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Abstract (200 words) 

Recent advances in omics technologies have led to the broad applicability of computational             

techniques across various domains of life science and medical research. These technologies            

provide an unprecedented opportunity to collect omics data from hundreds of thousands of             

individuals and to study gene-disease association without the aid of prior assumptions about             

the trait biology. Despite the many advantages of modern omics technologies, interpretations            

of big data produced by such technologies require advanced computational algorithms. Below I             

outline key challenges that biomedical researches are facing when interpreting and integrating            

big omics data. I discuss the reproducibility aspect of big data analysis in the life sciences and                 

review current practices in reproducible research. Finally, I explain the skills which biomedical             

researchers need to acquire in order to independently analyze big omics data. 
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Introduction 

 

Recent advances in omics technologies have led to the broad applicability of modern             

high-throughput technologies across various domains of life science and medical research.           

These technologies are capable of generating big-data sets across large-scale clinical cohorts            

allows connecting complex diseases to relevant genomic features. However, analysis of big            

data requires the use of sophisticated bioinformatics algorithms capable of differentiating           

technical noise from the biological signal in the data. The analysis of big data in life sciences                 

typically starts with the analysis of raw data and concludes with data visualization and              

interpretation of patterned data produced by analyses ( Figure 1). Big data represented by             

massive datasets represent a substantial challenge for the analysis due to an increased             

computational footprint associated with handling, processing, and moving information 1,2. There          

are various definitions of big data across various domains of science, ranging from a simple               

definition that a big data is a data which is too large and complex to be processed using                  

traditional non-computational approaches 3. More complex definitions of big data require           

several important features to be present in the data before it can be classified as big data. For                  

example, a popular 3V definition requires volume, variety, and velocity of the data 3,4. Applying              

computational methods to the big data will provide the power to make novel biological,              

translational and clinical discoveries and push the boundaries of current knowledge of the             

biology of disease, as well as phenotypic and clinical dynamics of the disease. The key               

foundational aspects are bioinformatics methods, which allow to extract relevant biological           

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27603v2 | CC BY 4.0 Open Access | rec: 7 Jun 2019, publ: 7 Jun 2019

https://paperpile.com/c/mosAaw/okhS+MDCG
https://paperpile.com/c/mosAaw/hhHB
https://paperpile.com/c/mosAaw/hhHB+Sg8r


signal from noisy datasets and eventually enable discovery, translation and actionable           

applications. Modern biomedical data sets contain tens of thousands of samples and petabytes             

of raw data (e.g TCGA5, GTEx 6) and typically satisfy the definition of big data and are considered                 

big biomedical data 6–8. In contrast with the raw biomedical and sequencing data, summary             

statistics extracted from such datasets (e.g recount2 9) are significantly smaller and require less             

computational resources to be processed and analyzed. In this review, I will discuss the raw               

biomedical data and challenges and opportunities associated with processing and analyzing           

such datasets. I will also discuss the computational skills required for analysis and interpretation              

of big omics data. These skills include the ability to operate command line and run               

bioinformatics directly on high   clusters.  

Acquiring such skills can be challenging to many life science and medical researchers. At              

present, the bioinformatics community lack mechanisms to researchers in effectively learning           

to analyze big omics data.  

  

Ability to leverage various types of omics datasets from large-scale clinical cohorts is             

essential to studying the functional mechanisms underlying the connections between genetics,           

immune system, and disease etiology. For example, the availability of rich omics data generated              

by the TCGA consortium 5 provides an exciting opportunity for the discovery of how genetic              

variation affects the development, progression, and drug response of cancerous tumors 10.           

Despite many studies using TCGA data for the basic research11, the translational value of such               

datasets yet to be fully unlocked 12.  
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Additionally, bioinformatics methods for large-scale clinical cohorts promise to identify          

novel markers prognostic of disease risk across a variety of diseases, including cancer. 

