
How systematic reviews cover practitioners' issues: A study
on Stack Exchange communities
Bruno Cartaxo 1 , Gustavo Pinto Corresp., 2 , Fernando Kamei 3, 4 , Danilo Monteiro 3 , Fabio Queda 3 , Sergio Soares 3

1 Instituto Federal de Pernambuco, Recife, Brazil
2 Universidade Federal do Pará, Belém, Brazil
3 Universidade Federal de Pernambuco, Recife, Brazil
4 Instituto Federal de Alagoas, Maceió, Brazil

Corresponding Author: Gustavo Pinto
Email address: gpinto@ufpa.br

Context: One of the goals of Evidence-Based Software Engineering is to leverage evidence from
research to practice. However, some studies suggest this goal has not being fully accomplished.

Objective: This paper proposes a strategy to assess how systematic reviews cover practitioners' issues
in software engineering.

Method: We selected 24 systematic reviews identified by a comprehensive tertiary study. Using search
strings of the selected systematic reviews, we queried most relevant practitioners' issues on five active
Stack Exchange communities, a professional and high-quality Question & Answer platform. After
examining more than 1,800 issues, we investigated how findings of the selected systematic reviews
could help to solve (i.e. cover) practitioners' issues.

Results: After excluding false positives and duplicates, a total of 424 issues were considered related to
the selected systematic reviews. This number corresponds to 1.75% of the 26,687 most relevant issues
on the five Stack Exchange communities. Among these 424 issues, systematic reviews can successfully
cover 14.1% (60) of them. Based on a qualitative analysis, we identified 45 recurrent issues spread in
many software engineering areas. The most demanded topic is related to agile software development,
with 15 recurrent issues identified and 127 practitioners' issues as a whole.

Conclusions: An overall coverage rate of 14.1% reveals a good opportunity for conducting systematic
reviews in software engineering to fill the gap of not covered issues. We also observed practitioners
explicitly demanding for scientific empirical evidence, rich in context and oriented to specific target
audiences. Finally, we also provided guidelines for researchers who want to conduct systematic reviews
more connected with software engineering practice.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

How Systematic Reviews Cover1

Practitioners’ Issues: A Study on Stack2

Exchange Communities3

Bruno Cartaxo1, Gustavo Pinto2, Fernando Kamei3,4, Danilo Ribeiro3,4

Fabio Q. B. da Silva3, and Sérgio Soares3
5

1Federal Institute of Pernambuco, Brazil6

2Federal University of Pará, Brazil7

3Federal University of Pernambuco, Brazil8

4Federal Institute of Alagoas, Brazil9

Corresponding author:10

Gustavo Pinto1
11

Email address: gpinto@ufpa.br12

ABSTRACT13

Context: One of the goals of Evidence-Based Software Engineering is to leverage evidence from

research to practice. However, some studies suggest this goal has not being fully accomplished.

Objective: This paper proposes a strategy to assess how systematic reviews cover practitioners’ issues

in software engineering.

Method: We selected 24 systematic reviews identified by a comprehensive tertiary study. Using search

strings of the selected systematic reviews, we queried most relevant practitioners’ issues on five active

Stack Exchange communities, a professional and high-quality Question & Answer platform. After

examining more than 1,800 issues, we investigated how findings of the selected systematic reviews could

help to solve (i.e. cover) practitioners’ issues.

Results: After excluding false positives and duplicates, a total of 424 issues were considered related to

the selected systematic reviews. This number corresponds to 1.75% of the 26,687 most relevant issues

on the five Stack Exchange communities. Among these 424 issues, systematic reviews can successfully

cover 14.1% (60) of them. Based on a qualitative analysis, we identified 45 recurrent issues spread in

many software engineering areas. The most demanded topic is related to agile software development,

with 15 recurrent issues identified and 127 practitioners’ issues as a whole.

Conclusions: An overall coverage rate of 14.1% reveals a good opportunity for conducting systematic

reviews in software engineering to fill the gap of not covered issues. We also observed practitioners

explicitly demanding for scientific empirical evidence, rich in context and oriented to specific target

audiences. Finally, we also provided guidelines for researchers who want to conduct systematic reviews

more connected with software engineering practice.

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

INTRODUCTION34

Evidence-Based Practice (EBP) aims at investigating the best available research evidence in a given35

domain of expertise and integrating them to practice (74). The medicine field was the first to introduce36

EBP, and due to its benefits, it was adopted in fields such as psychology (10), nursing (36), crime37

prevention (40), social work (103), and education (33). In 2004, Kitchenham et al. (66) acknowledged38

the importance of EBP and suggested that Software Engineering (SE) community ought to adopt it.39

According to Kitchenham et al. (66), EBSE’s goal is:40

“to provide the means by which current best evidence from research can be integrated with practical41

experience and human values in the decision-making process regarding the development and maintenance42

of software.”43

After more than a decade of contributions, Evidence-Based Software Engineering (EBSE) is now a44

solid research field, with new studies being conducted on a regular basis (30). However, despite its clear45

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

evolution, there are studies suggesting its stated goal was not fully accomplished (44; 88; 30). Hassler et46

al. (44) identified the lack of connection with industry as the sixth top barrier to SRs, from a total of47

37 barriers listed by EBSE researchers. Santos et al. (88) conducted a survey with 44 authors of 12048

systematic reviews and only six of them affirmed they had a direct impact on industrial practice. Da49

Silva et al. (30) conducted a tertiary study that identified only 32 out of 120 systematic reviews providing50

guidelines to practitioners. These studies suggest the full potential of EBSE was not entirely unlocked.51

A critical step for EBSE achieving its goal is to understand to what extent the current EBSE research52

in general, and systematic reviews (SRs) in particular, covers issues practitioners face (18). We believe it53

is important to focus on systematic reviews since there are results suggesting that evidence from SRs is54

one of the most appropriate kinds of knowledge to be transferred to practice, whereas individual studies55

can often lead to contradictory conclusions (67). Starting from this premise, the research question this56

paper aims to answer is:57

RQ. How systematic reviews cover software engineering practitioners’ issues?58

Regarding the research question, the following definitions are crucial:59

• By Systematic Review (SR) we mean any kind of secondary study, such as systematic mappings,60

meta-analyses, and the traditional systematic literature reviews (62).61

• By coverage we mean when at least one SR finding offers knowledge that helps to solve a practical62

issue. Nevertheless, it is important to highlight we are not suggesting SRs should provide definitive63

evidence to solve practitioners’ issues. Instead, as Booth et al. (20) discussed, we believe research64

evidence can help practitioners during decision-making, ultimately helping them to solve a practical65

issue.66

• By practitioner’s issue we mean, a question asked on one of the Stack Exchange communi-67

ties related to SE. Generally speaking, questions in Stack Exchange are composed of a title —68

summarizing the question — and a body — introducing further details.69

Stack Exchange is a platform with over 100 high-quality, professional Question & Answer (Q&A)70

communities. It covers topics as diverse as Mathematics, Home Improvement, Statistics, and English71

Language. Software development, which is a knowledge intensive activity that requires a constant72

learning process (87), is particularly well-supported. Stack Overflow is certainly the most well-known73

Stack Exchange community, which focuses on technical coding issues. However, there are many other74

communities focused on different areas of SE such as software testing, quality, reverse engineering, project75

management, and others. The following two snippets illustrate questions asked in these communities:76

• [...] How to facilitate communication and peer reviews on a distributed scrum team?”77

• [...] Pair programming when driver and observer have different skill level and experience [... this]78

strategy still work [...] if they have a very different programming skill level? If one never experience79

in the problem domain while another have? Is it still OK if they have low programming skill level?”80

Q&A websites empowered software engineers to increase the pace of learning, allowing them to be81

more productive, more effective, and more fulfilled (70; 94). The SE community has long recognized the82

importance of these websites, and produced contributions related to both social aspects (e.g., personality83

traits (14), and gender (98)) and technical aspects (e.g., documentation (79) and debugging (27)) of84

software engineering.85

In this context, to provide answers to this important but neglected question, we use a coverage method86

proposed in a previous study (25). This method consists of matching the findings of SRs with SE related87

questions posted on Q&A websites. Although the previous study focused on a small set of four SRs, in88

this study, we greatly expanded the scope to 24 SRs previously identified by the tertiary study of Da Silva89

et al. (30) (which is based on two other tertiary studies (64; 65)). This tertiaty study is the most recent and90

comprehensive tertiary study focusing on the broad area of SE. The selected SRs vary from several topics,91

such as agile methods (38), usability evaluation (52), and knowledge management (19). Although other92

tertiary studies were published in the last few years, they are not broad in scope, as we carefully discuss93

in the end of the paper.94

This paper presents the following contributions:95

2/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

• A strategy to analyze how systematic reviews cover practitioners’ issues.96

• An empirical study covering more than 1,800 issues asked in five active and popular Q&A commu-97

nities.98

• Practical guidelines on how to improve systematic reviews to increase coverage of practitioners’99

issues;100

• A reusable dataset related to the analysis presented in this paper (available at http://bit.ly/101

2lONdj2).102

METHOD103

In this section, we present the steps required to conduct this research, as depicted in Figure 1. The numbers104

denote each step order. Looking to major activities (gray regions), we started by selecting systematic105

reviews. Then we extracted the search string of these SRs. In parallel, we selected Stack Exchange106

communities related to SE. After that, we used the extracted search strings to find practitioners’ issues at107

the selected Stack Exchange communities. We then excluded false positives issues. Finally, we conducted108

a coverage analysis, matching each practitioner’s issue with SRs evidence to calculate coverage rate, and109

we also identified recurrent issues.110

Figure 1. Research steps.

Systematic Reviews Selection111

We relied on Da Silva et al.’s study (30), which is based on two other tertiary studies ((64; 65)), to select112

our initial group of systematic reviews. Details about why we did not use other recent tertiary studies are113

explained next. Our initial set is composed of 120 systematic reviews. However, we excluded SRs that:114

3/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

• Do not present guidelines to practitioners, removing 88 SRs;115

• Do not report their search strings, removing more 8 SRs.116

Guidelines to practitioners are important because the lack of them might leave practitioners with117

no concrete actionable items, which should be avoided when the intention is providing evidence to118

practice (67). Otherwise, practitioners under time pressure have little chance to read and search immediate119

implications on often extensive SRs. Additionally, search strings are important for this study since we120

need them to search for practitioners’ issues on Stack Exchange communities.121

We classified each SR according to the 15 Software Engineering Areas defined in SWEBOK (21). It122

is necessary to define whether practitioners’ issues are indeed related to the same SRs’ SE area or are123

false positives. Table 1 presents the 24 selected systematic reviews and their respective SE areas.124

Table 1. Selected systematic reviews.

CODE TITLE SE AREA

SR1 (63) A systematic review of cross- vs. within- company cost estimation studies Software Engineering Management

SR2 (86) A systematic review of software maintainability prediction and metrics Software Maintenance
SR3 (52) A systematic review of usability evaluation in web development Software Design

SR4 (102) A systematic literature review to identify and classify software requirement errors Software Requirements

SR5 (45) Automated acceptance testing: A literature review and an industrial case study Software Testing

SR6 (55) Challenges and improvements in distributed software development: A systematic review Software Engineering Management

SR7 (61)
Critical Barriers for Offshore Software Development Outsourcing Vendors: A Systematic
Literature Review

Software Engineering Economics

SR8 (60)
Critical success factors for offshore software development outsourcing vendors: A sys-
tematic literature review

Software Engineering Economics

SR9 (75)
Definitions and approaches to model quality in model-based software development – a
review of literature

Software Quality

SR10 (34)
Effectiveness of requirements elicitation techniques: Empirical results derived from a
systematic review

Software Requirements

SR11 (38) Empirical studies of agile software development: A systematic review
Software Engineering Models and
Methods

SR12 (56) Evidence-based guidelines for assessment of software development cost uncertainty Software Engineering Management

SR13 (93)
Factors influencing software development productivity-state-of-the-art and industrial ex-
periences

Software Engineering Economics

SR14 (57)
Forecasting of software development work effort: Evidence on expert judgement and
formal models

Software Engineering Management

SR15 (49) Harmfulness of code duplication: A structured review of the evidence Software Construction

SR16 (19)
Knowledge management in software engineering: A systematic review of studied con-
cepts, findings and research methods used

Software Engineering Professional
Practice

SR17 (35) Model-based testing approaches selection for software projects Software Testing

SR18 (77)
On the generation of requirements specifications from software engineering models: A
systematic literature review

Software Requirements

SR19 (69)
Risks and safeguards for the requirements engineering process in global software devel-
opment

Software Engineering Management

SR20 (80)
Software process improvement in small and medium software enterprises: A systematic
review

Software Engineering Process

SR21 (53)
Technology transfer decision support in requirements engineering research: a systematic
review of rej

Software Requirements

SR22 (43) The effectiveness of pair programming: A meta-analysis
Software Engineering Models and
Methods

SR23 (58) Towards a defect prevention based process improvement approach Software Quality

SR24 (50) Using scrum in global software development: A systematic literature review
Software Engineering Models and
Methods

Search Strings Extraction125

After selecting the 32 systematic reviews that presented guidelines to practitioners, we extracted their126

search strings to search for practitioners’ issues on Stack Exchange communities. As previously mentioned,127

eight of those SRs were excluded because they do not present search strings, resulting in 24 selected SRs.128

We are aware that some SRs might employ manual search (e.g., snowballing (104)), which does not need129

search strings. However, we found that seven out of the eight systematic reviews without search strings130

explicitly declared they used search engines. The remaining one did not clearly explain its search strategy.131

Still, we found that nine out of the 24 selected SRs did not present their search strings properly. For132

instance, some studies present only a list of search terms but do not mention which logical operator (AND133

or OR) they used to connect each term. Others connected terms with ambiguous operators. For example,134

the string “quality + model”, “quality + model driven”, “model driven + experience” used “+” (plus)135

and “,” (comma), which we considered as OR and AND, respectively. Another study used the operator136

“WITH”, for instance, (software AND ((cost OR effort OR productivity) WITH (factors OR indicators OR137

drivers OR measure))), which we considered as AND.138

4/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Stack Exchange Communities Selection139

In this step, we selected Stack Exchange communities to search for practitioners’ issues. We restricted140

our search to communities related to at least one of the 15 SWEBOK’s SE areas (21). To establish the141

relationship, we compared the official communities’ descriptions with each software engineering area.142

For this study, we selected five Stack Exchange communities from more than 160 active communities1.143

Table 2 shows the relationship between the five selected Stack Exchange communities and the software144

engineering areas.145

Table 2. Selected Stack Exchange communities.

