right and left

67 sides of the equation. The explicit Euler difference scheme is simple to implement, but it often

68 has numerical instability and low accuracy. To improve accuracy and stability it is desirable to

69 apply modified Euler methods, such as the Runge-Kutta method (Runge, 1895).
70

71 Statement of the problem

72 For the simulation of complex dynamic multi-domain systems such specialized modeling

73 languages are developed: Dymola (Elmqvist, 1978), APMonitor (Hedengren et al., 2014),

74 ASCEND (Piela, McKelvey & Westerberg, 1993), gPROMS (Barton & Pantelides, 1994),

75 Modelica (Fritzson & Engelson, 1998) , MKL, Modelyze (Broman, 2010). Among them,

76 Modelica is the most popular free language for component-oriented modeling of such systems.

77 Its main features: free, object-oriented, declarative, focused on hybrid (continuous and discrete)

78 component-oriented modeling of complex multi-domain physical systems, it supports the

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

79 construction of hierarchical models, adapted for visual programming, widely used for research in

80 various fields (Fritzson, 2015). Free Modelica Standard Library has about 1280 components.

81 There are free and commercial simulation environments in Modelica language 4

82 OpenModelica, JModelica.org, Wolfram SystemModeler, SimulationX, MapleSim, Dymola,

83 LMS Imagine.Lab AMESim.

84 As a rule, the limitations of such modeling languages are: limited applicability, poor

85 interoperability with the third party software packages, the high cost of learning, the complexity

86 of the modifications and improvements, the complexity of the implementation of hybrid

87 modeling and modeling variable structure systems where the structure and number of equations

88 can change at run-time (Fritzson, Broman & Cellier, 2008; Nikoli�, 2016). Some problems can

89 be solved by using interfaces to general-purpose languages (Akesson et al., 2010; Hedengren et

90 al., 2014). But it is usually more difficult to learn a new language than to learn a component or

91 library of a familiar programming language.

92 These problems are less common in modeling systems that are based on general-purpose

93 programming languages: GEKKO (Beal et al., 2018), Ariadne (Benvenuti et al., 2014), SimuPy

94 (Margolis, 2017), Sims.jl (Short, 2017), Modia.jl (Elmqvist, Henningsson & Otter, 2016),

95 PyDSTool (Clewley et al., 2007), DAE Tools (Nikoli�, 2016), Assimulo (Andersson, Führer &

96 Åkesson, 2015). The implementation of such systems can be simplified if the difference

97 equations are used to describe the model instead of differential equations. Many high-level

98 general-purpose languages are suitable for implementing component-based modeling because

99 they have convenient imperative and object-oriented constructions and allow declarative

100 programming. The advantages of modeling systems based on general-purpose programming

101 languages are described in detail in paper (Nikoli�, 2016). Python language (Van Rossum &

102 Drake, 1995) is a good choice mainly due to its features: multi-paradigm, object-oriented,

103 intuitive with code readability and improved programmer9s productivity, highly extensible,

104 portable, open source, large community and extensive libraries as mathematical libraries SymPy

105 and SciPy. SymPy is a Python library for symbolic mathematics (Meurer et al., 2017). SciPy is a

106 fundamental library for scientific computing (Jones et al., 2001).

107 The purpose of this work is to develop of the easy-to-understand and to modify component-

108 oriented acausal hybrid modeling system that is based on: (1) the use of general-purpose

109 programming language Python, (2) the description of components by Python classes, (3) the

110 description of components behavior by difference equations using declarative tools SymPy, (4)

111 the event generation using Python imperative constructs, (5) composing and solving a system of

112 algebraic equations in each discrete time point of the simulation. The principles of the system are

113 described using the example of the model of the sucker rod string that is used in the oil industry

114 to join together the surface and downhole components of a rod pumping system. Let9s take a

115 look the steel rod string, in which the length is 1500 m and sucker rod diameter is 19 mm. This

116 column will have a mass of 3402 kg, a weight in the liquid of 29204 N, a spring constant of

117 39694 N/m, a damping constant of 1856 N;s/m. Liquid weight above the pump with a diameter

118 of 38 mm will be 16688 N.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

119

120 Model in Modelica language

121 First, we will simulate the free vibrations of the string using the Modelica language. We will

122 develop the model of the simple mechanical translational oscillator, which consists of such

123 components as Mass, SpringDamper and Fixed (Fig. 1). Component SpringDamper is

124 designed to simulate the elastic-damper properties of the string. Component Mass simulates the

125 inertial properties of the string. Component Fixed simulates the fixed point at the top of the

126 string. The module code which describes this model is shown below (Listing S1). In order to

127 simplify the model, these classes differ slightly from the corresponding classes of the standard

