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Abstract 18 

 19 

1) DNA metabarcoding holds great promise for the assessment of macroinvertebrates in stream ecosystems. However, few 20 

large-scale studies have compared the performance of DNA metabarcoding with that of routine morphological identification. 21 

2) We performed metabarcoding using four primer sets on macroinvertebrate samples from 18 stream sites across Finland. 22 

The samples were collected in 2013 and identified based on morphology as part of a Finnish stream monitoring program. 23 

Specimens were morphologically classified, following standardised protocols, to the lowest taxonomic level for which 24 

identification was feasible in the routine national monitoring. 25 

3) DNA metabarcoding identified more than twice the number of taxa than the morphology-based protocol, and also yielded 26 

a higher taxonomic resolution. For each sample, we detected more taxa by metabarcoding than by the morphological 27 

method, and all four primer sets exhibited comparably good performance. Sequence read abundance and the number of 28 

specimens per taxon (a proxy for biomass) were significantly correlated in each sample, although the adjusted R2 were low. 29 

With a few exceptions, the ecological status assessment metrics calculated from morphological and DNA metabarcoding 30 

datasets were similar. Given the recent reduction in sequencing costs, metabarcoding is currently approximately as 31 

expensive as morphology-based identification. 32 

4) Using samples obtained in the field, we demonstrated that DNA metabarcoding can achieve comparable assessment 33 

results to current protocols relying on morphological identification. Thus, metabarcoding represents a feasible and reliable 34 

method to identify macroinvertebrates in stream bioassessment, and offers powerful advantage over morphological 35 

identification in providing identification for taxonomic groups that are unfeasible to identify in routine protocols. To unlock 36 

the full potential of DNA metabarcoding for ecosystem assessment, however, it will be necessary to address key problems 37 

with current laboratory protocols and reference databases. 38 

 39 

 40 
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Introduction 42 

The abundance and diversity of macroinvertebrates are used as key biological quality indicators in national and international 43 

aquatic biomonitoring programs, which employ a variety of bioassessment protocols (Birk et al. 2012). In all current 44 

protocols, however, biological quality components such as macroinvertebrates, diatoms, macroalgae, and fish, are identified 45 

based only on morphological properties. Among benthic macroinvertebrates, the orders Ephemeroptera, Plecoptera, 46 

Trichoptera, and Diptera are often regarded most sensitive to pollution and are thus ideal indicators of anthropogenic 47 

stressor effects on stream ecosystems (Resh & Unzicker 1975; Buss et al. 2015). Unfortunately, the identification of benthic 48 

taxa to species or even genus level is often difficult or impossible, and the accuracy of such identification is highly 49 

dependent on the researcher’s experience; consequently, misidentification is frequent (Sweeney et al. 2011). Accordingly, 50 

classification is often performed only to a higher taxonomic level. However, the species within a higher taxonomic group 51 

may exhibit diverse responses to stress (Macher et al. 2016), and these differences can go unnoticed in studies with low 52 

taxonomic resolution. Misidentification, low comparability, and limited taxonomic resolution for difficult groups, such as 53 

chironomids, can lead to inaccurate assessments and potentially to the mismanagement of stream ecosystems (Stein et al. 54 

2013a). Moreover, the use of human experts for morphological identification is time-consuming and therefore expensive 55 

(Yu et al. 2012; Aylagas et al. 2014).  56 

 In recent years, DNA-based taxon identification has emerged as a potential alternative to morphological methods. 57 

The first DNA-based case studies highlighted the potential application of these methods to the assessment of freshwater 58 

macroinvertebrates (Hajibabaei et al. 2011; Carew et al. 2013; Elbrecht & Leese 2015; 2016b). In particular, DNA 59 

barcoding has often been advocated as a useful tool for ecosystem monitoring and assessment (Baird & Sweeney 2011; 60 

Baird & Hajibabaei 2012; Taberlet et al. 2012). In metabarcoding, DNA is extracted from bulk samples, a standardised 61 

marker gene amplified and sequenced using high throughput sequencing followed by comparison against reference 62 

databases allowing for cost-efficient and reliable community assessments (Ratnasingham & Hebert 2007; Hajibabaei et al. 63 

