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Abstract (200 words) 

Recent advances in omics technologies have led to the broad applicability of computational             

techniques across various domains of life science and medical research. These technologies            

provide an unprecedented opportunity to collect omics data from hundreds of thousands of             

individuals and to study gene-disease association without the aid of prior assumptions about             

the trait biology. Despite the many advantages of modern omics technologies, interpretations            

of big data produced by such technologies require advanced computational algorithms. Below I             

outline key challenges that biomedical researches are facing when ​interpreting and integrating            

big omics data. ​I discuss the reproducibility aspect of big data analysis in the life sciences and                 

review current practices in reproducible research. Finally, I explain the skills which biomedical             

researchers need to acquire in order to independently analyze big omics data. 
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Introduction 

 

Recent advances in omics technologies have led to the broad applicability of modern             

high-throughput technologies across various domains of life science and medical research.           

These technologies are capable of generating big-data sets across large-scale clinical cohorts            

allows connecting complex diseases to relevant genomic features. However, analysis of big            

data requires the use of sophisticated bioinformatics algorithms capable of differentiating           

technical noise from the biological signal in the data. The analysis of big data in life sciences                 

typically starts with the analysis of raw data and concludes with data visualization and              

interpretation of patterned data produced by analyses (​Figure 1​). While these techniques            

expand analytical opportunities, a researcher must have adequate computational skills to           

properly use bioinformatics algorithms. Learning the computational skills required s for analysis            

and interpretation of big omics data can be challenging to many life science and medical               

researchers. At present, the bioinformatics community mechanisms to researchers in          

effectively learning to analyze big omics data. 

  

Ability to leverage various types of omics datasets from large-scale clinical cohorts is             

essential to studying the functional mechanisms underlying the connections between genetics,           

immune system, and disease etiology. For example, the availability of rich omics data generated              

by the TCGA consortium​1 provides an unprecedented opportunity for the discovery of how             

genetic variation affects the development, progression, and drug response of cancerous           
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tumors​2​. Additionally, bioinformatics methods for large-scale clinical cohorts promise to identify           

novel markers prognostic of disease risk across a variety of diseases, including cancer. 

  

Despite the increasing size and complexity of datasets in the biological and medical             

sciences, many biomedical researchers today lack sufficient computational skills to analyze the            

large-scale data they generate. At present, the digital gap in contemporary biology limits the              

potential of these biomedical researchers to creatively explore their data. Further, the digital             

gap limits the collaborative potential of these biomedical researchers and computational           

scientists​3​. Training life sciences in computational techniques can potentially narrow this digital            

gap, expand the skills of biomedical researchers, and improve the ability of biomedical             

researchers to leverage the consultation services they seek with computational scientists. 
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Figure 1.  ​Workflow of ​big data ​analysis and ​interpretation in the life sciences. 

  

Bioinformatics methods in life science research 

  

During the past decade, the rapid advancement of omics technologies has led to the              

development of an enormous amount and diversity of bioinformatics algorithms across various            

fields of modern biology​4​. hen applied to high-dimensional clinical datasets, bioinformatics           

algorithms identification of novel disease subtypes and discovery of novel markers which may             

be prognostic of disease risk. Such bioinformatics algorithms are usually encapsulated as            

computational software tools​5​. The majority of bioinformatics tools are designed for UNIX            

operating system, which requires a user to operate the tools using command line--without the              

benefit of a graphical user interface (GUI). 

  

Barriers in ​interpreting and integrating big data in the life sciences 

 

A major barrier in interdisciplinary studies is a lack of a common communication style              

between researchers trained and working in increasingly specialized academic disciplines.          