128 Modelica library (Fritzson, 2015).

129

130 connector Flange // class-connector

131 Real s; // variable (positions at the flange are equal)

132 flow Real f; // variable (sum of forces at the flange is zero)

133 end Flange;

134

135 model Fixed // class-model

136 parameter Real s0=0; // parameter (constant in time)

137 Flange flange; // object of class Flange

138 equation // model equations

139 flange.s = s0;

140 end Fixed;

141

142 partial model Transl // class-model

143 Flange flange_a; // object of class Flange

144 Flange flange_b; // object of class Flange

145 end Transl;

146

147 model Mass // class-model

148 extends Transl; // inheritance of class Transl

149 parameter Real m(min=0, start=1); // parameter

150 Real s; // variable

151 Real v(start=0); // variable with initial condition

152 Real a(start=0); // variable with initial condition

153 equation // model equations

154 v = der(s);

155 a = der(v);

156 m*a = flange_a.f + flange_b.f;

157 flange_a.s = s;

158 flange_b.s = s;

159 end Mass;

160

161 model SpringDamper // class-model

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

162 extends Transl; // inheritance of class Transl

163 parameter Real c(final min=0, start=1); // parameter

164 parameter Real d(final min=0, start=1); // parameter

165 Real s_rel(start=0); // variable

166 Real v_rel(start=0); // variable

167 Real f; // variable

168 equation // model equations

169 f = c*s_rel+d*v_rel;

170 s_rel = flange_b.s - flange_a.s;

171 v_rel = der(s_rel);

172 flange_b.f = f;

173 flange_a.f = -f;

174 end SpringDamper;

175

176 model Oscillator // class-model

177 Mass mass1(s(start=-1), v(start=0), m=3402.0); // object with

178 initial conditions

179 SpringDamper spring1(c=39694.0, d=1856.0); // object

180 Fixed fixed1(s0=0); // object

181 equation // additional equations

182 // creates a system of equations (see Flange class)

183 connect(fixed1.flange, spring1.flange_a);

184 connect(spring1.flange_b, mass1.flange_a);

185 end Oscillator;

186

187 The Modelica language class describes the set of similar objects (components). The Flange

188 class describes the concept of a mechanical flange. Its real-type variable s corresponds to the

189 absolute position of the flange. Its value should be equal to the value of the variables s of the

190 other flanges connected to this flange. The real-type variable f corresponds to the force on the

191 flange. It is marked by the flow keyword, which means that the sum of all forces at the

192 connection point is equal to zero. The Fixed class describes the concept of a fixed component

193 with one flange, for example fixed1 (Fig. 1). It has the real-type variable s0, which

194 corresponds to the absolute position of the flange, and the object flange of the Flange class,

195 designed to connect this component to others. The variable s0 is marked by the parameter

196 keyword, which means that it can be changed only at the start of the simulation. After the

197 equation keyword, an equation describing the behavior of this component is declared 4 the

198 flange object position must be equal to the s0 value. The Transl class describes an abstract

199 component that has two flanges 4 flange_a and flange_b. It is the base class for

200 mechanical translational components with two flanges. The Mass class inherits the class

201 Transl and describes the sliding mass with inertia. The example of such component is mass1

202 (Fig. 1). The command extends Transl means inheriting members of the Transl class in

203 such a way that they become members of the Mass class. That is, the Mass components will

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

204 also have two flanges flange_a and flange_b. In addition, this class has the parameter m

205 (mass) and variables s (position), v (speed), a (acceleration). Expression start=0 is the

206 default initial condition. After equation keyword the system of the differential and algebraic

207 equations which describes behavior of this component is given. The keyword der means the

208 derivative with respect to time t (v=ds/dt, a=dv/dt).

209 The class SpringDamper inherits the class Transl and describes the linear 1D translational

210 spring and damper in parallel. The example of such component is springDamper1 (Fig. 1).

211 Class has the parameters c (spring constant), d (damping constant) and the variables s_rel

212 (relative position), v_rel (relative speed), f (force at flange_b). After equation keyword

213 the system of differential-algebraic equations of this component is given.

214 The Oscillator class describes spring-mass system (Fig. 1). It contains three components

215 mass1, spring1, fixed1, which are described by the classes Mass, SpringDamper and

216 Fixed, respectively. The values of parameters and initial conditions of these components are

217 shown in round brackets. The additional equations which are obtained from component

218 connections are given after equation keyword. So, for example

219 connect(fixed1.flange, spring1.flange_a) command connects the flanges of

220 the fixed1 and spring1 components and creates the additional system of equations:

221

222 fixed1.flange.s = spring1.flange_a.s;

223 fixed1.flange.f = -spring1.flange_a.f

224

225 The model code can be prepared using any text editor or the Modelica Development Tooling

226 (MDT) module (Pop et al., 2006) of the Eclipse development environment. Simulation of model

227 requires the OpenModelica environment (Fritzson et al., 2005). To start calculations enter this in

228 MDT console:

229

230 simulate(Oscillator, stopTime=10)

231

232 To plot the curve that describes the position of mass1 component with time enter the following into the

233 console:

234

235 plot(mass1.s)

236

237 Model in Python language

238 Description of components by Python-classes

239 Now we will develop the module pycodyn with similar components in Python (Listing S2). In

240 addition, we will develop the Force class for simulating the external forces acting on the string.