COMMUNITY
COMMUNITY DE-

SCRIPTION
SE AREAS

Programmers (PROG) (PRO)

Q&A for professional programmers

who are interested in getting expert an-

swers on conceptual questions about

software development

Software Design

Software Construction

Project Management (PM) (PMS) Q&A for project managers Software Management

Quality Assurance & Testing (SQA) (SQA)
Q&A for software quality control ex-

perts, automation engineers, and soft-

ware testers

Software Testing

Software Quality

Reverse Engineering (RE) (RES)

Q&A for researchers and developers

who explore the principles of a system

through analysis of its structure, func-

tion, and operation

Software Maintenance

Software Recommendations (SREC) (SRS)
Q&A for people seeking specific soft-

ware recommendations
Software Tools

Stack Exchange maintains a staging zone, entitled Area 512, intended to receive requests to create146

new communities, as well as monitor ing a set of metrics to assess how well existing communities are.147

According to the website, communities with answers/question ratio above three are considered good,148

and above one are okay but need improvement. Table 3 shows some numerical data about the selected149

communities.150

Table 3. Selected communities’ numerical data.

COMMUNITY # QUESTIONS # ANSWERS A/Q

PROG 35,560 128,199 3.6

PM 2,362 8,420 3.56

SQA 2,642 6,333 2.39

RE 1,745 2,751 1.57

SREC 4,434 4,894 1.1

TOTAL 46,743 150,597 3.22

As we can see in Table 3, three selected communities are classified as good, and the remaining ones151

are okay but need improvement. Area 51 monitors other metrics, such as number of visits per day and152

number of avid users. For instance, RE and SREC are considered excellent in these metrics, with 199 avid153

users and 1,905 visits per day, and 394 avid users and 4,384 visits per day, respectively. We did not use154

the most well-known Stack Exchange community, Stack Overflow, because it focuses mainly on technical155

and coding issues, which is often out of the scope of SRs.156

Search for Practitioners’ Issues157

We search for practitioners’ issues in the selected Stack Exchange communities using search strings158

extracted from selected SRs. We implemented a search application on top of Apache Lucene3, a highly159

scalable search library, and used the search strings as input to find issues on Stack Exchange data dump.160

To select high-quality issues, we filtered them based on their score. In Stack Exchange, a user can161

“up-vote” an issue if s/he thinks it is relevant, or “down-vote” otherwise. The score is the resulting value162

of this voting process. The score is also commonly used as a metric for choosing relevant and high-quality163

1stackexchange.com/sites
2area51.stackexchange.com
3https://lucene.apache.org/core

5/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

issues (e.g., (96)). Considering the median score as the threshold, we selected only issues above or equal164

to their respective communities median score. We decided to adopt the median score instead of, for165

instance, the mean score because scores have no upper or lower limits. Thus, outliers affecting the mean166

are common. Table 4 shows descriptive statistics about the issues’ scores for each selected communities.167

Hereafter, we will use the term more relevant issues for issues with score above or equal the median168

score of their communities.169

Table 4. Issues’ scores descriptive statistics.

COMMUNITY MEDIAN MEAN S.D. MAX MIN

PROG 3 7.2 22.1 2,189 -11

PM 3 4.3 5.3 80 -5

SQA 1 2.5 4.1 72 -8

RE 2 3.6 5.2 76 -8

SREC 2 3.4 4.4 75 -4

As we can see in Table 4, the standard deviation (S.D.) is larger than the mean in all cases, which170

corroborates the decision of not choosing the mean as a measure for selecting practitioners’ issues on171

Stack Exchange communities.172

At the time of the data dump (August 18, 2015), the five selected Stack Exchange communities had a173

total of 46,743 issues. Among them, 26,687 issues have scores above the median of their communities.174

From these issues, 1,860 (7%) were found using the search strings of our 24 selected SRs. Table 5 depicts175

the number of returned issues for each selected SR, per Stack Exchange community.176

Table 5. Number of returned issues for each selected SR, per Stack Exchange community.

SR PROG PM RE SREC SQA TOTAL

SR14 (57) 471 78 0 8 19 576

SR11 (38) 257 84 0 30 24 395

SR18 (77) 161 25 0 54 16 256

SR15 (49) 147 0 1 6 3 157

SR5 (45) 106 12 0 18 20 156

SR21 (53) 87 14 0 3 11 115

SR22 (43) 75 6 0 1 1 83

SR9 (75) 17 4 0 1 7 29

SR7 (61) 20 5 0 0 1 26

SR13 (93) 17 2 0 1 2 22

SR16 (19) 14 5 0 1 0 20

SR24 (50) 7 2 0 0 2 11

SR8 (60) 5 2 0 0 0 7

SR10 (34) 3 0 0 0 0 3

SR3 (52) 2 0 0 0 0 2

SR20 (80) 1 0 0 0 0 1

SR1 (63) 1 0 0 0 0 1

SR4 (102) 0 0 0 0 0 0

SR2 (86) 0 0 0 0 0 0

SR6 (55) 0 0 0 0 0 0

SR17 (35) 0 0 0 0 0 0

SR19 (69) 0 0 0 0 0 0

SR23 (58) 0 0 0 0 0 0

SR12 (56) 0 0 0 0 0 0

TOTAL 1,391 239 1 123 106 1,860

6/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Some systematic reviews did not return any issue177

Among the 24 selected systematic reviews, the search string of seven (29%) of them did not return any178

issue. We identified three reasons that might explain this fact:179

• The search string has too many key terms: This makes the search too specific, making it difficult180

to find issues with all key terms in its title or body since they are connected with the restrictive AND181

operator. For instance, there is a systematic review with 13 terms connected by AND operators in182

its search string. SR2 and SR4 search strings have this problem.183

• The search string has key terms with no synonyms: This kind of search string leaves no room184

for issues using different words. For instance, consider the following search string: “uncertainty185

assessment” AND motivation. This search string does not admit a synonym for any of its two186

terms, which prevent to find issues that use different words. SR12 and SR19 search strings have187

this problem.188

• The search string has key terms with composed synonyms only: A composed synonym com-189

prises more than one word, and the order of each word matters.To illustrate a composed synonym190

for a key term like “requirements” could be “software requirements”. Thus, when all the synonyms191

are composed it forces the issues’ title or body to have the same words of the composed synonym192

in the same order. For instance, lets take the following synonyms of a key term from a search string193

of a selected systematic review: “model based test” OR “model based testing” OR “model driven194

test” OR “model driven testing” OR “specification based test” OR “specification based testing”195

OR “specification driven test” OR “specification driven testing” OR “use case based test” OR196

“use case based testing” OR “use case driven test” OR “use case driven testing” OR “UML based197

test” OR “UML based testing” OR “UML driven test” OR “UML driven testing” OR “requirement198

based test” OR “requirement based testing” OR “requirement driven test” OR “requirement driven199

testing” OR “finite state machine based test” OR “finite state machine based testing” OR “finite200

state machine driven test” OR “finite state machine driven testing“. It has many synonyms, but201

they are all composed and very specific, reducing the probability to find an issue that has, at least,202

one of them. SR6, SR17, and SR23 search strings have this problem.203

Stack Exchange communities characteristics204

Based on the search, we observed the following characteristics about the selected Stack Exchange205

communities:206

• PROG: This community returned the highest number of issues (74.7%). This was not surprising207

since this community is the one with higher number of issues posted by practitioners. Despite its208

name – Programmers – it is clearly focused on conceptual design and programming issues such as209

good practices, design patterns, and architectural trade-offs.210

• PM: This community returned the second highest number of issues (12.8%) with the search strings211

of the selected SRs. Additionally, in this community, we could found many issues about diverse212

software engineering areas, beyond the scope of software project management, such as software213

requirements, software testing, and others.214

• SQA: In this community issues are indeed focused on quality assurance and testing, and it is not215

common finding issues from other topics.216

• SREC: This community returned few issues, even though it has the second highest number of issues217

reported by practitioners, as shown in Table 3. Additionally, we could observe that many of those218

few issues were, in fact, false positives. In the end,the majority of issues posted in this community219

are recommendations requests about software applications in general, such as applications to burn220

DVDs, or to remotely access a PC, to mention a few. Requests for tools to support software221

engineering practices, such as IDEs, test automation tools, or bug trackers are usually posted on222

the other communities focused on software engineering areas, such as in PROG, PM, SQA, and223

RE. Therefore, we believe this community should not be considered for further studies that want to224

investigate software engineering issues.225

7/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

• RE: This community returned only one issue, and was the one with the lowest amount of issues226

returned by the search. On the other side, only one of the selected SRs ((86)) was considered as227

belonging to Software Maintenance, which is the broader area that comprises reverse engineering228

according to SWEBOK (21). Thus, we believe further investigations are important to understanding229

whether this community is a good choice to investigate SE issues.230

False Positive Exclusion231

Some studies reported high-rate of false positives when searching for issues in Stack Exchange commu-232

nities (59; 81). For instance, in Pinto et al.’s work (81), the authors observed about 50% of the initially233

selected questions were, in fact, false positives. To remove them, we classified each practitioners’ issues234

as Related or Not Related to the same SE area of the selected SRs, as defined in Table 1. That is why235

we classified each selected SRs based on the SWEBOK SE areas, as previously explained. To avoid236

misclassification, this procedure was conducted in pairs, followed by conflict resolution meetings. After237

classification, we analyzed Not Related issues to understand the reasons why they were returned by the238

search.239

Our search returned a total of 1,860 issues using the search strings of the selected SRs. Table 6 shows240

the result of false positive exclusion. The seven systematic reviews which did not return any issues by241

the search – SR4, SR2, SR6, SR17, SR19, SR23, SR12 – were omitted from the table. We performed an242

agreement analysis using the Kappa statistic (101). The Kappa value was 0.85, which means an Excellent243

Agreement level according to the Kappa reference table (101).244

Table 6. Number of issues Related and Not Related to the selected systematic reviews.

2*SR RELATED NOT RELATED TOTAL

% #

SR11 (38) 217 54.9% 178 395

SR22 (43) 45 54.2% 38 83

SR18 (77) 41 16% 215 256

SR15 (49) 34 21.6% 123 157

SR21 (53) 31 26.9% 84 115

SR5 (45) 24 15.3% 132 156

SR14 (57) 23 4% 553 576

SR16 (19) 15 75% 5 20

SR7 (61) 14 53.8% 12 26

SR24 (50) 7 63.6% 4 11

SR13 (93) 6 27.2% 16 22

SR9 (75) 5 17.2% 24 29

SR8 (60) 5 71.4% 2 7

SR1 (63) 1 100% 0 1

SR10 (34) 0 0% 3 3

SR3 (52) 0 0% 2 2

SR20 (80) 0 0% 1 1

TOTAL 468 25.1% 1,392 1,860

As we can see, 1,392 issues were discarded due to being considered as Not Related to the selected245

SRs, i.e., false positives. After discarding false positives, we ended up with 468 practitioners’ issues. This246

set represents 1.75% of the 26,687 more relevant issues of the five Stack Exchange communities. This247

result might indicate a gap between topics explored with SRs and ones demanded by practitioners.248

Moreover, ten out of the 17 SRs presented a high rate of false positives (less than 50% of Related249

issues). For instance, no issue was related to SR3, SR10, and SR20. We found a scenario that may explain250

this situation:251

• Systematic reviews using rather common terms in their search strings: For instance, SR18 (77)252

uses terms such as “from”, “documents”, and “features” as part of the search string. These terms253

are likely to appear in other contexts beyond requirements specifications, which is the SR focus. As254

8/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

a result, 215 (84%) out of the 256 issues, returned by the search, were classified as Not Related255

to this particular SR. A similar situation was observed in Kavalers’ et al. study (59), where they256

looked for issues that reported Java classes with the term “security” in their name, and many issues257

were found because the term ”security” is often mentioned in posts not related with the Security258

classes, rising the number of false positives.259

Coverage Analysis260

After excluding false positives, we conducted the coverage analysis based on qualitative techniques (91).261

The analysis is grouped into two parts: match procedure and recurrent issues identification procedure.262

To avoid bias, the entire coverage analysis was conducted by one researcher, and revised by another.263

With this analysis, we could identify which issue is covered, and which is not, mapping gaps between264

systematic reviews and issues asked by practitioners. Figure 2 depicts the entire coverage analysis.265

Figure 2. Coverage Analysis Procedure

Match Procedure266

In the match procedure, we analyze issue per issue comparing them to the findings of the systematic267

review it is related to. Steps comprising this procedure are:268

1. We extracted findings of each SR and applied open coding techniques (91) to define their Key269

Points;270

2. We analyzed practitioners’ issues related to each SR and applied open coding techniques (91) to271

defined their Key Points;272

3. We matched the Key Point of each issue against the SR findings’ Key Points, establishing whether273

an issue is covered or not.274

The Key Points are codes that summarize, in few words, both practitioners’ issues from Stack Exchange275

and findings from systematic reviews. To illustrate the match procedure, Table 7 shows some examples of276

issues considered as covered by findings of SRs their are related to. The issue’s title starts with symbol277

“7”, and its body starts with symbol ”O“.278

Another important step is that after the match procedure when we exclude duplicated issues. Duplica-279

tion occurs when more than one SR is related to the same issue. We decided to exclude duplicated issues280

9/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Table 7. Examples of issues covered by findings of systematic reviews.

PRACTITIONER’S ISSUE SR’S FINDING COVERING THE ISSUE

2*
7 When does pair programming work? When to avoid

it?
3*

“If you do not know the seniority or skill levels of your program-

mers, but do have a feeling for task complexity, then employ pair

programming either when task complexity is low and time is of the

essence, or when task complexity is high and correctness is impor-

tant.” SR22 (43)

O Rather than slavishly pair program all the time, we use
pair programming selectively on our team. [We] think
it works best in [some] circumstances [...] When to use
pair program and why? When to avoid pair programming?
Why?