  

Despite the increasing size and complexity of datasets in the biological and medical             

sciences, many biomedical researchers today lack sufficient computational skills to analyze the            

large-scale data they generate. At present, the digital gap in contemporary biology limits the              

potential of these biomedical researchers to creatively explore their data. Further, the digital             

gap limits the collaborative potential of these biomedical researchers and computational           

scientists 13. Training of life sciences in computational techniques can potentially narrow this            

digital gap, expand the skills of biomedical researchers, and improve the ability of biomedical              

researchers to leverage the consultation services they seek with computational scientists. Such            

training should include both hands-on sessions as well as session covering the principle of              

computational methods. Especially the assumption and heuristic of bioinformatics methods.          

Conceptual understanding of bioinformatics algorithms will allow biomedical researchers to          

better understand and interpret the bioinformatics results. Such skills as automating tasks with             

the Unix command line are necessary to process big data on high-performance data. Knowledge              

of Python or R is required to analyze the data on the laptop and visualize the obtained results.  
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Figure 1.  Workflow of big data analysis and interpretation in the life sciences.  

Bioinformatics methods in life science research 

  

During the past decade, the rapid advancement of omics technologies has led to the              

development of an enormous amount and diversity of bioinformatics algorithms across various            

fields of modern biology 14. hen applied to high-dimensional clinical datasets, bioinformatics           

algorithms identification of novel disease subtypes and discovery of novel markers which may             

be prognostic of disease risk. Such bioinformatics algorithms are usually encapsulated as            

computational software tools 15. The majority of bioinformatics tools are designed for UNIX            

operating system, which requires a user to operate the tools using command line--without the              

benefit of a graphical user interface (GUI). Additionally, UNIX framework makes it possible to              

connect different bioinformatics tools to communicate without having been designed explicitly           
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to work together using pipes. This also allows avoiding the creation of unnecessary temporary              

files for each bioinformatics tool of the pipeline  

 

  

Barriers in interpreting and integrating big data in the life sciences 

 

A major barrier in interdisciplinary studies is a lack of a common communication style              

between researchers trained and working in increasingly specialized academic disciplines 16.          

Today’s big-data projects require that life science researchers either learn how to use             

command-line tools or outsource their data analysis to computational experts. Active           

engagement in analyzing data generated by life science researchers is essential to advancing             

interdisciplinary research in the biological sciences. However, biologists and medical          

researchers often lack formal training in the use of computational techniques. Scholars have             

developed teaching models aimed to support biomedical researchers transition from using a            

graphical interface (e.g., Microsoft Excel) to UNIX command line 13,17,18. Biomedical researchers           

often possess various levels of computational skills; workshops require adjusting the teaching            

pace for trainees who have different levels of computational background 19. Additionally, the            

ability of trainees to switch from a graphical interface with the assistance of a mouse to a                 

command line interface with no mouse support varies across the life science researchers.  
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Training a life science research to use computational techniques poses unique           

challenges and requires a special approach. For example, such training does not require             

cultivating a deep understanding of fundamental computer science principles. Instead, such           

training is limited to applied learning, requiring quick assimilation of introduced techniques and             

acquired skills within the context of the research project of interest. In general, flexible              

pedagogy is preferred. For example, instead of introducing the fundamental computational           

concepts formally, such concepts are introduced on an as-needed basis, are combined with             

numerous hands-on examples, and rely on the instructor’s guidance to consolidate the            

learner’s newly-acquired knowledge. 

  

Biomedical researchers who have completed the training in computational skills often           

continue to engage with the command line and with training instructors long after the training               

session has formally ended. Researchers who have completed the workshops are also able to              

better engage with computer scientists when seeking consultation services for their projects.            

The training model I developed 13 has helped life science researchers to learn the “language of                

computing,” a skill that allows them to better understand what analyses can be accomplished              

with UNIX, and how to ask for specific types of help from computational scientists. 

  

Alternatively, biomedical researchers can delegate large-scale data analyses to         

bioinformatics cores. However, outsourcing analyses present several challenges. Many complex          

issues arise during the analysis of big omics data which are difficult to predict in advance. In                 

such cases, life science and biomedical research can optimize the analysis if they are adequately               
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trained and remain involved in the analytical workflow. In addition, research groups utilizing             

the core often want to move the project in different directions from what was originally               

proposed. Another approach is to develop a GUI that allows researchers with a limited              

computational background to easily create, run, and troubleshoot analytical pipelines. While           

useful to researchers with a limited computational background, these interfaces may have            

limited computational capacity compared to high-performance clusters and might not suitable           

for analysis of big omics data generated from some large-scale clinical cohorts. 