241 The behaviour of the components will be described by means of the difference equations. As a

242 result, the system of components connected by flanges will be described by the system of the

243 difference equations.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

244 First, we9ll import the sympy module and the standard mathematical module math. It is

245 important to distinguish the functions of these modules.

246

247 from sympy import *

248 import math

249

250 Create the global variable dt (time step).
251

252 dt=0.1

253

254 If you only need to obtain the system of equations in a symbolic form, then this variable must be

255 an instance of the Symbol class of the sympy module:
256

257 dt=Symbol('dt')

258

259 Translational1D is the basic class of mechanical 1D components that have translational

260 motion. The constructor function __init__ is called when an object of this class is created and

261 has two parameters 4 name of the component name and the dictionary of its attributes args.

262 For component attribute naming, we use the following notation. The symbols x, v, a, f at the

263 beginning of the name mean position, speed, acceleration and force, respectively. The symbol p

264 at the end of the name means the value at time t-dt. The numerical index at the end

265 corresponds to the flange number. To distinguish the variables of various components in the

266 system, each of them begins with the name of the component followed by the symbol "_". For

267 example, the name s1_x2p means the position of the second flange of the component s1 at

268 time t-dt. The constructor for each name-value pair of the dictionary args (except name and

269 self) creates SymPy variables. The symbolic variable of the Symbol class is created if its

270 value is not known. The numeric variable of the Number class is created if its value is known.

271 The self.eqs list contains the component equations, and the self.pins list contains the

272 component flanges. Each equation is created using SymPy class Eq. Each flange is described by

273 a dictionary whose keys are x, xp, f, and the values are the corresponding attributes of the

274 component (see Mass, SpringDamper, Force classes). The pinEqs function returns a list

275 of equations for the component flange that is connected to the flanges of the other components. It

276 has the parameter pindex 4 the index of the flange (for example 0), and the parameter pins

277 4 the list of flanges of the other components. Always the positions of the mechanical 1D

278 translational components on the flange are equal, and the sum of the forces on this flange is zero.

279 For example, if the flange 2 of the component s1 is connected to the flange 1 of the component

280 m1 then pinEqs function of the s1 component returns the list of equations[s1_x2==m1_x1,

281 s1_x2p==m1_x1p, s1_f2==-m1_f1].
282

283 class Translational1D(object):

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

284 def __init__(self, name, args):

285 self.name=name # component name

286 for k,v in args.iteritems(): # for each key-value pair

287 if k in ['name','self']: continue # except name and self

288 if v==None: # if value is None

289 # create symbolic variable with name name+'_'+k

290 self.__dict__[k]=Symbol(name+'_'+k)

291 elif type(v) in [float,Float]: # if value is float

292 self.__dict__[k]=Number(v) # create constant

293 self.eqs=[] # equations list

294 self.pins=[] # pins list

295

296 def pinEqs(self,pindex,pins):

297 eqs=[] # equation list of the flange

298 f=Number(0) # sum of forces on flanges of other components

299 for pin in pins: # for each flange of the other components

300 # add equations describing the equality on the flange:

301 # positions

302 eqs.append(Eq(self.pins[pindex]['x'], pin['x']))

303 # positions at time t-dt

304 eqs.append(Eq(self.pins[pindex]['xp'], pin['xp']))

305 f+=pin['f'] # add to the sum of forces

306 # equality to zero the sum of forces on the flange

307 eqs.append(Eq(self.pins[pindex]['f'], -f))

308 return eqs

309

310 The class Mass describes the mass concentrated at a point, which has translational motion. It

311 inherits Translational1D class. The constructor __init__ calls the constructor of the

312 base class Translational1D and send to it the parameters name and locals(). The latter

313 is a dictionary of local variables self, name, m, x, xp, v, vp, a, f1, f2. The behavior of this

314 component is described by a system of equations self.eqs. For example, for the component

315 m1:
316

317 [m1_m*m1_a == m1_f1+m1_f2, m1_a == (m1_v- m1_vp)/dt,

318 m1_v == (m1_x-m1_xp)/dt]

319

320 A list of additional equations can be generated for each component flange using the function

321 pinEqs described above. The first element of the self.pins list is the dictionary

322 dict(x=self.x, xp=self.xp, f=self.f1) which means that the positions x, xp on

323 the flange will be equal to the self.x, self.xp attributes of this component respectively,

324 and the force f on the flange will be equal to the self.f1 attribute. The same applies to the

325 second element of the list.