2*
7 What makes Agile software development so appeal-

ing?
8*

“Most studies reported that agile development practices are easy

to adopt and work well. Benefits were reported in the following

areas: customer collaboration, work processes for handling de-

fects, learning in pair programming, thinking ahead for manage-

ment, focusing on current work for engineers, and estimation [...]

benefits in projects that use agile methods because changes are in-

corporated more easily and business value is demonstrated more

efficiently [...]” SR11 (56)

O Agile software development is becoming a pretty fun
buzzword these days [...] what are the biggest reasons for
choosing to do Agile development [...]

3*
7 How to facilitate communication and peer reviews on

a distributed scrum team?
6*

“Our SLR has found that Scrum teams use various practices or

strategies to reduce these challenging factors to support the use

of Scrum practices in globally distributed projects. This review has

identified and categorized these practices as follows: Synchronous

communication [...] Team Collaboration [...] Communication

bandwidth [...] Tool Support [...] Team management [...] Office

space [...]” SR24 (50)

O We have a Scrum team of 3 developers, a scrum master,
and a product owner. Everyone works out of their home [...]
How can a distributed agile team facilitate communication
[...]

after the match procedure to guarantee that if any SR related to that issue presents a finding helping to281

solve it, the issue would be considered covered. From the 468 related issues, there were 24 duplicated.282

Thus, we ended up with 424 practitioners’ issues.283

Recurrent Issues Identification Procedure284

At the end of the Match Procedure we calculate the overall coverage rate. However, due to the high285

number of issues, it would be hard to draw meaningful insights beyond the quantitative of covered issues286

and the overall coverage rate. That is why we also conduct the Recurrent Issues Identification Procedure287

aiming to aggregate issues that report the same problem and provide a manageable list of recurrent issues288

practitioners face in practice. Steps comprising this procedure are:289

1. We identified recurrent issues applying open coding and constant comparison techniques (91);290

2. We classified each recurrent issue according to SWEBOK (21) SE areas.291

A recurrent issue groups two or more issues about the same problem. The aggregation of issues292

as recurrent issues enables us to identify common problems in practice and also manage the coverage293

analysis. An example of a recurrent issue we identified is shown in Figure 2.294

RESULTS295

This section presents the results of this research.296

10/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Overall Coverage297

A total of 60 practitioners’ issues (14.1%) are covered by the selected SRs, revealing a good opportunity298

for conducting systematic reviews in software engineering to fill the gap of not covered issues.299

We identified two reasons that explain why the SRs do not cover practitioners’ issues:300

• Issues reporting scenarios systematic reviews do not fully cover: Majority of not covered issues301

fit under this situation, when SR is related to the same SE area of a practitioner’s issue, but there302

are no findings helping to solve it. To illustrate, a user asked “if pair programming works in case of303

pairs with different programming skill levels.” This issue is related to SR22 (43) that investigates304

pair programming effectiveness. However, the issue was considered not covered because the SR305

investigated only pairs with the same skill level. This could be avoided if the SR had analyzed pairs306

with different skill levels. Such analysis would, certainly, be limited primary evidence availability.307

• Issues using approaches available/popular after the systematic review was conducted: For308

instance, a user asked “Is BDD actually writable by non-programmers? ”. Although related to agile309

methods – a topic addressed by some selected SRs – BDD was introduced only in 2012, slightly310

after selected SRs publication. So, there is no chance the selected SRs would cover that kind of311

issue.312

Nine practitioners’ issues particularly took our attention. They reveal practitioners are demanding313

scientific evidence, which might indicate “bridges” need to be built to transfer knowledge from empirical314

studies to SE practice (15; 23; 26; 54). The following two issues are given as examples:315

7 Are there any studies of cross-functional teams vs. domain-based teams (e.g., project-based

vs. software/mechanics/etc)?

O I work in an organization which creates many integrated systems products - i.e. it is complete

products with mechanical/system/electronics/software being designed and manufactured. At the

moment most teams are organized around projects in a cross functional way. The advantage of an

organization like this is that people who are working closely together for a common goal are close.

The disadvantages come from the isolation of engineers from their peers. Typically a project is

assigned only one software engineer. This means that the projects have a high truck factor, minimal

knowledge sharing and best practices, and technical development is limited. So my question is: are

there any studies comparing the cost/benefits of these two approaches?316

7 Should there be more scientific study of the effectiveness of various hyped-up ideas in

software development?

O Everyone seems to implicitly assume that the free market of ideas will eventually converge on

the ”right” solutions in software development. We don’t assume that in medicine - we recognise

that scientific experiments are needed there - so why should we assume it in software development?

I am not arguing for regulation of programmers. It is far too early to even talk about that. Before

healthcare could be effectively regulated, there was a need for scientific experiments to establish

which treatments worked and which didn’t. Software engineering doesn’t even have this scientific

evidence base to back up touted methodologies such as Scrum or Agile, or programming paradigms

such as functional programming or MDA. [...] The question is, why is this scientific evidence

base (for all intents and purposes) nonexistent?317

Software Engineering Areas Coverage318

Table 8 shows how practitioners’ issues are covered by the selected SRs separated by each of the 15319

software engineering areas according to SWEBOK (21). None of the SE areas presented a coverage rate320

above 50%.321

The SE area that we found more issues is Software Engineering Models and Methods, with 127322

issues in total. Three SRs present findings in that area, they are: SR11 (38) , SR22 (43), and SR24 (50)323

as shown in Table 1. It is the SE area with the highest number of covered issues, 17 in total (13.3%).324

All the issues from that SE area are related to agile methods/practices. The three most recurrent issues325

are: Applicability of agile in specific project context; Mixing agile with traditional methods/practices;326

11/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Table 8. Issues coverage per each SWEBOK (21) Software Engineering area.

2*SOFTWARE ENGINEERING AREA COVERED TOTAL

%

Software Engineering Models and Methods 17 13.3% 127

Software Engineering Management 3 4.6% 64

Software Engineering Professional Practice 12 24% 46

Software Requirements 6 15.7% 38

Software Testing 8 26.6% 30

Software Engineering Process 4 20% 20

Software Construction 2 12.5% 16

Software Engineering Economics 4 36.3% 11

Software Maintenance 2 22.2% 9

Software Design 0 0% 9

Software Configuration Management 0 0% 0

Software Quality 0 0% 0

Computing Foundations 0 0% 0

Mathematical Foundations 0 0% 0

Engineering Foundations 0 0% 0

DEFINITION 2 3.7% 54

and Benefits of agile methods/practices in general. More details about recurrent issues classified under327

Software Engineering Models and Methods area are shown next.328

The second SE area we found more issues is Software Engineering Management, with 64 issues in329

total, less than half of what was found in Software Engineering Models and Methods. It is also the SE area330

with highest number of related SRs: five in total. They are: SR1 (63), SR6 (55), SR12 (56), SR14 (57),331

and SR19 (69). However, only three practitioners’ issues were covered, resulting in the lowest coverage332

rate among all SE areas, 4.6%. The three most recurrent issues of this SE area were: Strategies to cost333

and effort estimation in specific contexts; Tools to support project management with specific features; and334

Strategies and metrics to measure team productivity. More details about recurrent issues classified under335

Software Engineering Management area are shown aftwerwards.336

The third SE area we found more issues is Software Engineering Professional Practice, with 46337

issues in total. Just one selected SRs is related to this area, SR16 (19). Eleven practitioners’ issues were338

considered as covered in this area, which corresponds to 24% coverage rate. The three most recurrent339

issues of this SE area were: Strategies to deal with knowledge management in a team; Difficulties dealing340

with customer in specific contexts; Improving communication in a distributed team. More details about341

the recurrent issues classified under Software Engineering Professional Practice area are shown in Section342

afterwards.343

Issues asking for information about simple concepts like “In pair programming, what is each role344

named, and why?”, were classified as DEFINITION since these kind of issues are better covered by the345

basic literature, rather than research evidence provided by SRs.346

Recurrent Issues Coverage347

In this section, we present the coverage of each recurrent issue we identified organized per each SE area.348

The five most recurrent issues — the ones that aggregate highest number of practitioners’ issues — are:349

1. Applicability of agile in specific project context (19 issues): Aggregates issues about whether a350

specific agile method/practice is applicable in a specific practical context.351

2. Introducing and adapting a software development process in specific context (14 issues): Ag-352

gregates issues about how to introduce or adapt a software process to a specific practical context.353

3. Strategies to cost and effort estimation in specific contexts (13 issues): Aggregates issues about354

strategies to estimate cost and effort in a specific practical context.355

12/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

4. Mixing agile with traditional methods/practices (10 issues): Aggregates issues about how to356

deal with environments where agile and traditional methods/practices need to live together.357

5. Tools to support software testing with specific features (10 issues): Aggregates issues about358

tools to support software testing with specific features.359

We now discuss each recurrent issue per SE area. For each SE area, we group recurrent issues, we360

quote at least one issue, and we discuss why that issue was covered or not covered. If the issue was not361

covered, we provide discussions on how SRs could evolve to cover the issue. The Miscellaneous category362

aggregates issues that do not fit in any of the identified recurrent issues, although belonging to a SE area.363

Software Requirements (6 recurrent issues)364

Table 9 shows recurrent issues related to software requirement area. None of the recurrent issues presented365

a coverage higher than 50%.366

Table 9. Coverage of software requirements recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Tools to manage requirements with specific features
Software Requirements Tools. Chapter 1,
Section 8

3 37% 8

Approaches to manage constant requirements change ChangeManagement. Chapter 1, Section 7.2 0 0% 6
Select requirements elicitation techniques in specific con-
texts

ElicitationTechniques. Chapter 1, Section
3.2

1 20% 5

Strategies to prioritize requirements in specific contexts
RequirementsClassification. Chapter 1, Sec-
tion 4.1

0 0% 3

Defining requirements attributes in specific contexts
RequirementsAttributes. Chapter 1, Section
7.3

0 0% 3

User stories to specify non-functional requirements
ElicitationTechniques. Chapter 1, Section
3.2

0 0% 2

Miscellaneous — 2 18% 11

The most recurrent issue is the need of Tools to manage requirements with specific features, with367

eight issues grouped under this classification. SR18 (77) and SR21 (53) provided evidence about tools to368

manage software requirements that could cover three out of eight practitioners’ issues which corresponds369

to a coverage rate of 37%. To illustrate, one example of issue follows:370

7 What FOSS solutions are available to manage software requirements?

O In the company where I work, we are starting to plan to be compliant to the software development

life cycle. We already have, wiki, vcs system, bug tracking system, and a continuous integration sys-

tem. The next step we want to have is to start to manage, in a structured way, software requirements.

[...] We are trying to search and we hope we can find and use a FOSS software to manage

all this things. We have about 30 people, and don’t have a budget for commercial software [...]

Required features: Software requirements divided in a structured configurable way; Versioning of

the requirements (history, diff, etc, like source code); Interdependency of requirements (child of,

parent of, related to); Rule Based Access Control for data handling;[...]371

To mitigate this issue, we believe systematic reviews aimed at identifying tools, comparing their372

features, or assessing their effectiveness, for software requirements engineering practice might play an373

important role. One example is the study conducted by Marshall et al. (73) that identified, analyzed, and374

compared tools based on their features. However, the study analyzed tools to support systematic reviews375

in SE, not software requirements.376

The second most recurrent issue is the need of Approaches to manage constant requirements377

change, with six issues classified. Unfortunately, none SRs were able to provide useful information378

helping to solve the issues. To illustrate, following there is one of those issues:379

7 How do you deal with the costs of too-rapid change?

O Like most modern developers I value Agile principals like customer collaboration and responding

to change, but what happens when a product-owner (or whoever determines requirements and

priorities) changes requirements and priorities too often? Like several times a day? [...] Is there

some [...] in-depth study, metaphor, or quote that can help me reduce the amount of wasted

effort or at least explain the costs of this chaotic behavior?380

13/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

It is interesting to note that this second most recurrent issue may challenge one of the building blocks381

of agile software development, which is “Responding to change over following a plan” (agi). We noticed382

that ideal balance between embracing changes and proper planning seems not to be fully accomplished383

in practice. Systematic reviews aimed at identifying and analyzing strategies to manage requirements384

change, comparing their pros and cons, might improve practitioners’ confidence facing such kind of385

scenario.386

The next three most recurrent issues present a peculiar characteristic. They report particular problems387

but focuses on the necessity of information that fits in their specific contexts, they are: Recommendations388

on how to Select requirements elicitation techniques under specific contexts; Strategies to prioritize389

requirements in specific contexts; and recommendations on Defining requirements attributes in390

specific contexts. Those three recurrent issues reinforce many claims about importance of highly391

contextualized evidence to provide useful information to practitioners (39). A systematic review identified392

mechanisms to characterize context of primary studies in software engineering (24). However, as far as393

we know there are no guidelines to support context characterization of evidence for a systematic review.394

Software Design (2 recurrent issues)395

We identified two recurrent issues related to software design. However, none were covered by the selected396

SRs, as can be seen in Table 10.397

Table 10. Coverage of software design recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Benefits of a service layer, when compared to libraries Other Methods. Chapter 2, Section 7.6 0 0% 4

Strategies to structure user interface design User Interface Design. Chapter 2, Section 4 0 0% 2

Miscellaneous — 0 0% 3

The most recurrent issue of software design area is related to Benefits of a service layer, when398

compared to libraries. None selected SRs provide evidence that could cover this kind of issue. To399

illustrate, following there is one of the four issues under this classification:400

7 How essential is it to make a service layer?

O I started building an app in 3 layers (DAL, BL, UI), it mainly handles CRM, some sales reports

and inventory. A colleague told me that I must move to service layer pattern, that developers came

to service pattern from their experience and it is the better approach to design most applications. He

said it would be much easier to maintain the application in the future that way. Personally, I get the

feeling that it’s just making things more complex and I couldn’t see much of a benefit from it

that would justify that[...]401

The plethora of different service layers, as well as the rich set of software libraries found in any402

high-level programming language makes such investigation challenging. A systematic review aimed at403

studying this particular scenario might present evidence for practitioners facing this kind of situations.404

However, the existence of such systematic review is limited by the presence of primary studies related to405

this topic (e.g., (78)).406

Software Construction (2 recurrent issues)407

We found two recurrent issues related to the software construction area, as shown in Table 11.408