  

  

  

  

  

  

Computational resources required to analyze the big omics data 

 

Computational resources required to analyze the big omics data differs significantly           

depending on the step of the analysis. Analyses dealing with raw data typically require a               

significant amount of computational resources to perform essential tasks and space to store             

the output data. Analyzing big omics data can typically be performed only on high-performance              

clusters. For example, the analysis of differentially expressed genes based on RNA-Seq data             

starts with raw reads produced by the sequencing machines and concludes with a list of               
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differentially expressed genes with corresponding gene expression fold changes. The          

computational resources and amount of storage needed to analyze and store the results of              

analysis significantly various across the various step of the analysis. For example, the total              

space required to store raw sequencing data of one sample is approximately 15G ( Figure 2). It                

is possible to store such data on a regular workstation with no need for a large HPC                 

environment. However, the increasing size of the cohorts composed of thousands of            

individuals makes storing data on a regular workstation impractical. Additionally, the regular            

workstation lacks the computational power to process thousands of samples. As a result, the              

steps of the analysis requiring significant computational resources and space to store the data              

can be only performed on high-performance clusters or using cloud computing. Decreasing cost             

of cloud computing makes it an attractive alternative to well established high-performance            

clusters. The exact cost of cloud computing is constantly decreasing and is compared to              

high-performance cluster elsewhere20. 

 

 

Other steps require a smaller amount of resources and thus can perform locally on the               

personal computer or laptop. Typically, the analysis performed on the local machine does not              

require the knowledge of command line skills. Such analyses typically involve various statistical             

analyses and visualization steps, and these tasks can be performed using the widely popular              

statistical language R21. For example, once the gene expression levels were obtained from             

RNA-Seq data on the high-performance cluster, one can transfer them to a personal computer              

and locally perform differential expression analysis using available R packages22.  
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Figure 2. The amount of space needed to store the results of the sequencing analysis. The size                  

of each step is shown as a grid of boxes, each box is equivalent to storage of 10 Mb.  

Computational reproducibility in life science research 

An astonishing number of bioinformatics software tools are designed to accommodate           

increasingly bigger, more complex, and more specialized bio-datasets are developed each           

year14. With the increasing importance and popularity of computational and data-enabled           

approaches among biomedical researchers, it becomes ever more critical to ensure that the             

developed software is usable 23 and the Uniform Resource Locator (URL), through which the             

software tool is accessible, is archivally stable. Consistently usable and accessible software            
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provides a foundation for the reproducibility of published biomedical research, defined as the             

ability to replicate published findings by running the same computational tool on data             

generated by the study23,24. 

 

Open data, open software, and reproducible research are important aspects of big data             

analysis in the life sciences25. Reproducing previously published results can be made possible,             

by releasing all research objects, such as raw data, and publically available, archivally stable,              

and installable computer code . However, a lack of strict implementation or enforcement of             

journal policies for resource sharing harms rigor and reproducibility as some authors refuse to              

share the data 26 or source code. Even when the code and data are shared, it still can be                  

challenging to computationally reproduce the results of the published paper 27. One technique            

to enable computational reproducibility is literate programming, allowing the reader to           

understand how the research results were obtained by generating the documents that include             

the code, narratives, and the outputs including figures and tables. One such platform able to               

mix code with accompanying documentation and text notes is Jupyter28. This popular platform             

allows the reader to follow the documentation, run the code, visualize results in a single               

notebook usually opened in the browser29. Additionally, containers and virtual machines allow            

to avoid installability issues and run instantly the code across various operating systems and              

environments. Example of containers includes Docker30, Vagrant 30,31, and Singularity 32. A recent           

case study proposed an example of documentation and tutorials allowing to easily reproduce             

results using Jupyter/IPython notebook or a Docker container 29. Other technique and            

methodologies allowing computational reproducibility are discussed elsewhere 33.  
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Despite these challenges, consistently usable and accessible software provides a          

necessary foundation for rigorous and reproducible data-intensive biomedical research26,34. In          

addition, the usability — or, ‘user-friendliness’ — of software tools is important, and it can               

affect its scientific utility. Currently, an estimated 74% of computational software resources are             

accessible through URLs published in the original paper 35. Many developed tools are difficult to              

install and some are impossible to install 35. Kumar and Dudley warn that poorly maintained or               

implemented tools will hinder progress in “big data”-driven fields 36. 