326

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

327 class Mass(Translational1D):

328 def __init__(self, name, m=1.0, x=None, xp=None, v=None, vp=None,

329 a=None, f1=None, f2=None):

330 # base class constructor call
331 Translational1D.__init__(self, name, locals())

332 # system of equations

333 self.eqs=[Eq(self.m*self.a, self.f1+self.f2),

334 Eq(self.a, (self.v-self.vp)/dt),

335 Eq(self.v, (self.x-self.xp)/dt)]

336 # two flanges

337 self.pins=[dict(x=self.x, xp=self.xp, f=self.f1),

338 dict(x=self.x, xp=self.xp, f=self.f2)]

339

340 The SpringDamper class describes the translational 1D spring and damper, which are

341 connected in parallel. It inherits Translational1D class. In addition to the attributes

342 described above, it has the following attributes: spring constant c, damping constant d, relative

343 velocity between flanges vrel. The behavior of this component is described by a system of

344 equations self.eqs. For example, for the component s1:

345

346 [s1_c*(s1_x2-s1_x1)+ s1_d*s1_vrel == s1_f2, -s1_f2 == s1_f1,

347 s1_vrel == (s1_x2-s1_x2p)/dt-(s1_x1-s1_x1p)/dt]

348

349 This component also has two flanges and it is possible to generate a list of additional equations

350 using the pinEqs function.

351

352 class SpringDamper(Translational1D):

353 def __init__(self, name, c=1.0, d=0.1, x1=None, x2=None, x1p=None,

354 x2p=None, vrel=None, f1=None, f2=None):

355 Translational1D.__init__(self, name, locals())

356 # system of equations

357 self.eqs=[Eq(self.c*(self.x2-self.x1)+self.d*self.vrel,

358 self.f2), Eq(-self.f2, self.f1), Eq(self.vrel, (self.x2-self.x2p)/dt-

359 (self.x1-self.x1p)/dt)]

360 # two flanges

361 self.pins=[dict(x=self.x1, xp=self.x1p, f=self.f1),

362 dict(x=self.x2, xp=self.x2p, f=self.f2)]

363

364 The Force class describes a 1D force whose application point has translational motion. The

365 value of the force f can be constant or variable. It inherits Translational1D class and has

366 one flange.

367

368 class Force(Translational1D):

369 def __init__(self,name,f=None,x=None,xp=None):

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

370 Translational1D.__init__(self, name, locals())

371 self.pins=[dict(x=self.x, xp=self.xp, f=-self.f)] # one flange

372

373 The class System describes the system of components connected by flanges. The constructor

374 __init__ gets two parameters 4 the list of components els and the list of additional

375 equations eqs, which usually are created using pinEqs functions. The system components are

376 stored in the self.els list and the self.elsd dictionary. The list self.eqs contains all

377 system equations and is created by joining the equations of all components with additional

378 equations eqs.

379 The function of this class solve solves a stationary problem. It returns the solution of a system

380 of equations with conditions ics 4 a dictionary with known values of variables. To solve a

381 system of equations, it can use the SymPy solve function, but its algorithm is very slow. It is

382 possible to use fast algorithms for solving equations, for example, the function

383 scipy.optimize.root from the SciPy library, which supports many effective methods for

384 solving systems of equations. In this case, the call of the SymPy function solve(eqs) must be

385 replaced with the call of the function self.solveN(eqs), which adapts the system of

386 equations for SciPy and solves it using scipy.optimize.root.

387 The function solveDyn solves a non-stationary problem. It receives three parameters 4 the

388 dictionary with initial conditions d, the final time value timeEnd and the function fnBC that

389 returns the dictionary to update the boundary conditions. First, the time variable t is assigned an

390 initial value. In the while loop with the condition t<timeEnd, the following instructions are

391 executed: the positions and velocities of the components in the previous steps xp, x1p, x2p, vp

392 are assigned the values of the initial conditions d, the values of the boundary conditions are

393 updated, the system of equations is solved by calling the solve function, solutions are assigned

394 to the dictionary d, the results are saved, the time value increases by dt. After the loop is

395 completed, the function returns the results as T and Res lists. These results can be represented in

396 the form of plots using the matplotlib library.

397

398 class System(object):

399 def __init__(self, els, eqs):

400 self.els=els # components list

401 self.elsd=dict([(e.name,e) for e in els]) # same, but dict.