Table 11. Coverage of software construction recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Object modeling techniques ConstructionDesign. Chapter 3, Section 3.1 0 0% 7

Code duplication avoidance
ConstructionforReuse. Chapter 3, Section
3.5

2 40% 5

Miscellaneous - 0 0% 4

The only recurrent issue covered refers to code duplication avoidance with a 40% coverage rate. To409

illustrate, following there is one issue under that classification:410

14/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

7 When is ‘cloning’, rather than reusing, a module acceptable design solution?

O For this question, I’ll give an example module to facilitate the discussion, Let’s say the module is

a calculation engine, It currently servers its purpose for its current audience. The requirement is to

clone the same engine but with some tweaking for an entirely new audience. Given that, these are

Considerations/Factors that will affect the design solution: [...] However, I am still conflicted, since:

It will inherently be a copy-paste solution; Duplicate code;[...] Is the compromise acceptable

in this situation, given the user expectations highlighted above? And follow up question, is there

something I can add to the solution that will address the conflicting issues [...]411

Code clones have a long history in software engineering research, with traditional studies dating from412

the 1990s (e.g., (13)). SR15 (49) is an example of a systematic review that investigates code clones,413

providing evidence and guidance for practitioners. In particular, it builds a model to demonstrate under414

which circumstances code duplication harm system quality. It also provides strategies to mitigate each of415

these situations. Since this recurrent issue covers a wide spectrum of code duplication, this might explain416

this recurrent issue coverage.417

Software Testing Coverage (1 recurrent issue)418

Among the 30 practitioners’ issues regarding software testing, we identified only one recurrent issue,419

which is Tools to support software testing with specific features. Ten out of the 30 issues were420

classified in this recurrent issue, although only 3 of them are covered by the selected systematic reviews,421

as can be observed on Table 12. SR5 (45) offers evidence about FiteNesse (fit) and other tools related to422

automated acceptance testing, covering all the three issues. One who wants to offer evidence aiming to423

fill that gap can adopt that same strategy we employed that suggests systematic reviews comparing tools.424

Following there is one issue classified under this recurrent issue.425

Table 12. Coverage of software testing recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Tools to support software testing with specific features Software Testing Tools. Chapter 4, Section 6 3 30% 10

Miscellaneous - 5 25% 20

7 Fitnesse vs Robot

O We are choosing what system to start using in our company. it should be used for both

backend (REST API, some DB checks) and UI testing; it should use a simple language so even

non-programmers/tester can understand the test cases (Product Owners should be able to see whether

all acceptance criteria are covered);it should support integration with Jenkins; it should support

versioning of test cases so that for a particular product version we also can check out relevant test

cases; right now we use TestRail (test case management SW) [...]426

Software Maintenance Coverage (2 recurrent issues)427

We identified two recurrent issues under the area of software maintenance. Together they group nine428

practitioners’ issues as shown in Table 13.429

Table 13. Coverage of software maintenance recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Developers demanding refactor the entire legacy system Reengineering. Chapter 5, Section 4.2 2 40% 5

Strategies to perform refactoring Reengineering. Chapter 5, Section 4.2 0 0% 4

The most recurrent issue is the one Developers are demanding refactor the entire legacy system,430

with five issues under this classification. This shows maintenance activities are still problematic due to431

either bad software design or construction or to a culture among software developers that prefer to spend432

effort reinventing the wheel instead of understanding and evolving a legacy system (51). Following there433

is one issue that illustrates this situation:434

15/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

7 Reengineering the project from scratch

O I am currently working on a project that has been in development for the last few years used

throughout the organization but the way the project has been coded the maintainability of it is

completely shot. Reading the code presents with pages and pages of Anti-Patterns and trying to

identify the path of a business workflow takes on occasion days. At this point I would probably

classify the software in its current state as ”Working by accident” rather then as intended. So I am

looking for some wisdom as to the following: At what point would you consider simply dumping

the project into an abandonware pile and starting from scratch? [...]435

Evidence that supports decision-making during software design and construction could help software436

developers to design systems with higher maintainability. For cases where developers want to reinvent the437

wheel, proper training can help to reduce the impetus to re-implement a system from scratch (51).438

Software Engineering Management Coverage (6 recurrent issues)439

Software engineering management is the second area with more issues related to it, with a total of 64440

issues. We could identify six recurrent issues among them. However, four are not covered at all, and two441

present a coverage rate below 50%, as shown in Table 14.442

Table 14. Coverage of software engineering management recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Strategies to cost and effort estimation in specific contexts
Effort, Schedule, and Cost Estimation. Chap-
ter 7, Section 2.3

1 7% 13

Tools to support project management with specific features
Software Engineering Management Tools.
Chapter 7, Section 7

0 0% 6

Strategies and metrics to measure team productivity
Reviewing and Evaluating Performance.
Chapter 7, Section 4.2

1 25% 4

Strategies to manage distributed teams
Software Engineering Management. Chapter
7

0 0% 4

Tasks that do not fit in one sprint
Effort, Schedule, and Cost Estimation. Chap-
ter 7, Section 2.3

0 0% 4

Strategies to negotiate project scope
DeterminationandNegotiation of Require-
ments. Chapter 7, Section 1.1

0 0% 3

Miscellaneous - 1 3.3% 30

The most recurrent issue is practitioners asking for Strategies to cost and effort estimation in443

specific contexts. Only one out of 13 issues is covered. SR12 (56) and SR14 (57) are related to cost and444

effort estimation. However, SR12 did not return any issue from the search, and SR14 is focused on the445

comparison of expert judgment versus formal models to estimate effort in general. On the other side,446

issues are context specific. An example of one issue classified under this recurrent issue is:447

7 How does a team (new to product and domain) estimate user stories of a ten year old

product?

O I am the scrum master for one of the products in a software development company. Our team,

including me, operates from India. However my product owner is in USA. We are working on the

feature development for this product that exists for ten years now. Our team in India started six

months ago, with no product nor domain knowledge on it. [...]448

A systematic review identifying and comparing estimation techniques could support practitioners449

facing problems like the one we showed in the example. Additionally, it is important to note that evidence450

of such techniques effectiveness needs to be contextualized, so practitioners can check if they fit in their451

working environment. In the example we have shown, only techniques to deal with situations of low452

knowledge about software domain matter.453

The second most recurrent issue is when practitioners ask for recommendations of Tools to support454

project management with specific features. None selected SRs could cover the six issues under455

this classification. In previous sections, we already discussed approaches providing evidence when456

recommendations about tools are demanded.457

The third most recurrent issue is when practitioners ask for Strategies and metrics to measure team458

productivity. SR13 (93) could cover one of the four issues under this classification. To illustrate, one459

issue grouped under this recurrent issue is:460

16/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

7 How to measure team productivity?

O The upper management at our company has laid out a goal for our software team to be 15% more

productive over the next year. Measuring productivity in a software development environment is

very subjective, but we are still required to come up with a set of metrics. What sorts of data can

we capture that would measure our team’s productivity?461

A systematic review identifying software team productivity metrics could provide an interesting462

overview to practitioners facing that kind of problem. One good example in a different topic Saraiva et463

al.’s mapping study (90) that identified metrics to measure how software maintainability is affected by464

aspect-oriented programming. Traditional systematic reviews and meta-analyses can also provide rich465

evidence about the effectiveness and applicability of each metric.466

Software Engineering Process Coverage (1 recurrent issue)467

We identified just one recurrent issue among the 20 issues related to software engineering process. The468

issues coverage is presented in Table 15.469

Table 15. Coverage of software engineering process recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Introducing and adapting a software development process
in specific context

SoftwareProcessAdaptation. Chapter 8, Sec-
tion 2.3

3 21% 14

Miscellaneous - 1 16% 6

The only recurrent issue identified is practitioners asking for ways to support them Introducing and470

adapting a software development process in specific context, with 14 issues under this classification.471

Just three issues are covered. SR11 (38) SR16 (19), and SR24 (50) are the ones that presented evidence472

that could help to solve the three issues considered as covered. Following there is one example of issue:473

7 Introducing Scrum in a distributed team

O We would like to start using scrum [...] Until know we used a ”home-grown” methodology, but we

would like to switch to something more defined and mature. Scrum would be a great choice in my

opinion and also the management supports us to go agile. Where should we start this transition?

Is there some guide or best practices for this transition?474

Systematic reviews identifying processes as well as best practices during introduction or adaptation of475

a process/method could provide useful evidence for issues likes the one we mentioned, specially when476

they are highly contextualized.477

Software Engineering Models and Methods Coverage (15 recurrent issues)478

This area is the one with more issues, 127 in total. We could identify 15 recurrent issues, all of them are479

related to agile software development. Table 16 shows those issues coverage.480

The most recurrent issue is about Applicability of agile in specific project context. Only one out481

of the 19 issues under that classification was covered by SR11 (38). Some issues are highly tied to their482

project context, and that is why contextualized evidence is important to assess whether its applicable in483

real environments. To illustrate, following there is one of the issues under that classification, which asks484

for evidence about the applicability of agile methods in a context of firmware/embedded project:485

7 How to adopt agile methodology for developing firmware/embedded-systems-software?

O [...] how to apply agile methods in large complex embedded system software (100+ engineers).

Firmware development has some unique characteristics that make it difficult to do agile (ie. Hardware

is not available until late in the dev cycle; Once product is released, can’t easily update firmware;

etc...) The norm in this kind of development is thick documentation and grueling peer reviews. You

can’t get a simple code fix like renaming a variable without 2-3 signatures. (I exaggerate a little but

this is typical. Additionally, a lot of people do take shortcuts and the Project Managers even approve

them especially in the face of hard market deadlines.) I would like to hear any tips or guidelines

on how to adopt agile methodology for firmware development projects.486

17/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

Table 16. Coverage of software engineering models and methods recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Applicability of agile in specific project context Agile Methods. Chapter 9, Section 4.4 1 5% 19

Mixing agile with traditional methods/practices Agile Methods. Chapter 9, Section 4.4 0 0% 10

Benefits of agile methods/practices in general Agile Methods. Chapter 9, Section 4.4 3 33% 9

Pair programming to transfer knowledge Agile Methods. Chapter 9, Section 4.4 0 0% 9

Pair programming with distributed pairs Agile Methods. Chapter 9, Section 4.4 1 12% 8
Impact of low detail level or absence of documentation in
agile

Agile Methods. Chapter 9, Section 4.4 0 0% 6

Benefits of agile methods/practices from a specific perspec-
tive

Agile Methods. Chapter 9, Section 4.4 2 40% 5

Low customer collaboration in agile Agile Methods. Chapter 9, Section 4.4 1 25% 4

Pair programming hindering concentration Agile Methods. Chapter 9, Section 4.4 0 0% 4

Benefits of agile methods/practices in specific contexts Agile Methods. Chapter 9, Section 4.4 0 0% 4

Mixing multiple agile methods/practices Agile Methods. Chapter 9, Section 4.4 0 0% 4

Tools for agile methods/practices Agile Methods. Chapter 9, Section 4.4 0 0% 4

Negative impact of agile in software design Agile Methods. Chapter 9, Section 4.4 3 100% 3

Ad-hoc software development as agile Agile Methods. Chapter 9, Section 4.4 0 0% 3

Pair programming as replacement to code reviews Agile Methods. Chapter 9, Section 4.4 0 0% 2

Miscellaneous - 5 15% 33

Studies aggregating and synthesizing evidence from cases studies, orthographies, and action researches487

could provide interesting information for practitioners who want to decide which agile methods/practices488

fit in their contexts.489

The second most recurrent issue is practitioners asking for strategies to deal with Mixing agile490

with traditional methods/practices. None of the ten issues under this classification are covered by the491

selected SRs. To illustrate this situation, one of the issues under this classification follows:492

7 How to synchronize an agile software team with a waterfall hardware team?

O Our team is composed of both software and hardware engineers. The software team uses

Scrum project management while the hardware team uses waterfall. The priority of our software

requirements change quite frequently, so staying Agile makes sense for us. The priority of our

hardware requirements are rather static and slow-moving, so again sticking with waterfall makes

sense for us. The tricky part is the integration of hardware and software. Are there any

methodologies for deterministically synchronizing these two contrasting project management

styles?493

In some cases there is an impression that once agile is adopted, every stakeholder and process operate494

through agile philosophy. However as we can see, many practitioners face situations where their team495

is agile, but not their company as a whole. Or even when the team is agile, but not their customer.496

Such situations provoke many disarrangements during software development life-cycle. In a survey in497

Microsoft, Begel et al. (16) identified that agile is not adopted simultaneously by all teams. They reported498

one situation engineers are more worried about how agile teams coordinate dependencies and deliverables499

with non-agile teams. However, more evidence is demanded in this topic, specially identifying strategies500

to deal with such kind of scenarios.501

Three recurrent issues were identified around agile methods/practices benefits. The most recurrent is502

when practitioners ask for information about Benefits of agile methods/practices in general, which can503

be illustrated by the following issue:504

7 What makes Agile software development so appealing?

O Agile software development is becoming a pretty fun buzzword these days. [...] Whether it is

crystal, agile methods, dsdm, rup, xp, scrum, fdd, tdd, you name it. [...] what are the biggest

reasons for choosing to do Agile development[...]505

For those cases, SR11 (38) provides useful evidence since it focus on agile benefits in general, chiefly506

aggregating qualitative evidence.507

Another recurrent issue is when practitioners ask for information about Benefits of agile meth-508

ods/practices from a specific perspective. Following there is one issue to exemplify:509