Today’s big-data projects require that life science researchers either learn how to use             

command-line tools or outsource their data analysis to computational experts. Active           

engagement in analyzing data generated by life science researchers is essential to advancing             
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interdisciplinary research in the biological sciences. However, biologists and medical          

researchers often lack formal training in the use of computational techniques. Scholars have             

developed teaching models aimed to support biomedical researchers transition from using a            

graphical interface (e.g., Microsoft Excel) to UNIX command line​3​. Biomedical researchers often            

possess various levels of computational skills; workshops require adjusting the teaching pace            

for trainees who have different levels of computational background. Additionally, the ability of             

trainees to switch from a graphical interface with the assistance of a mouse to a command line                 

interface with no mouse support varies across the life science researchers.  

 

Training a life science research to use computational techniques poses unique           

challenges and requires a special approach. For example, such training does not require             

cultivating a deep understanding of fundamental computer science principles. Instead, such           

training is limited to applied learning, requiring quick assimilation of introduced techniques and             

acquired skills within the context of the research project of interest. In general, flexible              

pedagogy is preferred. For example, instead of introducing the fundamental computational           

concepts formally, such concepts are introduced on an as-needed basis, are combined with             

numerous hands-on examples, and rely on the instructor’s guidance to consolidate the            

learner’s newly-acquired knowledge. 

  

Biomedical researchers who have completed the training in computational skills often           

continue to engage with the command line and with training instructors long after the training               

session has formally ended. Researchers who have completed the workshops are also able to              
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better engage with computer scientists when seeking consultation services for their projects.            

The training model I developed ​3 has helped life science researchers to learn the “language of                

computing,” a skill that allows them to better understand what analyses can be accomplished              

with UNIX, and how to ask for specific types of help from computational scientists. 

  

Alternatively, biomedical researchers can delegate large-scale data analyses to         

bioinformatics cores. However, outsourcing analyses present several challenges. Many complex          

issues arise during the analysis of big omics data which are difficult to predict in advance. In                 

such cases, life science and biomedical research can optimize the analysis if they are adequately               

trained and remain involved in the analytical workflow. In addition, research groups utilizing             

the core often want to move the project in different directions from what was originally               

proposed. Another approach is to develop a GUI that allows researchers with a limited              

computational background to easily create, run, and troubleshoot analytical pipelines. While           

useful to researchers with a limited computational background, these interfaces may have            

limited computational capacity compared to high-performance clusters and might not suitable           

for analysis of big omics data generated from some large-scale clinical cohorts. 
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Computational resources required to analyze the big omics data 

 

Computational resources required to analyze the big omics data differs significantly           

depending on the step of the analysis. Analyses dealing with raw data typically require a               

significant amount of computational resources to perform essential tasks and space to store             

the output data. Analyzing big omics data can typically be performed only on high-performance              

clusters. For example, the analysis of differentially expressed genes based on RNA-Seq data             

starts with raw reads produced by the sequencing machines and concludes with a list of               

differentially expressed genes with corresponding gene expression fold changes. The          

computational resources and amount of storage needed to analyze and store the results of              

analysis significantly various across various step of the analysis (​Figure 2​). As a result, ​the steps                

of the analysis requiring significant computational resources and space to store the data can be               

only performed on high-performance clusters. Other steps require a smaller amount of            

resources and thus can perform locally on the personal computer or laptop. Typically, the              

analysis performed on the local machine does not require the knowledge of command line              

skills. Such analyses typically involve various statistical analyses and visualization steps, and            

these tasks can be performed using the widely popular statistical language ​R​6​. For example,              

once the gene expression levels were obtained from RNA-Seq data on the high-performance             

cluster, one can transfer them to a personal computer and locally perform differential             

expression analysis using available ​R​ packages​7​.  
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Figure 2.​  ​The amount of space needed to store the results of the sequencing analysis.   

Computational reproducibility in life science research 

An astonishing number of bioinformatics software tools are designed to accommodate           

increasingly bigger, more complex, and more specialized bio-datasets are developed each year​4​.            

With the increasing importance and popularity of computational and data-enabled approaches           

among biomedical researchers, it becomes ever more critical to ensure that the developed             

software is usable​8 and the Uniform Resource Locator (URL), through which the software tool is               

accessible, is archivally stable. Consistently usable and accessible software provides a           

foundation for the reproducibility of published biomedical research, defined as the ability to             
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replicate published findings by running the same computational tool on data generated by the              

study​8,9​. 