402 self.eqs=[] # list of system equations

403 for e in self.els: # for each component

404 self.eqs+=e.eqs # join with component equations

405 self.eqs=self.eqs+eqs # join with additional equations

406

407 def solveN(self, eqs): # solves the static problem
408 # code is not shown here

409

410 def solve(self, ics): # solves the dynamic problem

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

411 eqs=[e.subs(ics) for e in self.eqs] # substitution of ics

412 # discard all degenerate equations

413 eqs=[e for e in eqs if e not in (True,False)]

414 # solve the system of equations by:

415 #sol=solve(eqs) # SymPy (slow)

416 sol=self.solveN(eqs) # SciPy (faster)

417 sol.update(ics) # update dictionary by dictionary ics

418 return sol

419

420 def solveDyn(self, d, timeEnd, fnBC):

421 t=0.0 # time variable

422 T=[] # list of time values

423 Res=[] # list of results

424 ics={} # dictionary with values of variables

425 while t<timeEnd: # while t < final time value

426 for e in self.els: # for each component

427 # save positions and velocities

428 if 'x' in e.__dict__:

429 ics.update({e.xp:d[e.x]})

430 if 'x1' in e.__dict__:

431 ics.update({e.x1p:d[e.x1]})

432 if 'x2' in e.__dict__:

433 ics.update({e.x2p:d[e.x2]})

434 if 'v' in e.__dict__:

435 ics.update({e.vp:d[e.v]})

436 ics.update(fnBC(self.elsd, d, t)) # update BC

437 d=self.solve(ics) # solve the problem

438 print t

439 T.append(t)

440 Res.append(d) # save results

441 t+=dt # increase time value

442 #if some_condition: # changing the system structure

443 # self.__init__(new_els, new_eqs)

444 return T,Res

445

446 You can easily implement modeling of variable structure systems by overriding the solveDyn

447 method and calling in it the constructor of the System class with new values of arguments els,

448 eqs. Usually this call should occur after a certain condition.

449

450 Simulation of free vibrations of the sucker rod string

451 Let's perform the simulation of free vibrations of the sucker rod string (Fig. 1). In the separate

452 module (Listing S3) we will create the components: spring-damper s1 and mass m1. In round

453 brackets there are the values of the attributes 4 the name and the known parameters values.

454

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

455 from pycodyn import *

456 s1=SpringDamper(name='s1', c=39694.0, d=1856.0)

457 m1=Mass(name='m1',m=3402.0)

458

459 Create the list of additional equations, formed by connecting the flanges of the components.

460 Then create the object of the component system.
461

462 peqs=s1.pinEqs(1,[m1.pins[0]])

463 s=System(els=[s1,m1], eqs=peqs)

464

465 A list of the model equations can be printed using the command print s.eqs. To obtain

466 equations only in the symbolic form, the numerical values of the constructors parameters c, d, m

467 should be replaced by None:

468

469 [s1_c*(-s1_x1 + s1_x2) + s1_d*s1_vrel == s1_f2,

470 -s1_f2 == s1_f1,

471 s1_vrel == -(s1_x1 - s1_x1p)/dt + (s1_x2 - s1_x2p)/dt,

472 m1_a*m1_m == m1_f1 + m1_f2,

473 m1_a == (m1_v - m1_vp)/dt,

474 m1_v == (m1_x - m1_xp)/dt,

475 s1_x2 == m1_x, s1_x2p == m1_xp, s1_f2 == -m1_f1]

476

477 Let's solve the static problem 4 the column is stretched by 1 m.
478

479 ics={m1.x:-1.0,m1.v:0.0,m1.a:0.0,s1.x1:0.0,s1.x1p:0.0,m1.vp:0.0}

480 d=s.solve(ics)

481

482 The boundary conditions depend on the type of the problem. If this is the problem of free

483 oscillations, then the position of the string top point elsd['s1'].x1 and the force on the

484 plunger elsd['m1'].f2 are zero. Create the function to update the boundary conditions at

485 time t for the elsd components. Then solve the dynamic problem 4 free vibrations of the

486 string.

487

488 def fnBC(elsd, d, t):

489 return {elsd['s1'].x1:0.0, elsd['s1'].x1p:0.0, elsd['m1'].f2:0.0}

490 T,R=s.solveDyn(d, timeEnd=10, fnBC=fnBC)

491

492 The comparison of oscillator simulation results for Python and Modelica is shown in Fig. 2. The

493 differences are explained by the use of unequal difference schemes in the Python model and the

494 Modelica solver. It is possible to improve the results in the Python model by using the more

495 accurate but more complex difference schemes. For example, if the trapezoidal rule is used

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

496 (Listing S4, Listing S5), the second equation for the Mass should be

497 Eq((self.a+self.ap)/2, (self.v-self.vp)/dt).

498

499 Simulation of the pumping process by the two-section string

500 Now in the new module (Listing S6) we will create the model of the sucker rod string, which

501 contains two sections. The model of each section consists of three 1D mechanical translational

502 components: SpringDamper, Mass and Force (Fig. 3). The SpringDamper component is

503 designed to simulate the elastic-damper properties of the string section, the Mass component

504 simulates the inertial properties of the section, and the Force component simulates the section

505 weight in the fluid and other external forces acting on the section.