18/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

7 What are the monetary benefits of going agile?

O Why go agile? This is the first question that comes to my mind when I think of going agile. What

are the possible financial benefits one can achieve from going agile?[...]510

This situation corroborates with the idea that empirical evidence should comprise not only data511

about the effectiveness of an intervention, but also useful information for target audience, in this case,512

cost-effectiveness (8). We also identified other issues that report the agile benefits information from other513

specific perspectives, beyond monetary, such as, benefits from the perspective of developers, managers,514

testers, customers, and others.515

The third and last recurrent issue on agile benefits is when practitioners demand for information516

about Benefits of agile methods/practices in specific contexts, which again shows the importance of517

contextualized evidence.518

Four recurrent issues about pair programming were identified. The first most recurrent issue in519

that matter is the one that practitioners ask about the applicability of Pair programming to transfer520

knowledge from more skilled developers to less skilled ones. None of the nine issues classified under this521

recurrent issue are covered by the selected SRs. SLR22 (43) evaluated the impact of pair programming522

in many dimensions, but only considered pairs with same experience level, failing to perceive practical523

importance of evaluating pair programming with pairs with different levels of experience and domain524

knowledge. To illustrate, one issue under this classification is:525

7 Pair programming when driver and observer have different skill level and experience

O I just wonder [if] the strategy still work in the case. For example if they have a very different

programming skill level. if one never experience in the problem domain while another have. Is it

still OK if they have low programming skill level?526

The second most recurrent issue about pair programming is practitioners demanding support to have527

Pair programming with distributed pairs. Just one out of eight issues is covered. SLR22 (43) was the528

SR that provided evidence to cover the issue. To illustrate, an issue classified under this recurrent issue is:529

7 Any suggestions for pair programming with external resource?

O [...] I was considering hiring a developer [...] to assist me. Ideally, we would be a collaborative

team [...] Has anyone attempted this? [...]530

Systematic reviews identifying and comparing tools to support distributed pair programming could531

provide interesting information to practitioners.532

Another recurrent issue we identified about pair programming is practitioners reporting problems533

with Pair programming hindering concentration. None of the four issues under this classification are534

covered. To illustrate, an issue classified under this recurrent issue is:535

7 How can my team reconcile flow and pair-programming?

O [...] Flow is a mental state attained by creativity workers (engineers, writers, programmers, etc.)

which is often described as a state of immersion in which time seems to pass unknowingly and

creative work flows from the mind [...] Pair programming, advocates a two person team which

functions as an single organic, programming entity to accomplish a single goal. [...] are these ideas

reconcilable?536

A primary study has reported that concentration decreases in longer pair programming sessions due to537

exhaustiveness of pair dynamics (97). However, more evidence is needed about this topic to draw more538

accurate conclusions.539

Another recurrent issue that deserves mention is practitioners affirming to experience Ad-hoc software540

development as agile. None of the three issues under this classification could be covered by the selected541

SRs. To illustrate, one issue classified under this recurrent issue is:542

19/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

7 Is the agile approach too much of a convenient excuse for cowboys

O I believe that an agile approach is best for projects where the requirements are fuzzy and a lot

of interaction is required to help shape the end user’s ideas. However... In my professional work,

I keep ending up at companies where an ”agile” approach is used as an excuse as to why no

effort was put into an up front design; when the requirements are well understood.543

Some empirical studies have observed situations like that (46; 22). However, SRs are demanded to544

investigate that kind of scenario, as well as to identify best practices to avoid it.545

Another recurrent issue we identified shows practitioners asking about the Impact of low detail level546

or absence of documentation in agile and how to deal with that situation. None of the six issues under547

this classification are covered. To illustrate, there is the following issue:548

7 Disillusioned with agile; how do you prepare for life after release 1.1?

O My company is going full steam with the agile process, with multiple agile projects in work. [...]

establish ideal documentation effort, the team was quickly disbanded [...] the next sprint leaves little

documentation, little vision, and poor records of that design decisions were made [...]549

This issue possibly challenges basic principles of agile software development, like “working software550

over comprehensive documentation” (agi). This does not mean we should go back to over-documentation551

times and high costs associated with it. However, it is noticeable an ideal balance between documentation552

and working software is, sometimes, far to be accomplished in practice. Systematic reviews identifying553

current strategies to establish ideal documentation, their pros and cons under specific contexts, and an554

evaluation of those strategies, could provide evidence to practitioners’ facing that scenario.555

556

Another recurrent issue challenging a basic principle of agile methods/practices emerges when557

practitioners report problems due to Low customer collaboration. The agile manifesto (agi) says558

that “Customer collaboration over contract negotiation” is one of the most important values. However,559

situations in practice may hinder agile adoption due to difficulties collaborating with customers. Some560

studies also observed such kind of situations (47), but there is a need of more evidence around this topic.561

Just one out of four issues under this classification are covered, this time by SR11 (38).562

Software Engineering Professional Practice Coverage (7 recurrent issues)563

This area is the third with more issues related to, with a total of 47. We could identify seven recurrent564

issues. Three of them present a coverage rate equal or above 50%, two present a coverage rate below 50%,565

and two are not covered at all, as can be seen in Table 17.566

Table 17. Coverage of software engineering professional practice recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Strategies to deal with knowledge management in a team
Team and Group Communication. Chapter
11, Section 3.3

4 50% 8

Difficulties dealing with customer in specific contexts
Interacting with Stakeholders. Chapter 11,
Section 2.4

1 20% 5

Improving communication in a distributed team
Team and Group Communication. Chapter
11, Section 3.3

4 100% 4

Difficulties dealing with team members in specific contexts
Interacting with Stakeholders. Chapter 11,
Section 2.4

1 33% 3

Team rotation
Dynamics of Working in Teams/Groups.
Chapter 11, Section 2.1

0 0% 4

Ideal workplace layout
Group Dynamics and Psychology. Chapter
11, Section 2

0 0% 3

Tools to support knowledge management with specific fea-
tures

Team and Group Communication. Chapter
11, Section 3.3

1 50% 2

Miscellaneous - 1 5% 17

The most recurrent issue is when practitioners ask for Strategies to deal with knowledge manage-567

ment in a team. Four out of eight issues under this classification are covered. SR16 (19) is responsible568

for offering knowledge that helps to solve those issues. This happens because SR16 investigates concepts,569

findings, and methods to manage knowledge in SE. To illustrate this recurrent issue, following there is an570

issue:571

20/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

7 How to motivate team for knowledge sharing sessions

O I work in a team with wide range of expertise and experience. I have been trying to introduce

weekly knowledge sharing sessions. Sessions of 30-60 min length where everybody gets a chance to

present something and talk about it [...] However, the team is not motivated towards this, either the

attendance is too low or none. How to get a team work towards such an idea?572

The second most recurrent issue is practitioners reporting to face Difficulties dealing with customer573

in specific contexts. Only one out of five issues under this classification is covered. To illustrate that574

situation there is the following issue:575

7 Does anyone have experience with a difficult customer?

O We have a reoccurring conflict with one of our larger and strategically important customers [...]

I’m looking for hints on how to control the development-process (and our own economy) and still

provide the customer with a product that gives the company most value-for-money [...]576

To deal with stakeholders, it is demanded a particular set of skills that sometimes are even more577

important than traditional technical skills in SE world (32). Yaman et al. (105) conducted an interesting578

systematic review about benefits, challenges, methods, and tools to support customer involvement in a579

continuous deployment environment. A similar approach could be adopted and an SR with recommenda-580

tions and best practices about customer relationship could provide useful information for practitioners581

facing that kind of problem.582

Improving communication in a distributed team also seems to concern practitioners since it is the583

third most recurrent issue under Software Engineering Professional Practice area. This recurrent issue is584

particularly well-supported since all four issues under this classification are covered by SR24 (50).585

Another recurrent issue is practitioners reporting Difficulties dealing with team members in specific586

contexts. As with issues related to difficulties dealing with customers, it is important to explore the587

human aspects of that kind of environment and strategies to deal with it since team conflicts might hinder588

team performance (37;).589

Another recurrent issue is when practitioners ask for information about Team rotation. None of the590

four issues under this classification are covered. A primary study was published recently building a team591

rotation theory grounded in a qualitative case study (89). However, more evidence is needed to support592

the theory, as well as to aggregate enough empirical evidence to conduct a systematic review on this topic.593

Finally, some practitioners ask for information about Ideal workplace layout for a software develop-594

ment team. None of the three issues classified under this recurrent issue are covered by the selected SRs.595

There are some primary studies under this topic, for example, Sykes’ study (92) proposing workplace596

layout strategies to reduce level of interruption in a software development team. However, more evidence597

is demanded in this topic, specially addressing strategies to define workplace layout aiming at different598

types of goals beyond reducing interruptions.599

Software Engineering Economics Practice Coverage (3 recurrent issues)600

All three recurrent issues we identified under this SE area are related to outsourcing/offshore software601

development. Table 18 shows how the selected systematic reviews covered those issues.602

Table 18. Coverage of software engineering economics recurrent issues.

2*RECURRENT ISSUE 2*SWEBOK SECTION COVERED TOTAL

%

Strategies to introduce outsourcing/offshoring in specific
contexts

Offshoring and Outsourcing. Chapter 12,
Section 5.4

1 20% 5

Characteristcs of a good outsourcer/offshorer
Offshoring and Outsourcing. Chapter 12,
Section 5.4

1 33% 3

Improving communication with the outsourcer/offshorer
Offshoring and Outsourcing. Chapter 12,
Section 5.4

1 50% 2

Miscellaneous - 1 100% 1

The most recurrent issue is when practitioners ask for Strategies to introduce outsourcing/offshoring603

in specific contexts. One of the five issues under this classification is covered. For instance, the following604

issue:605

21/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

7 How to outsource the UI of a dynamic Web application?

O [...] The project is nearly completed, but I want to enhance the look and feel. This will include

better graphics and some extra behaviour. I want to outsource this task [...] I don’t have experience

with outsourcing and don’t know how to incorporate an outsider to the project [...]606

SR7 (61) and SR8 (60) provide useful evidence and could cover one issue. However, more evidence607

is demanded for specific contexts. For instance, the one in the example demands information about608

the possibility to outsource user interface web development. Strategies and recommendations may be609

different if the intention is to outsource software testing, or other parts/components of a software system.610

The second most recurrent issue is when practitioners ask demand Characteristics of a good out-611

sourcer/offshorer. Again SR7 (61) and SR8 (60) provided useful evidence and could cover one issue.612

However, the same problem concerning context limited the level of coverage of that kind of issues. To613

illustrate this recurrent issue, following there is an issue:614

7 What to look for in an outsourced partner

O [...] We might need some more development help and are looking at an Indian company which

comes recommended by someone we know (although they are not very technical). I’ll be having an

informal chat with them, and thought I’d see if people here had some wisdom regarding what to

look for and good questions to ask. [...]615

The third recurrent issue is the one where practitioners ask for guidance for Improving communica-616

tion with the outsourcer/offshorer. SR7 (61) and SR8 (60) provided useful evidence and could cover617

one issue. However, the same problem concerning context limited the level of coverage of that kind of618

issues. To illustrate, there is the following issue classified under this recurrent issue:619

7 Communicating requirements to offshore teams

O Just to give a context, there is an offshore team in India for a client in San Francisco. The offshore

team is about 9 developers and 4 QA, with one project manager. I am doing onsite coordination for

this team from the client location [...] They obviously fail to deliver sprint after sprint. What would

you do to get these things right? How much of adequate is adequate clarity in requirement? [...]620

DISCUSSION621

In this section, we summarize our findings, discuss how systematic reviews can be further improved with622

the use of Stack Exchange, and debate the need for tertiary studies.623

Revisiting Findings624

There are healthy Stack Exchange communities beyond Stack Overflow, focusing on non-technical625

issues and ready to be explored. This enhances the possibilities to discover which are the issues626

practitioners are facing and to explore them through research aiming to provide empirical evidence627

connected to software engineering practice demands. Those Stack Exchange communities approach a628

wide variety of software engineering areas, even though not all of them yet. For researchers who want629

to explore practitioners’ issues in software engineering through Stack Exchange, we recommend the630

following communities: Programmers (PROG) (PRO), Project Management (PM) (PMS), and Software631

Quality Assurance & Testing (SQA) (SQA). The Reverse Engineering (RE) (RES) community needs632

further investigation to understand whether it is a good source or not. On the other hand, we do not633

recommend Software Recommendations (SREC) (SRS) community, since it is focused on tools in general,634

not tools to support software engineering practice.635

Many problems were observed with systematic reviews search strings. Some SRs present mal-636

formed search strings, or even do not report them at all. This hinders replicability, one important637

characteristics of systematic methods proposed by EBSE community. Part of the low quantity of practi-638

tioners’ issues is related to poorly defined systematic reviews’ search strings. Seven out of 24 SRs search639

strings did not return any issue. This occurred due to search strings with few key terms, key terms with no640

synonyms, or key terms with composed synonyms only. Additionally, one main reason for the excess of641

false positives is also poorly defined search strings. For instance, search strings using rather common642

22/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

terms. Despite systematic reviews’ search strings were not originally defined to search for practitioners’643

issues in Q&A platforms like Stack Exchange, such poorly defined search strings can lead to problems644

even using them with their original purpose, which is to find primary studies in search engines. On Da645

Silva et al.’s tertiary study (30), which is based on two other tertiary studies ((64; 65)), each of the 120646

systematic reviews was evaluated on their quality. The evaluation was based on a questionnaire with four647

questions, and one of those questions was “Are the review’s inclusion and exclusion criteria described and648

appropriate?”. We believe a similar question should be added to their quality questionnaire: “If the review649

uses automatic search, are the review’s search string described and appropriate?”. This would increase650

quality of SRs, specially their potential to be fully replicated.651

Only 1.75% of most relevant practitioners’ issues are related to the selected systematic reviews.652

This shows SRs are still far from touch the whole spectrum of topics discussed by practitioners. It is653

important to reinforce that related issues are not the same of covered issues. One related issue needs to654

belong to the same SE area of the SR, whereas a covered issue needs one SR with at least one finding that655

helps to solve the issue.656

Only 14.1% of the 424 practitioners’ issues related to the selected SRs are covered. This suggests657

the selected SRs are also facing a difficult time to provide evidence covering specific issues faced by658

practitioners. We presented some guidelines to support researchers wanting to conduct SRs more659

connected with practitioners’ issues.660

Practitioners’ issues related to nine out of the 15 SWEBOK SE areas are covered in some661

extent by the selected SRs. None SE areas presented a coverage rate above 50%. The two SE areas662

with higher coverage rate are Software Engineering Economics and Software Testing with 36.3% and663

26.6% respectively. None issues related to Software Design are covered by the selected SRs. Additionally,664

the selected SRs’ search strings could not find any issue related to the following SE areas: Software665

Configuration Management, Software Quality, Computing Foundations, Mathematical Foundations, and666