  

Any journals now require that omics data generated by the published study should be              

shared when the paper is released, an important step forward toward improving computational             

reproducibility in our field. However, the bioinformatics community still lacks the           

comprehensive policies on precisely how openly shared code used to perform the analysis and              

generate the figures should be. In a promising effort from eLife journal, editors suggest that R                

code used to generate figures should be shared together with the figure 37.  

 

Discussion 

High-throughput technologies have changed the landscape of training, research, and          

education in biomedical fields 38. Big data generated by those technologies across large-scale            

clinical cohorts can potentially enable a researcher to connect complex diseases to relevant             

omics features. As our knowledge of scientifically-validated disease-trait matches increase, new           
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opportunities emerge for development of novels diagnostic and therapeutic tools. However,           

analysis of big data requires the use of sophisticated bioinformatics algorithms which are often              

packaged as command-line-driven software tools. A researcher who wishes to use such tools             

must acquire specific computational skillsets, which are not included in the traditional life             

science curriculum at major Universities. With the increasing size and complexity of big omics              

datasets in the biological and medical sciences, researchers are facing a growing dilemma of              

devoting the time to acquire key computational skills or outsource the analyses to             

computational researchers. 

  

At present, biomedical researchers are not involved in computational training on a            

large-scale worldwide. In this review, I provide evidence that the computational training model             

- that is, when life science research groups receive training and resources to analyze the data                

that they generate, is a more sustainable approach. The computational training model of life              

science researchers, when successfully applied across many research institutions worldwide,          

has the potential to change the landscape of contemporary biomedical research, training, and             

education. If a critical mass of biomedical researchers obtains computational skills sufficient for             

analyzing big data, computational training will more likely become an integral part of analysis              

curricula at these institutions.  

  

The computational training model offers benefits for both individual researchers and           

the scientific community. Life science and biomedical researchers gain a competitive skill when             

learning to conduct analysis in a command-line setting. Today’s omics data generates file sizes              
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too large to be opened on a personal computer. These novice computational researchers often              

must perform their analyses on a high-performance cluster with command line tools and, in the               

process, the researchers become familiar with programming and basic system administration           

tasks. Such valuable skills could be leveraged to further the researcher’s projects and career.  

 

One important outcome of a comprehensively implemented computational training         

model is to improve reproducibility in the big data-driven fields of life science and medical               

research. The standard for rigorous and reproducible analysis is an emerging topic with multiple              

initiatives across research groups. The scientific community has identified current challenges to            

ensuring reproducibility of interpreting and integrating big data analysis in the life sciences 26.             

For example, eLife journal raised the bar of reproducibility, challenging the traditional static             

representation of data and results of the analysis (usually in the form of PDF or HTML formats).                 

Instead, eLife now suggests a code-based publication, which enables data and analysis to be              

fully reproducible by the reader 39,40. 

  

 Summary  

 

● Recent advances in omics technologies have led to the broad applicability of            

computational techniques across various domains of life science and medical research.           

These technologies provide an unprecedented opportunity to collect omics data from           

hundreds of thousands of individuals and to study gene-disease association without the            

aid of prior assumptions about the trait biology. 
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● Interpreting and integrating big data produced by omics technologies require advanced           

computational algorithms. Despite the increasing size and complexity of datasets in the            

biological and medical sciences, many biomedical researchers today lack sufficient          

computational skills to analyze the large-scale data they generate. 

● The computational training model of life science researchers, when successfully applied            

across many research institutions worldwide, has the potential to change the landscape            

of contemporary biomedical research, training, and education. If a critical mass of life             

science researchers obtains computational skills sufficient for analyzing big data,          

computational training will more likely become an integral part of biomedical education.  

● One important outcome of a comprehensively implemented computational training         

model is to improve reproducibility in the big data-driven fields of life science and              

medical research. 
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