506 Assign values to the variable of sections weights fs and the variable of liquid weight above the

507 plunger fr.

508

509 from pycodyn import *

510 fs=(-14602.0, -14602.0)

511 fr=-16688.0

512

513 Let's create the components: the spring-damper of the first section s1, the mass of the first

514 section m1, the weight of the first section f1, the spring-damper of the second section s2, the

515 mass of the second section m2, the weight of the second section with the weight of the liquid f2.

516

517 s1=SpringDamper(name='s1', c=79388.0, d=3712.0)

518 m1=Mass(name='m1',m=1701.0)

519 f1=Force(name='f1', f=fs[0])

520 s2=SpringDamper(name='s2', c=79388.0, d=3712.0)

521 m2=Mass(name='m2', m=1701.0)

522 f2=Force(name='f2', f=fs[1]+fr)

523

524 Form the list of the additional equations of the string model, formed by connecting of the

525 components flanges. And create the object of the component system (string model).

526

527 peqs=s1.pinEqs(1,[m1.pins[0]])

528 peqs+=m1.pinEqs(1,[s2.pins[0],f1.pins[0]])

529 peqs+=s2.pinEqs(1,[m2.pins[0]])

530 peqs+=m2.pinEqs(1,[f2.pins[0]])

531 s=System(els=[s1,m1,s2,m2,f1,f2], eqs=peqs)

532

533 The complete list of equations for this system s.eqs in the SymPy format:
534

535 [s1_c*(-s1_x1 + s1_x2) + s1_d*s1_vrel == s1_f2,

536 -s1_f2 == s1_f1,

537 s1_vrel == -(s1_x1 - s1_x1p)/dt + (s1_x2 - s1_x2p)/dt,

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

538 m1_a*m1_m == m1_f1 + m1_f2,

539 m1_a == (m1_v - m1_vp)/dt,

540 m1_v == (m1_x - m1_xp)/dt,

541 s2_c*(-s2_x1 + s2_x2) + s2_d*s2_vrel == s2_f2,

542 -s2_f2 == s2_f1,

543 s2_vrel == -(s2_x1 - s2_x1p)/dt + (s2_x2 - s2_x2p)/dt,

544 m2_a*m2_m == m2_f1 + m2_f2,

545 m2_a == (m2_v - m2_vp)/dt,

546 m2_v == (m2_x - m2_xp)/dt,

547 s1_x2 == m1_x, s1_x2p == m1_xp,

548 s1_f2 == -m1_f1, m1_x == s2_x1,

549 m1_xp == s2_x1p, m1_x == f1_x,

550 m1_xp == f1_xp, m1_f2 == f1_f - s2_f1,

551 s2_x2 == m2_x, s2_x2p == m2_xp,

552 s2_f2 == -m2_f1, m2_x == f2_x,

553 m2_xp == f2_xp, m2_f2 == f2_f]

554

555 Let's solve the static problem 4 the string under the maximum static loads.

556

557 ics={m1.v:0.0, m1.a:0.0, m2.v:0.0, m2.a:0.0}

558 ics.update({s1.x1:0.0, s1.x1p:0.0})

559 d=s.solve(ics)

560

561 Dictionary d contains the results. To display the position value for the bottom point of the

562 second section, enter the command print d[m2.x]. We get the result -0.972. This is the

563 elongation value of the string under maximum load. Let's solve the dynamic problem 4 the

564 upper point has a harmonic motion. The stroke length of the upper point is 3 m, the number of

565 double strokes per minute is 6.5. The motion function describes the harmonic motion of the

566 upper point and returns its position at time t.

567

568 def motion(t):

569 A=3.0/2 # amplitude

570 n=6.5/60 # frequency

571 return A*math.sin(2*math.pi*n*t) # position

572

573 The force function returns the value of the force on the pump plunger F, depending on the

574 value of its speed v. If the speed is less than zero (downstroke of the string), the function returns

575 the weight value of the second section. Otherwise, the function returns the sum of the second

576 section weight and the liquid weight above the plunger. This function should be smoothed when

577 the sign of the velocity changes, for example, using the hyperbolic tangent function

578 math.tanh.