Engineering Foundations.667

We identified 45 recurrent issues distributed in many SE areas. The three most recurrent issues668

are: Applicability of agile in specific project context (19 issues); Introducing and adapting a software669

development process in specific context (14 issues); and Strategies to cost and effort estimation in specific670

contexts (13 issues).671

There are practitioners explicitly asking for scientific empirical evidence in Stack Exchange672

communities. This shows there is interest in empirical evidence from practitioners side, as also observed673

in (26).674

Many practitioners’ issues ask for recommendations of tools with specific features. Systematic675

reviews identifying tools, comparing their features, and aggregating evidence about their effectiveness676

could help to cover that gap. One example of such study is the one conducted by Marshall et al. (73) that677

identified analyzed and compared tools to support SRs in SE based on their features. Another approach678

with direct implications for tool builders is to identify features demanded for SE tools based on issues679

posted in Stack Exchange communities. An example of this approach can be found in Pinto and Kamei’s680

study (83), which investigated practitioners’ issues in Stack Exchange communities to identify the most681

demanded features for refactoring tools.682

Practitioners demand contextualized information. This can be observed by looking at recurrent683

issues like: Benefits of agile methods/practices from a specific perspective; Applicability of agile in684

specific project context; and Effort estimation in agile in specific project context. This supports many685

claims about importance of rich and contextualized evidence (24; 39; 8).686

Practitioners demand target oriented information. For instance, we identified the following687

recurrent issue: Benefits of agile methods/practices from a specific perspective. This situation corroborates688

the idea that empirical evidence should comprise not only data about the effectiveness of an intervention689

but also useful information for the target audience (8). For instance, cost-effectiveness. We also identified690

other issues that report the need of information from other specific perspectives beyond monetary, such as,691

from the perspective of developers, managers, testers, customers, and others.692

We identified 15 recurrent issues related to agile software development comprising 127 practi-693

tioners’ issues. This is almost one-third of the issues we have found in this study, which means agile694

is still an important topic in practice. Two recurrent issues reveal practitioners are facing problems695

that challenge some of the basic agile principles, which can be observed when practitioners report Low696

customer collaboration or when they acknowledge not desirable Impacts of low detail level or absence of697

23/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

documentation in agile. Another revealing recurrent issue is practitioners affirming to have experienced698

Ad-hoc software development as agile, corroborating some evidences and claims that in some situations699

agile is used as an excuse for absence of software process (46; 22). Additionally, we identified practition-700

ers are facing problems Mixing agile with traditional methods/practices, and demanding evidence about701

applicability of Pair programming to transfer knowledge, among many other recurrent issues.702

Guidelines for Conducting Systematic Reviews Considering Practitioners’ Issues703

After applying the proposed coverage analysis, we observed that some studies have room for improvement704

and if researchers adopt few guidelines, those SRs might address a wide range of practitioners’ issues.705

We also would like to reinforce that not all SRs need to approach practical issues. We recognize there706

are plenty of systematic reviews exploring abstract and methodological aspects that do not necessarily707

interest practitioners and are still important to the development of EBSE. For this kind of SRs, there are708

no advantages of pursuing our guidelines. Following are our recommendations:709

• Test systematic review’s search string on Stack Exchange at early stages of study planning:710

We believe one who wants to conduct a systematic review with useful findings to practitioners can711

adopt a similar research strategy we presented here: assess on early stages – protocol definition –712

how its research relates to the practitioners’ issues on Stack Exchange. The insights found at Stack713

Exchange can be included in systematic review’s scope of investigation during its planning phase.714

• Test systematic review’s search string on Stack Exchange when planning to update an al-715

ready existent systematic review: Querying Stack Exchange may reveal candidate updates of the716

original research questions and opportunities to cover issues demanded in practice.717

• Mitigate problems that prevent SR to well-cover practitioners’ issues: During this research718

we identified some key problems that hinder practitioners’ issues coverage as well as their causes.719

They are either related to poorly defined search strings or to a research scope that does not consider720

practitioners’ issues. In Table 19 we defined actions as suggestions to mitigate those problems721

during an SR planning phase. The table should be read as following: To avoid <problem> caused722

by <problem cause>, I should <mitigation action>. For example, To avoid excess of false positives723

caused by systematic reviews using rather common terms in their search strings, I should avoid724

general key terms on the search string unless they are connected by an AND operator with specific725

key terms.726

• Select high-quality primary studies: The proposed coverage analysis is based on systematic727

reviews. However, the quality of these reviews is subject to the quality of the primary studies728

selected. If the primary studies found are all of rather poor quality, then it will be difficult to place729

great confidence in outcomes. Therefore, researchers should place additional care when deriving730

inclusion/exclusion criterion.731

Table 19. Mitigating actions to avoid problems that prevent coverage of practitioners’ issues.

PROBLEM PROBLEM CAUSE MITIGATING ACTION

3*
No practitioners’

issues returned by

the search

Search string with too much key terms
Reduce the amount of key terms, since they are connected by the
AND operator, that is restrictive

Search string with no synonyms
Use synonyms for each key term to increase the possibility to find
related issues

Search string with key term with composed
synonyms only

Mix composed synonyms with not composed ones, since the former
is more unlikely to happen in the exact order on the issues

1*
Excess of False

positives

Systematic reviews using rather common
terms in their search strings

Avoid general key terms on search strings unless they are connected
by an AND operator with specific key terms.

2* Not Covered Issues
Issues reporting scenarios systematic re-
views do not fully cover

If possible, include the scenario on the systematic review’s scope,
since it can enriches the study

Issues using approaches available/popular af-
ter the systematic review was conducted

This should not occur when one assess Stack Exchange questions
during early stages of systematic review planning. But if it occurs,
this suggests maybe the area of research is outdated

The Need of Tertiary Studies732

This research study is primarily based on Da Silva et al.’s tertiary study (30). Da Silva et al.’s (30) is an733

extension of two other tertiary studies. The original tertiary study found 20 unique studies reporting SRs734

24/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

published between 1st January 2004 and 30th June 2008 (64). The first extension found 33 additional735

unique studies published between 1st January 2004 and 30th June 2008 (65). The study of Da Silva et736

al. (30) added 67 new systematic reviews, comprehending a total of 120 systematic reviews. These737

systematic reviews range from 1st January 2004 to 31th December 2009. However, with the steady738

stream of new systematic reviews conducted on a regular basis, it is expected that this tertiary study does739

not cover the new advances made in recent years. Therefore, we believe there is an urgent need for, at740

least, an update on this tertiary study since, to the best of our knowledge, Da Silva’s study is the most741

comprehensive and up-to-date tertiary study mapping systematic reviews in software engineering as a742

whole.743

Some tertiary studies were published after 2011, but none focus on SRs in software engineering as a744

whole. They either investigate methodological aspects of SRs or explore a narrower specific SE topic.745

Examples of the former are: a tertiary study conducted by Cruzes and Dybå (28) that identified which746

syntheses methods have been used in SRs; a tertiary study by Da Silva et al. (31) that critically appraised747

SRs from their research questions perspective; a tertiary study of Ali and Petersen (9) that investigated748

strategies used to selected primary studies in SRs; and a tertiary study conducted by Zhou et al. (106) that749

investigated how SRs assess quality of the primary studies they include. Examples of the latter - tertiary750

studies that explore a narrower specific topic of SE - are: Marques et al.’s tertiary study (72) on distributed751

software development; Santos et al.’s tertiary study (29) also on distributed software development; Verner752

et al.’s tertiary study (100) on global software development; Bano et al.’s tertiary study (11) on software753

requirements; Goulão et al.’s tertiary study (42) on model-driven engineering; Garousi et al.’s tertiary754

study (41) on software testing; and the tertiary study of Hoda et al. (48) on agile software development.755

The Lack of Studies Targeting Other Stack Exchange Communities756

Our study is based on five Stack Exchange communities. However, as we shall, even though there is a757

plethora of studies that rely on Stack Overflow, the most popular and largest Stack Exchange community,758

there are few studies built upon any of the remaining Stack Exchange communities. This lack of studies is759

not related to a lack of opportunities. On the contrary, we believe there are ample benefits for exploring760

these different communities, because:761

1. They host a diverse set of practitioners (e.g., while Unix and Linux users can be found at the Unix762

community4), database administrators can be found at the DBA community5).763

2. They employ the same gamification mechanism Stack Overflow uses for guaranteeing quality of764

both questions and answers. Still, Area51 staging zone6 monitors how well these communities are765

(regarding activity, followers, and percentage of answered questions).766

It is clear that Stack Overflow is the facto community to go when exploring issues intrinsic related to767

coding activities. However, since software development is much more than just coding, when non-coding768

or community specific issues are relevant, these different Stack Exchange communities can play an769

important role.770

LIMITATIONS771

As any empirical study, this one has it is particular limitations. Here we acknowledge the ones we772

identified.773

• The selected SRs came from a tertiary study published in 2011. This is the most up-to-date tertiary774

study we could find. Thus, issues coverage might be pessimistic since newer SRs may be able to775

cover more issues.776

• The scope is limited to how systematic reviews cover practitioners’ issues since they can provide777

more consolidated and mature evidence to practice than primary isolated studies (67). Though, not778

covered issues can occur due to either absence of SRs or absence of primary studies. The former can779

be mitigated conducting a systematic review providing evidence that helps to solve the issue. The780

4http://unix.stackexchange.com/
5http://dba.stackexchange.com/
6http://area51.stackexchange.com/

25/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

latter demands an effort of the research community as whole since if there are no primary studies781

on a specific issue, there is no chance to exist SRs covering that issue. To determine why there are782

few or no SRs covering specific practitioners’ issues is out of the scope of this study, as well as to783

investigate the coverage of practitioners’ issues by primary studies. Thus, it is possible there are784

primary studies that could provide evidence to cover some practitioners’ issues we identified, but785

this is beyond of our scope of investigation.786

• Practitioners’ issues returned by Stack Exchange searches are sensible to SRs search strings. Poor787

search strings might lead to poor results. On the other side, identification of SRs with poor search788

strings is a finding itself. Researchers might test their search strings in Stack Exchange to understand789

how they are connected with practice.790

• The method we proposed cannot be fully automated. The only phase that was automated was the791

selection of related questions. A search engine based on Apache Lucene was built to automate792

this process. The remaining phases were conducted manually. To mitigate classification bias, we793

conducted it in pairs, with conflict resolution meetings.794

• One might argue that instead of using five different Stack Exchange communities, we should favor795

Stack Overflow, the most popular Stack Exchange community. However, Stack Overflow is focused796

on programming and, therefore, it demands questions to have a specific, concrete technical answer797

(e.g., the best Stack Overflow questions present a code snippet (76)). Such questions rarely fit in798

topics investigated in the SE research literature.799

• Our results cannot be extended to other Q&A communities (e.g., Yahoo Answers, Quora, Experts800

Exchange), neither all Stack Exchange communities. To mitigate the risk of not taking into account801

relevant Stack Exchange communities, we classified all communities according to all software802

engineering areas listed by SWEBOK (21) and selected only those related to at least one SE area803

(Table 2).804

• Systematic reviews may be useful for practitioners even if they do not provide guidelines. For805

instance, practitioners might get acquainted with an emerging topic or new results. However, we806

argue that the lack of guidelines represent a serious limitation on these studies, since their absence807

might leave the reader with no clear answer (e.g., should I use pair programming in my context?).808

That is why we excluded SRs that do not present guidelines to practitioners.809

• Finally, we selected Stack Exchange’s issues based on their score. This approach might favor old810

questions since it takes a time to a question have a high score. Although there are several other811

ways to select issues in Stack Exchange communities, score is a common property used in software812

engineering studies for filtering out relevant issues, avoiding low-quality ones (96).813

RELATED WORK814

In this section, we describe the studies overlapping with the scope of our work.815

Empirical Studies on Stack Exchange communities816

Software engineering community has recognized the importance of Stack Exchange, with significant817

efforts placed on understanding practitioners’ needs and challenges they face. Most studies about Stack818

Exchange focus on understanding the dynamics of one particular community: Stack Overflow (71; 95; 12)).819

Notable exceptions are the work of Posnett et al. (84), which focus on serverfault7, the second largest Stack820

Exchange community, and the study of Vasilescu et al. (99), which used CrossValidated, a community for821

statisticians, data analysts, data miners, and data visualization experts8. In contrast, there are some studies822

focusing on understanding what problems practitioners face, for instance, software methodologies (81),823

techniques (82), and tools (85) in these communities.824

Pinto et al. (82) selected the most popular questions about concurrency created on Stack Overflow.825

They observed the majority of questions are asking for guidance on theoretical concepts (e.g., what is826

the difference between a thread and a process?). Despite concurrency textbooks have discussed these827

7http://serverfault.com/
8http://stats.stackexchange.com/

26/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

problems in length, the authors suggested more effort should be placed on improving the documentation828

of concurrency APIs and frameworks. In another study, Pinto et al. (81) manually investigated 300+829

questions about software energy consumption. They found that even though practitioners are interested830

in this subject, they lack property tool support. Reboucas et al. (85) studied the benefits and drawbacks831

of being an early adopter of Swift, a programming language that is bound to be widely adopted. They832

analyzed around 60,000 questions about Swift using a topic modeling technique and observed that833

Swift developers have problems with basic language constructs and the toolset. However, none of these834

studies are interested in understanding if systematic reviews can be used to answer questions raised by835

practitioners. The closest work to this research is Garousi et al.’s (41), but it proposes Stack Exchange as836

evidence source, as gray literature for SRs, not as a source to analyze how SRs cover practitioners’ issues.837

Our work is unique in the sense we take advantage of the Q&A communities rich databases to empower838

researchers wanting to assess how their SRs are aligned with practitioners’ issues.839

Relevance of Software Engineering Research to Practitioners:840

Since software engineering is an applied discipline, there are some efforts reported aiming to connect841

research to practitioners. In 2013, Begel et al. (17) released a technical report presenting 145 questions842

that 203 Microsoft software engineers would like to ask data scientists to investigate about software843

engineering. Additionally, they asked for a different set of Microsoft software engineers to rank the844

importance of each of the 145 questions. Another study with Microsoft software engineers was conducted845

in 2015 by Lo et al. (68). In this study, the goal was to understand how practitioners perceive software846

engineering research relevance. They summarized 571 papers from five years of ICSE, ESEC/FSE and847