  

Open ​data, open software, and reproducible research are important aspects of big data             

analysis in the life sciences​10​. Reproducing previously published results can be made possible,             

by releasing all research objects, such as raw data, and publically available, archivally stable,              

and installable computer code​. However, a lack of strict implementation or enforcement of             

journal policies for resource sharing harms rigor and reproducibility as some authors refuse to              

share the data​11​ or source code.  

  

Despite these challenges, consistently usable and accessible software provides a          

necessary foundation for rigorous and reproducible data-intensive biomedical research​11,12​. In          

addition, the usability — or, ‘user-friendliness’ — of software tools is important, and it can               

affect its scientific utility. Currently, an estimated 74% of computational software resources are             

accessible through URLs published in the original paper​13​. Many developed tools are ​difficult to              

install and some are impossible to install​13​. Kumar and Dudley warn that poorly maintained or               

implemented tools will hinder progress in “big data”-driven fields​14​. 

  

any journals now require that omics data generated by the published study should be              

shared when the paper is released, an important step forward toward improving computational             

reproducibility in our field. However, the bioinformatics community still lacks the           

comprehensive policies on precisely how openly shared code used to perform the analysis and              
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generate the figures should be. In a promising effort from ​eLife journal, editors suggest that ​R                

code used to generate figures should be shared together with the figure​15​.  

Discussion 

High-throughput technologies have changed the landscape of training, research, and          

education in biomedical fields​16​. Big data generated by those technologies across large-scale            

clinical cohorts can potentially enable a researcher to connect complex diseases to relevant             

omics features. As our knowledge of scientifically-validated disease-trait matches increase, new           

opportunities emerge for development of novels diagnostic and therapeutic tools. However,           

analysis of big data requires the use of sophisticated bioinformatics algorithms which are often              

packaged as command-line-driven software tools. A researcher who wishes to use such tools             

must acquire specific computational skillsets, which are not included in the traditional life             

science curriculum at major Universities. With the increasing size and complexity of big omics              

datasets in the biological and medical sciences, researchers are facing a growing dilemma of              

devoting the time to acquire key computational skills or outsource the analyses to             

computational researchers. 

  

At present, biomedical researchers are not involved in computational training on a            

large-scale worldwide. In this review, I provide evidence that the computational training model             

- that is, when life science research groups receive training and resources to analyze the data                

that they generate, is a more sustainable approach. The computational training model of life              

science researchers, when successfully applied across many research institutions worldwide,          
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has the potential to change the landscape of contemporary biomedical research, training, and             

education. If a critical mass of biomedical researchers obtains computational skills sufficient for             

analyzing big data, computational training will more likely become an integral part of analysis              

curricula at these institutions.  

  

The computational training model offers benefits for both individual researchers and           

the scientific community. Life science and biomedical researchers gain a competitive skill when             

learning to conduct analysis in a command-line setting. Today’s omics data generates file sizes              

too large to be opened on a personal computer. These novice computational researchers often              

must perform their analyses on a high-performance cluster with command line tools and, in the               

process, the researchers become familiar with programming and basic system administration           

tasks. Such valuable skills could be leveraged to further the researcher’s projects and career.  

 

One important outcome of a comprehensively implemented computational training         

model is to improve reproducibility in the big data-driven fields of life science and medical               

research. The standard for rigorous and reproducible analysis is an emerging topic with multiple              

initiatives across research groups. The scientific community has identified current challenges to            

ensuring reproducibility of interpreting and integrating big data analysis in the life sciences​11​.             

For example, ​eLife journal raised the bar of reproducibility, challenging the traditional static             

representation of data and results of the analysis (usually in the form of PDF or HTML formats).                 

Instead, eLife now suggests a code-based publication, which enables data and analysis to be              

fully reproducible by the reader​17,18​. 
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