579

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

580 def force(v):

581 F=fs[1] # weight of the second section

582 if v>0: # if upperstroke

583 F+=fr # increase the force by value of the fluid weight

584 return F*math.tanh(abs(v)/0.01) # smoothing near the point v=0

585

586 Create the function to update the boundary conditions at time t for elsd components. Here d is

587 the dictionary of the results calculated in the previous step. Then solve the problem.

588

589 def fnBC(elsd, d, t):

590 return {elsd['s1'].x1:motion(t), elsd['f2'].f:force(d[m2.v])}

591 T,R=s.solveDyn(d, timeEnd=2*60/6.5, fnBC=fnBC)

592

593 The results (Fig. 4) correspond to practical dynamometer cards obtained on real wells. The

594 simulation of the variable structure system (the breakage of the sucker rod string) is implemented

595 in Listing S7. This is done by overriding the solveDyn method. The simulation results are

596 shown in Fig. 5.

597

598 Conclusions

599 The Python-classes that allow creating the models in Python without the need to study and apply

600 specialized modeling languages are developed. These classes can also be used to automate the

601 construction of the system of difference equations, describing the behavior of the model, in a

602 symbolic form. To fully describe the behavior of the model, these equations must be

603 supplemented with initial and boundary conditions, which are described by certain functions

604 (motion, force, fnBC). These functions may contain any imperative code and it simplifies

605 integration with the third party software packages. Composing and solving the system of

606 algebraic equations at each discrete time point of the simulation using SymPy and SciPy is quite

607 slow, but it makes easier to implement variable structure systems modeling. For example, by

608 changing the values of system attributes in the solveDyn function. The replacement of

609 differential equations by difference equations allows simplifying the implementation of the

610 hybrid modeling and the requirements for the modules for symbolic mathematics and for solving

611 equations. However, the problem in the form of difference equations is usually more difficult to

612 formulate. In the future it is planned to extend the set of the components, optimize the algorithm

613 for solving equations and develop support for hierarchical models and the tools for building

614 models using block diagrams. The source code is available on the GitHub

615 (https://github.com/vkopey/pycodyn).

616

617 References

618 Åkesson J, Årzén K-E, Gäfvert M, Bergdahl T, Tummescheit H. 2010. Modeling and

619 Optimization with Optimica and JModelica.org4Languages and Tools for Solving Large-Scale

620 Dynamic Optimization Problems. Computers and Chemical Engineering, 34(11): 1737-1749

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

621 DOI: 10.1016/j.compchemeng.2009.11.011

622 Andersson C, Führer C, Åkesson J. 2015. Assimulo: A unified framework for ODE solvers.

623 Mathematics and Computers in Simulation 116:26-43 DOI: 10.1016/j.matcom.2015.04.007.

624 Barton PI, Pantelides CC. 1993. gPROMS3a combined discrete/continuous modelling

625 environment for chemical processing systems. Simulation Series 25:25-34

626 Beal LDR, Hill D, Martin RA, Hedengren JD. 2018. GEKKO Optimization Suite. Processes

627 6(8) DOI: 10.3390/pr6080106.

628 Benvenuti L, Bresolin D, Collins P, Ferrari A, Geretti L, Villa T. 2014. Assume3guarantee

629 verification of nonlinear hybrid systems with)Ariadne. Int. J. Robust Nonlinear Control 24:699-

630 724 DOI: 10.1002/rnc.2914

631 Broman D. 2010. Meta-Languages and Semantics for Equation-Based Modeling and

632 Simulation. PhD thesis, Thesis No 1333. Department of Computer and Information Science,

633 Linköping University, Sweden.

634 Clewley RH, Sherwood WE, LaMar MD, Guckenheimer JM. 2007. PyDSTool, a software

635 environment for dynamical systems modeling. Available at http://pydstool.sourceforge.net

636 (accessed 16 March 2019).

637 Elmqvist H. 1978. A Structured Model Language for Large Continuous Systems. Department of

638 Automatic Control, Lund Institute of Technology (LTH).

639 Elmqvist H, Henningsson T, Otter M. 2016. Systems Modeling and Programming in a Unified

640 Environment Based on Julia. In: Margaria T., Steffen B. (eds) Leveraging Applications of

641 Formal Methods, Verification and Validation: Discussion, Dissemination, Applications. ISoLA

642 2016. Lecture Notes in Computer Science 9953. Cham: Springer DOI: 10.1007/978-3-319-

643 47169-3_15

644 Fritzson P, Engelson V. 1998. Modelica4a unified object-oriented language for system

645 modeling and simulation. In: Jul E, ed. ECOOP9984Object-Oriented Programming. Lecture