FSE conferences and asked practitioners to rate them according to their relevance. They received ratings848

from 512 practitioners, and their results suggest that practitioners are positive towards studies done by849

the software engineering research community since 71% of all ratings were essential or worthwhile. We850

believe in some ways our research is complementary with those two we mentioned. This research is851

focused only on systematic reviews to bring insights to EBSE community, while the others are focused on852

software engineer research as a whole. Their study is limited to Microsoft engineers, while this research853

is conducted based on practitioners data from potentially any company and country in the world since854

our data source is the Stack Exchange communities. On the other hand, they could collect demographic855

data about practitioners, and we could not since Stack Exchange does not provide a native chat or private856

messaging system allowing to contact questions’ authors.857

CONCLUDING REMARKS AND FUTURE WORK858

In this paper, we conducted a study to measure how well systematic reviews cover practitioners’ issues.859

To do so, we selected a set of SRs identified in a tertiary study (30). For each study, we extracted its860

search string, and use it to select questions in Stack Exchange communities, a popular Q&A platform. We861

analyzed more than 1,800 practitioners’ issues and 424 issues were considered related to the selected SRs.862

From that set, 60 (14.1%) were considered covered by the selected SRs’ findings. Among the 424 issues,863

we could identify 45 recurrent issues distributed in many SE areas.864

There are practitioners explicitly asking for scientific empirical evidence in Stack Exchange communi-865

ties, which shows interest in empirical evidence from the practitioners’ side. Many practitioners’ issues866

ask for recommendations of tools with specific features. We provided some guidance for researchers who867

want to conduct SRs aiming to fill that gap. We also observed practitioners demanding contextualized868

information, which shows the importance to produce and report highly contextualized evidence. Practi-869

tioners also demand target oriented information. Thus, just measuring the effectiveness of an intervention870

is not enough to satisfy specific audiences. Evidence about cost-effectiveness and the impact of an871

intervention on aspects that concern stakeholders with specific perspective such as developers, managers,872

and customers are demanded. Agile was the topic with more practitioners’ issues related to. We could873

identify 15 recurrent issues related to agile software development, comprising 127 practitioners’ issues.874

As any empirical study, this has limitations. Some of the limitations include: (1) the selection of SRs875

based on a tertiary study published in 2011, (2) a qualitative-based method, which can be error-prone, and876

(3) the use of a handful number of Q&A communities. These limitations were properly discussed and877

mitigate throughout this study.878

As future work, we plan to leverage machine learning techniques for automatically extracting SRs’879

findings. Ultimately, this approach can be implemented as a third-party service, so that researchers can880

27/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

upload their SRs, and the service would automatically query and return the issues found in selected881

Stack Exchange communities. This might reduce the burden researchers have when evaluating their882

search strings. Another opportunity for future work is to replicate our approach in software engineering883

sub-fields. This is further motivated by the recent introduction of niche-specific tertiary studies. We leave884

this for future work.885

REFERENCES886

[fit] Fitnesse - the fully integrated standalone wiki and acceptance testing framework. http://www.887

fitnesse.org. Acessed in: Nov. 4, 2016.888

[agi] Manifesto for agile software development. http://agilemanifesto.org. Acessed in: Feb.889

1, 2017.890

[PRO] Stackexchange programmers community. http://programmers.stackexchange.com.891

Acessed in: Nov. 4, 2016.892

[PMS] Stackexchange project management community. http://pm.stackexchange.com.893

Acessed in: Nov. 4, 2016.894

[RES] Stackexchange reverse engineering community. http://reverseengineering.895

stackexchange.com. Acessed in: Nov. 4, 2016.896

[SQA] Stackexchange software quality & testing community. http://sqa.stackexchange.com.897

Acessed in: Nov. 4, 2016.898

[SRS] Stackexchange software recommendations community. http://softwarerecs.899

stackexchange.com. Acessed in: Nov. 4, 2016.900

[8] Ali, N. b. (2016). Is effectiveness sufficient to choose an intervention?: Considering resource use in901

empirical software engineering. In 10th ESEM, pages 54:1–54:6.902

[9] Ali, N. B. and Petersen, K. (2014). Evaluating strategies for study selection in systematic literature903

studies. In Proceedings of the 8th ACM/IEEE International Symposium on Empirical Software904

Engineering and Measurement, ESEM ’14, pages 45:1–45:4, New York, NY, USA. ACM.905

[10] Anderson, N. B. (2006). Evidence-based practice in psychology. American Psychologist, 61(4):271–906

285.907

[11] Bano, M., Zowghi, D., and Ikram, N. (2014). Systematic reviews in requirements engineering: A908

tertiary study. In 2014 IEEE 4th International Workshop on Empirical Requirements Engineering909

(EmpiRE), pages 9–16.910

[12] Barua, A., Thomas, S. W., and Hassan, A. E. (2014). What are developers talking about? an analysis911

of topics and trends in stack overflow. Empirical Software Engineering, 19(3):619–654.912

[13] Baxter, I. D., Yahin, A., Moura, L., Sant’Anna, M., and Bier, L. (1998). Clone detection using913

abstract syntax trees. In Proceedings of the International Conference on Software Maintenance, ICSM914

’98, pages 368–.915

[14] Bazelli, B., Hindle, A., and Stroulia, E. (2013). On the personality traits of stackoverflow users. In916

2013 IEEE International Conference on Software Maintenance, pages 460–463.917

[15] Beecham, S., O’Leary, P., Baker, S., Richardson, I., and Noll, J. (2014). Making software engineering918

research relevant. Computer, 47(4):80–83.919

[16] Begel, A. and Nagappan, N. (2007). Usage and perceptions of agile software development in an920

industrial context: An exploratory study. In First International Symposium on Empirical Software921

Engineering and Measurement (ESEM 2007), pages 255–264.922

[17] Begel, A. and Zimmermann, T. (2014). Analyze this! 145 questions for data scientists in software923

engineering. In Proceedings of the 36th International Conference on Software Engineering, ICSE924

2014, pages 12–23, New York, NY, USA. ACM.925

[18] Bellman, L., Webster, J., and Jeanes, A. (2011). Knowledge transfer and the integration of research,926

policy and practice for patient benefit. Journal of Research in Nursing, 16(3):254–270.927

[19] Bjørnson, F. O. and Dingsøyr, T. (2008). Knowledge management in software engineering: A928

systematic review of studied concepts, findings and research methods used. Information and Software929

Technology, 50(11):1055 – 1068.930

[20] Booth, W. C., Colomb, G. G., and Williams, J. M. (2003). The craft of research. University of931

Chicago press.932

[21] Bourque, P. and Fairley, R. E., editors (2014). SWEBOK: Guide to the Software Engineering Body of933

Knowledge. IEEE Computer Society, Los Alamitos, CA, version 3.0 edition.934

28/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

[22] Cao, L. and Ramesh, B. (2007). Agile software development: Ad hoc practices or sound principles?935

IT Professional, 9(2):41–47.936

[23] Cartaxo, B. (2016). Integrating evidence from systematic reviews with software engineering practice937

through evidence briefings. In Proceedings of the 20th International Conference on Evaluation and938

Assessment in Software Engineering, EASE ’16, pages 6:1–6:4, New York, NY, USA. ACM.939

[24] Cartaxo, B., Almeida, A., Barreiros, E., Saraiva, J., Ferreira, W., and Soares, S. (2015). Mechanisms to940

characterize context of empirical studies in software engineering. In Experimental Software Engineering941

Latin American Workshop (ESELAW 2015), pages 1–14.942

[25] Cartaxo, B., Pinto, G., Ribeiro, D., Kamei, F., Santos, R. E. S., da Silva, F. Q. B., and Soares, S.943

(2017). Using q&a websites as a method for assessing systematic reviews. In Proceedings of the 14th944

International Conference on Mining Software Repositories, MSR ’17, pages 238–242.945

[26] Cartaxo, B., Pinto, G., Vieira, E., and Soares, S. (2016). Evidence briefings: Towards a medium to946

transfer knowledge from systematic reviews to practitioners. In Proceedings of the 10th ACM/IEEE947

International Symposium on Empirical Software Engineering and Measurement, ESEM ’16, pages948

57:1–57:10, New York, NY, USA. ACM.949

[27] Chen, F. and Kim, S. (2015). Crowd debugging. In Proceedings of the 2015 10th Joint Meeting on950

Foundations of Software Engineering, ESEC/FSE 2015, pages 320–332.951

[28] Cruzes, D. S. and Dybå, T. (2011). Research synthesis in software engineering: A tertiary study.952

Information and Software Technology, 53(5):440 – 455. Special Section on Best Papers from {XP2010}.953

[29] d. Santos, A. C. C., d. F. Junior, I. H., d. Moura, H. P., and Marczak, S. (2012). A systematic954

tertiary study of communication in distributed software development projects. In 2012 IEEE Seventh955

International Conference on Global Software Engineering, pages 182–182.956

[30] da Silva, F. Q., Santos, A. L., Soares, S., França, A. C. C., Monteiro, C. V., and Maciel, F. F.957

(2011). Six years of systematic literature reviews in software engineering: An updated tertiary study.958

Information and Software Technology, 53(9):899 – 913. Studying work practices in Global Software959

Engineering.960

[31] da Silva, F. Q. B., Santos, A. L. M., Soares, S. C. B., França, A. C. C., and Monteiro, C. V. F. (2010).961

A critical appraisal of systematic reviews in software engineering from the perspective of the research962

questions asked in the reviews. In Proceedings of the 2010 ACM-IEEE International Symposium on963

Empirical Software Engineering and Measurement, ESEM ’10, pages 33:1–33:4, New York, NY, USA.964

ACM.965

[32] Damian, D. and Borici, A. (2012). Teamwork, coordination and customer relationship management966

skills: As important as technical skills in preparing our se graduates. In 2012 First International967

Workshop on Software Engineering Education Based on Real-World Experiences (EduRex), pages968

37–40.969

[33] Davies, P. (1999). What is evidence-based education? British journal of educational studies,970

47(2):108–121.971

[34] Davis, A., Dieste, O., Hickey, A., Juristo, N., and Moreno, A. M. (2006). Effectiveness of require-972

ments elicitation techniques: Empirical results derived from a systematic review. In Proceedings of the973

14th IEEE International Requirements Engineering Conference, RE ’06, pages 176–185, Washington,974

DC, USA. IEEE Computer Society.975

[35] Dias-Neto, A. C. and Travassos, G. H. (2009). Model-based testing approaches selection for software976

projects. Information and Software Technology, 51(11):1487 – 1504. Third {IEEE} International977

Workshop on Automation of Software Test (AST 2008)Eighth International Conference on Quality978

Software (QSIC 2008).979

[36] DiCenso, A., Cullum, N., and Ciliska, D. (1998). Implementing evidence-based nursing: some980

misconceptions. Evidence Based Nursing, 1(2):38–39.981

[37] Dubinsky, Y., Ravid, S., Rafaeli, A., and Bar-Nahor, R. (2011). Governance mechanisms in global982

development environments. In 2011 IEEE Sixth International Conference on Global Software Engi-983

neering, pages 6–14.984

[38] Dybå, T. and Dingsøyr, T. (2008). Empirical studies of agile software development: A systematic985

review. Information and Software Technology, 50(9–10):833 – 859.986

[39] Dybå, T., Sjøberg, D. I., and Cruzes, D. S. (2012). What works for whom, where, when, and why?: On987

the role of context in empirical software engineering. In Proceedings of the ACM-IEEE International988

Symposium on Empirical Software Engineering and Measurement, ESEM ’12, pages 19–28, New York,989

29/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

NY, USA. ACM.990

[40] Farrington, D. P., MacKenzie, D. L., Sherman, L. W., Welsh, B. C., et al. (2003). Evidence-based991

crime prevention. Routledge.992

[41] Garousi, V., Felderer, M., and Mäntylä, M. V. (2016). The need for multivocal literature reviews in993

software engineering: Complementing systematic literature reviews with grey literature. EASE ’16,994

pages 26:1–26:6, New York, NY, USA. ACM.995

[42] Goulão, M., Amaral, V., and Mernik, M. (2016). Quality in model-driven engineering: a tertiary996

study. Software Quality Journal, 24(3):601–633.997

[43] Hannay, J. E., Dybå, T., Arisholm, E., and Sjøberg, D. I. (2009). The effectiveness of pair program-998

ming: A meta-analysis. Information and Software Technology, 51(7):1110 – 1122. Special Section:999

Software Engineering for Secure SystemsSoftware Engineering for Secure Systems.1000

[44] Hassler, E., Carver, J. C., Kraft, N. A., and Hale, D. (2014). Outcomes of a community workshop1001

to identify and rank barriers to the systematic literature review process. In Proceedings of the 18th1002

International Conference on Evaluation and Assessment in Software Engineering, EASE ’14, pages1003

31:1–31:10, New York, NY, USA. ACM.1004

[45] Haugset, B. and Hanssen, G. K. (2008). Automated acceptance testing: A literature review and an1005

industrial case study. In Agile 2008 Conference, pages 27–38.1006

[46] Hilkka, M.-R., Tuure, T., and Rossi, M. (2005). Is extreme programming just old wine in new bottles:1007

A comparison of two cases. Journal of Database Management, 16(4):41.1008

[47] Hoda, R., Noble, J., and Marshall, S. (2011). The impact of inadequate customer collaboration on1009

self-organizing agile teams. Information and Software Technology, 53(5):521 – 534. Special Section1010

on Best Papers from {XP2010}.1011

[48] Hoda, R., Salleh, N., Grundy, J., and Tee, H. M. (2017). Systematic literature reviews in agile1012

software development: A tertiary study. Information and Software Technology, pages –.1013

[49] Hordijk, W., Ponisio, M. L., and Wieringa, R. (2009). Harmfulness of code duplication: A structured1014

review of the evidence. In Proceedings of the 13th International Conference on Evaluation and1015

Assessment in Software Engineering, EASE’09, pages 88–97, Swinton, UK, UK. British Computer1016

Society.1017

[50] Hossain, E., Babar, M. A., and y. Paik, H. (2009). Using scrum in global software development:1018

A systematic literature review. In 2009 Fourth IEEE International Conference on Global Software1019

Engineering, pages 175–184.1020

[51] Hunold, S., Krellner, B., Rauber, T., Reichel, T., and Rünger, G. (2009). Pattern-based refactoring of1021

legacy software systems. In International Conference on Enterprise Information Systems, pages 78–89.1022

Springer.1023

[52] Insfran, E. and Fernandez, A. (2008). A Systematic Review of Usability Evaluation in Web Develop-1024

ment, pages 81–91. Springer Berlin Heidelberg, Berlin, Heidelberg.1025

[53] Ivarsson, M. and Gorschek, T. (2009). Technology transfer decision support in requirements engi-1026

neering research: a systematic review of rej. Requirements Engineering, 14(3):155–175.1027

[54] Jedlitschka, A., Juristo, N., and Rombach, D. (2014). Reporting experiments to satisfy professionals’1028

information needs. Empirical Softw. Engg., 19(6):1921–1955.1029

[55] Jiménez, M., Piattini, M., and Vizcaı́no, A. (2009). Challenges and improvements in distributed1030

software development: A systematic review. Adv. Soft. Eng., 2009:3:1–3:16.1031

[56] Jorgensen, M. (2005). Evidence-based guidelines for assessment of software development cost1032

uncertainty. IEEE Transactions on Software Engineering, 31(11):942–954.1033

[57] Jørgensen, M. (2007). Forecasting of software development work effort: Evidence on expert1034

judgement and formal models. International Journal of Forecasting, 23(3):449 – 462.1035

[58] Kalinowski, M., Travassos, G. H., and Card, D. N. (2008). Towards a defect prevention based process1036

improvement approach. In 2008 34th Euromicro Conference Software Engineering and Advanced1037

Applications, pages 199–206.1038

[59] Kavaler, D., Posnett, D., Gibler, C., Chen, H., Devanbu, P., and Filkov, V. (2013). Using and1039

asking: Apis used in the android market and asked about in stackoverflow. In Proceedings of the 5th1040

International Conference on Social Informatics - Volume 8238, SocInfo 2013, pages 405–418, New1041

York, NY, USA. Springer-Verlag New York, Inc.1042

[60] Khan, S., Niazi, M., and Ahmad, R. (2009a). Critical success factors for offshore software develop-1043

ment outsourcing vendors: A systematic literature review. In ICGSE.1044

30/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

[61] Khan, S. U., Niazi, M., and Ahmad, R. (2009b). Critical barriers for offshore software development1045

outsourcing vendors: A systematic literature review. In 2009 16th Asia-Pacific Software Engineering1046

Conference, pages 79–86.1047

[62] Kitchenham, B. and Charters, S. (2007). Guidelines for performing systematic literature reviews in1048

software engineering. Technical report, Technical report, EBSE Technical Report EBSE-2007-01.1049

[63] Kitchenham, B., Mendes, E., and Travassos, G. H. (2006). A systematic review of cross- vs. within-1050

company cost estimation studies. In Proceedings of the 10th International Conference on Evaluation1051

and Assessment in Software Engineering, EASE’06, pages 81–90, Swinton, UK, UK. British Computer1052

Society.1053

[64] Kitchenham, B., Pearl Brereton, O., Budgen, D., Turner, M., Bailey, J., and Linkman, S. (2009).1054

Systematic literature reviews in software engineering - a systematic literature review. Inf. Softw.1055

Technol., 51(1):7–15.1056

[65] Kitchenham, B., Pretorius, R., Budgen, D., Pearl Brereton, O., Turner, M., Niazi, M., and Linkman,1057

S. (2010). Systematic literature reviews in software engineering - a tertiary study. Inf. Softw. Technol.,1058

52(8):792–805.1059

[66] Kitchenham, B. A., Dyba, T., and Jorgensen, M. (2004). Evidence-based software engineering. In1060

Proceedings of the 26th International Conference on Software Engineering, ICSE ’04, pages 273–281,1061

Washington, DC, USA. IEEE Computer Society.1062

[67] Lavis, J. N., Robertson, D., Woodside, J. M., McLeod, C. B., and Abelson, J. (2003). How can1063

research organizations more effectively transfer research knowledge to decision makers? Milbank1064

quarterly, 81(2):221–248.1065

[68] Lo, D., Nagappan, N., and Zimmermann, T. (2015). How practitioners perceive the relevance of1066

software engineering research. In Proceedings of the 2015 10th Joint Meeting on Foundations of1067

Software Engineering, ESEC/FSE 2015, pages 415–425, New York, NY, USA. ACM.1068

[69] Lopez, A., Nicolas, J., and Toval, A. (2009). Risks and safeguards for the requirements engineering1069

process in global software development. In Proceedings of the 2009 Fourth IEEE International1070

Conference on Global Software Engineering, ICGSE ’09, pages 394–399, Washington, DC, USA.1071

IEEE Computer Society.1072

[70] Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., and Hartmann, B. (2011a). Design lessons1073

from the fastest q&a site in the west. In Proceedings of the SIGCHI Conference on Human Factors in1074

Computing Systems, CHI ’11, pages 2857–2866, New York, NY, USA. ACM.1075

[71] Mamykina, L., Manoim, B., Mittal, M., Hripcsak, G., and Hartmann, B. (2011b). Design lessons1076

from the fastest q&a site in the west. In Proceedings of the SIGCHI Conference on Human Factors in1077

Computing Systems, CHI ’11, pages 2857–2866, New York, NY, USA. ACM.1078

[72] Marques, A. B., Rodrigues, R., and Conte, T. (2012). Systematic literature reviews in distributed1079

software development: A tertiary study. In 2012 IEEE Seventh International Conference on Global1080

Software Engineering, pages 134–143.1081

[73] Marshall, C. et al. (2014). Tools to support systematic reviews in software engineering: A feature1082

analysis. In Proceedings of the 18th International Conference on Evaluation and Assessment in1083

Software Engineering, EASE ’14, pages 13:1–13:10, New York, NY, USA. ACM.1084

[74] McKibbon, K. (1998). Evidence-based practice. Bulletin of the Medical Library Association,1085

86(3):396.1086

[75] Mohagheghi, P., Dehlen, V., and Neple, T. (2009). Definitions and approaches to model quality in1087

model-based software development - a review of literature. Inf. Softw. Technol., 51(12):1646–1669.1088

[76] Nasehi, S. M., Sillito, J., Maurer, F., and Burns, C. (2012). What makes a good code example?:1089

A study of programming q amp;a in stackoverflow. In 2012 28th IEEE International Conference on1090

Software Maintenance (ICSM), pages 25–34.1091

[77] Nicolás, J. and Toval, A. (2009). On the generation of requirements specifications from software1092

engineering models: A systematic literature review. Information and Software Technology, 51(9):12911093

– 1307.1094

[78] Papazoglou, M. P. (2003). Service-oriented computing: concepts, characteristics and directions. In1095

Proceedings of the Fourth International Conference on Web Information Systems Engineering, 2003.1096

WISE 2003., pages 3–12.1097

[79] Parnin, C. and Treude, C. (2011). Measuring api documentation on the web. In Proceedings of the1098

2Nd International Workshop on Web 2.0 for Software Engineering, Web2SE ’11, pages 25–30.1099

31/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

[80] Pino, F. J., Garcı́a, F., and Piattini, M. (2008). Software process improvement in small and medium1100

software enterprises: a systematic review. Software Quality Journal, 16(2):237–261.1101

[81] Pinto, G., Castor, F., and Liu, Y. D. (2014). Mining questions about software energy consumption.1102

In Proceedings of the 11th Working Conference on Mining Software Repositories, MSR 2014, pages1103

22–31, New York, NY, USA. ACM.1104

[82] Pinto, G., Torres, W., and Castor, F. (2015). A study on the most popular questions about concurrent1105

programming. In Proceedings of the 6th Workshop on Evaluation and Usability of Programming1106

Languages and Tools, PLATEAU 2015, pages 39–46, New York, NY, USA. ACM.1107

[83] Pinto, G. H. and Kamei, F. (2013). What programmers say about refactoring tools?: An empirical1108

investigation of stack overflow. In Proceedings of the 2013 ACM Workshop on Workshop on Refactoring1109

Tools, WRT ’13, pages 33–36, New York, NY, USA. ACM.1110

[84] Posnett, D., Warburg, E., Devanbu, P., and Filkov, V. (2012). Mining stack exchange: Expertise1111

is evident from initial contributions. In 2012 International Conference on Social Informatics, pages1112

199–204.1113

[85] Rebouças, M., Pinto, G., Ebert, F., Torres, W., Serebrenik, A., and Castor, F. (2016). An empirical1114

study on the usage of the swift programming language. In 2016 IEEE 23rd International Conference1115

on Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 634–638.1116

[86] Riaz, M., Mendes, E., and Tempero, E. (2009). A systematic review of software maintainability1117

prediction and metrics. In Proceedings of the 2009 3rd International Symposium on Empirical Software1118

Engineering and Measurement, ESEM ’09, pages 367–377, Washington, DC, USA. IEEE Computer1119

Society.1120

[87] Robillard, P. N. (1999). The role of knowledge in software development. Commun. ACM, 42(1):87–1121

92.1122

[88] Santos, R. E. S. and d. Silva, F. Q. B. (2013). Motivation to perform systematic reviews and their1123

impact on software engineering practice. In 2013 ACM / IEEE International Symposium on Empirical1124

Software Engineering and Measurement, pages 292–295.1125

[89] Santos, R. E. S., da Silva, F. Q. B., de Magalhães, C. V. C., and Monteiro, C. V. F. (2016). Building a1126

theory of job rotation in software engineering from an instrumental case study. In Proceedings of the1127

38th International Conference on Software Engineering, ICSE ’16, pages 971–981, New York, NY,1128

USA. ACM.1129

[90] Saraiva, J., Barreiros, E., Almeida, A., Lima, F., Alencar, A., Lima, G., Soares, S., and Castor,1130

F. (2012). Aspect-oriented software maintenance metrics: A systematic mapping study. In 16th1131

International Conference on Evaluation Assessment in Software Engineering (EASE 2012), pages1132

253–262.1133

[91] Stol, K.-J., Ralph, P., and Fitzgerald, B. (2016). Grounded theory in software engineering research:1134

A critical review and guidelines. In Proceedings of the 38th International Conference on Software1135

Engineering, ICSE ’16, pages 120–131, New York, NY, USA. ACM.1136

[92] Sykes, E. R. (2011). Interruptions in the workplace: A case study to reduce their effects. International1137

Journal of Information Management, 31(4):385 – 394.1138

[93] Trendowicz, A. and Münch, J. (2009). Chapter 6 factors influencing software development1139

productivity—state-of-the-art and industrial experiences. volume 77 of Advances in Computers,1140

pages 185 – 241. Elsevier.1141

[94] Treude, C., Barzilay, O., and Storey, M.-A. (2011a). How do programmers ask and answer questions1142

on the web? (nier track). In Proceedings of the 33rd International Conference on Software Engineering,1143

ICSE ’11, pages 804–807, New York, NY, USA. ACM.1144

[95] Treude, C., Barzilay, O., and Storey, M.-A. (2011b). How do programmers ask and answer questions1145

on the web? (nier track). In Proceedings of the 33rd International Conference on Software Engineering,1146

ICSE ’11, pages 804–807, New York, NY, USA. ACM.1147

[96] Treude, C., Prolo, C. A., and Filho, F. F. (2015). Challenges in analyzing software documentation in1148

portuguese. In 2015 29th Brazilian Symposium on Software Engineering, pages 179–184.1149

[97] Vanhanen, J. and Lassenius, C. L. (2007). Perceived effects of pair programming in an industrial1150

context. In 33rd EUROMICRO Conference on Software Engineering and Advanced Applications1151

(EUROMICRO 2007), pages 211–218.1152

[98] Vasilescu, B., Capiluppi, A., and Serebrenik, A. (2012). Gender, representation and online participa-1153

tion: A quantitative study of stackoverflow. In 2012 International Conference on Social Informatics,1154

32/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

pages 332–338.1155

[99] Vasilescu, B., Serebrenik, A., Devanbu, P., and Filkov, V. (2014). How social q&a sites are changing1156

knowledge sharing in open source software communities. In Proceedings of the 17th ACM Conference1157

on Computer Supported Cooperative Work & Social Computing, CSCW ’14, pages 342–354.1158

[100] Verner, J. M., Brereton, O. P., Kitchenham, B. A., Turner, M., and Niazi, M. (2014). Risks and risk1159

mitigation in global software development: A tertiary study. Inf. Softw. Technol., 56(1):54–78.1160

[101] Viera, A. J., Garrett, J. M., et al. (2005). Understanding interobserver agreement: the kappa statistic.1161

Fam Med, 37(5):360–363.1162

[102] Walia, G. S. and Carver, J. C. (2009). A systematic literature review to identify and classify software1163

requirement errors. Information and Software Technology, 51(7):1087 – 1109. Special Section:1164

Software Engineering for Secure SystemsSoftware Engineering for Secure Systems.1165

[103] Webb, S. A. (2001). Some considerations on the validity of evidence-based practice in social work.1166

British journal of social work, 31(1):57–79.1167

[104] Wohlin, C. (2014). Guidelines for snowballing in systematic literature studies and a replication1168

in software engineering. In Proceedings of the 18th International Conference on Evaluation and1169

Assessment in Software Engineering, EASE ’14, pages 38:1–38:10, New York, NY, USA. ACM.1170

[105] Yaman, S. G., Sauvola, T., Riungu-Kalliosaari, L., Hokkanen, L., Kuvaja, P., Oivo, M., and Männistö,1171

T. (2016). Customer Involvement in Continuous Deployment: A Systematic Literature Review, pages1172

249–265. Springer International Publishing, Cham.1173

[106] Zhou, Y., Zhang, H., Huang, X., Yang, S., Babar, M. A., and Tang, H. (2015). Quality assessment of1174

systematic reviews in software engineering: A tertiary study. In Proceedings of the 19th International1175

Conference on Evaluation and Assessment in Software Engineering, EASE ’15, pages 14:1–14:14,1176

New York, NY, USA. ACM.1177

33/33PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27610v1 | CC BY 4.0 Open Access | rec: 22 Mar 2019, publ: 22 Mar 2019