646 Notes in Computer Science 1445:67-90, Berlin Heidelberg: Springer.

647 Fritzson P, Aronsson P, Lundvall H, Nyström K, Pop A, Saldamli L, Broman D. 2005. The

648 OpenModelica modeling, simulation, and development environment. In: 46th Conference on

649 Simulation and Modelling of the Scandinavian Simulation Society (SIMS2005), Trondheim,

650 Norway, October 13-14, 2005.

651 Fritzson P., Broman D., Cellier F. 2009. Equation-Based Object-Oriented Languages and

652 Tools. In: Eugster P, ed. Object-Oriented Technology. ECOOP 2008 Workshop Reader. ECOOP

653 2008. Lecture Notes in Computer Science 5475. Berlin, Heidelberg: Springer, 18-29 DOI:

654 10.1007/978-3-642-02047-6_3.

655 Fritzson PA. 2015. Principles of Object Oriented Modeling and Simulation with Modelica 3.3:

656 A Cyber-Physical Approach. 2nd edition. Wiley-IEEE Press.

657 Hedengren JD, Shishavan RA, Powell KM, Edgar TF. 2014. Nonlinear modeling, estimation

658 and predictive control in APMonitor. Computers and Chemical Engineering. 70:133-148 DOI:

659 10.1016/j.compchemeng.2014.04.013.

660 Jones E, Oliphant E, Peterson P, et al. 2001. SciPy: Open Source Scientific Tools for Python.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

661 Available at http://www.scipy.org (accessed 16 March 2019).

662 Margolis B. 2017. SimuPy: A Python framework for modeling and simulating dynamical

663 systems. The Journal of Open Source Software 2(17):396 DOI: 10.21105/joss.00396.

664 Meurer A, Smith CP, Paprocki M, ertík O, Kirpichev SB, Rocklin M, Kumar A, Ivanov
665 S, Moore JK, Singh S, Rathnayake T, Vig S, Granger BE, Muller RP, Bonazzi F, Gupta H,
666 Vats S, Johansson F, Pedregosa F, Curry MJ, Terrel AR, Rouka a, Saboo A, Fernando I,
667 Kulal S, Cimrman R, Scopatz A. 2017. SymPy: symbolic computing in Python. PeerJ

668 Computer Science 3:e103 DOI: 10.7717/peerj-cs.103.

669 Nikoli� DD. 2016. DAE Tools: equation-based object-oriented modelling, simulation and

670 optimisation software. PeerJ Computer Science 2:e54 DOI: 10.7717/peerj-cs.54

671 Piela P., McKelvey R., Westerberg A. 1993. An Introduction to the ASCEND Modeling

672 System: Its Language and Interactive Environment. Journal of Management Information

673 Systems. 9:91-122 DOI: 10.1080/07421222.1992.11517969.

674 Pop A, Fritzson P, Remar A, Jagudin E, Akhvlediani D. 2006. OpenModelica Development

675 Environment with Eclipse Integration for Browsing, Modeling, and Debugging. In: Kral C and

676 Haumer A, ed. Proceedings of the 5th International Modelica Conference, Vienna, Austria,

677 September 2006.

678 Runge C. 1895. Math. Ann. 46:167 DOI: 10.1007/BF01446807.

679 Short T. 2017. Equation-based modeling and simulations in Julia. Available at

680 https://github.com/tshort/Sims.jl (accessed 16 March 2019).

681 Van Rossum G, Drake JrFL. 1995. Python reference manual. Amsterdam: Centrum voor

682 Wiskunde en Informatica.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Figure 1(on next page)

Block diagram of the oscillator model.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

fixed1

spring1
mass1

flange flange_a flange_b flange_a flange_b

fixed1

spring1
mass1

flange flange_a flange_b flange_a flange_b

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Figure 2(on next page)

Plunger position (x) during free oscillation of the string.

() Euler method with time step dt=0.1 s; (5) Euler method with time step dt=0.01 s; (---)
Trapezoidal rule with time step dt=0.1 s; (....) Runge3Kutta method, order 4 (Modelica-
model).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

-1

-0,8

-0,6

-0,4

-0,2

0

0,2

0,4

0,6

0,8

1

0 1 2

x, m

t, s

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Figure 3(on next page)

Block diagram of the model with two sections.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

s2
m2

f2

s1
m1

f1

s2
m2

f2

s1
m1

f1

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Figure 4(on next page)

Simulation results 3 the wellhead (at the top) and plunger (at the bottom) dynamometer
cards.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5
x, m

10

0

10

20

30

40

50

f,
kN

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Figure 5(on next page)

The simulation of the breakage of the sucker rod string (wellhead dynamometer card).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

1.5 1.0 0.5 0.0 0.5 1.0 1.5
x, m

10

20

30

40

50

f,
kN

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27612v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