2011; Taberlet et al. 2012). Although several studies have established multiple benefits of DNA-based monitoring using 64 

DNA metabarcoding, additional large-scale studies of complete freshwater macroinvertebrate samples are needed to 65 

validate and improve metabarcoding protocols for routine monitoring. In marine, freshwater, and terrestrial ecosystems, 66 

complete samples of arthropods and diatoms have been processed (Ji et al. 2013; Gibson et al. 2014; Zimmermann et al. 67 

2014; Leray & Knowlton 2015) and used to obtain assessment metrics (Aylagas et al. 2016a). However, DNA 68 

metabarcoding studies of complete macroinvertebrate samples from freshwater ecosystems have often been limited to one 69 

or two sampling sites (Hajibabaei et al. 2011; 2012) or selected taxon groups (Carew et al. 2013). The only large-scale 70 
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study of 24 Canadian macrozoobenthos samples (Gibson et al. 2015) demonstrated that DNA metabarcoding outperforms 71 

family- and order-level approaches to morphological identification. Although these results are promising, it should be noted 72 

that in most European monitoring programs, taxa are identified generally to species level. For DNA metabarcoding to be 73 

applied to routine stream monitoring, protocols for DNA-specific macrozoobenthos sampling and laboratory must be further 74 

developed, optimised, and validated. We recently explored primer bias and tissue extraction protocols using a one-step PCR 75 

metabarcoding protocol on the Illumina MiSeq sequencer and then employed this technique to examine mock invertebrate 76 

samples of known composition (Elbrecht & Leese 2015). In addition, because we found that primer design is a critical 77 

component for species detection, we developed primer sets specifically targeting freshwater macroinvertebrates (Elbrecht & 78 

Leese 2016a,b). Although these BF/BR primers worked well in mock communities and initial tests based on two stream 79 

benthos samples, they have not been tested in a larger-scale biomonitoring context (Elbrecht & Leese 2016b; Elbrecht et al. 80 

2016). Further, the reliability and completeness of available reference data, e.g., the BOLD database for freshwater 81 

macroinvertebrates (Ratnasingham & Hebert 2007), has not been fully explored in a metabarcoding context. Finally, 82 

laboratory constraints specific to organisms and stream ecosystems may also exist. Therefore, it is important to further 83 

explore and validate the potential of DNA metabarcoding for routine use in stream assessment. 84 

 In this study, we performed a one-to-one comparison of traditional morphological- and DNA metabarcoding–based 85 

identification in the context of bioassessment of benthic macroinvertebrate communities at 18 sites across Finland. The 86 

samples, which were collected through a national stream bioassessment program, were all morphologically identified by an 87 

experienced taxonomist, and were thus ideally suited for comparing the performance of morphological- and DNA-based 88 

identification protocols for bioassessments, as well as for critically evaluating the current limitations of both approaches.  89 

 90 

Materials and Methods 91 

Sample collection and processing 92 

Benthic macroinvertebrates were collected in the fall of 2013 at 18 riffle sites across Finland as part of an official national 93 

stream monitoring program (Figure S1, Table S1, Aroviita et al. 2014). Each monitoring sample was collected by taking 94 

four 30-s kick-net subsamples covering most microhabitats at each site, following the national guidelines for Water 95 

Framework Directive (WFD) monitoring (Meissner et al. 2016a). Samples were preserved in 70% ethanol in the field, and 96 

all invertebrates in each sample were later sorted in the laboratory. Collected specimens were stored in 70% ethanol, which 97 

was not replaced after collection, leading to an average ethanol concentration of 65.14% (SD = 2.83%) during long-term 98 

storage. Samples were kept cool (8°C) for subsequent molecular analyses. 99 
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 All specimens were counted and identified based on morphology, mostly to species or genus level, with the 100 

exception of Oligochaeta, Turbellaria, Nematoda, Hydracarina, and the dipteran families Chironomidae and Simuliidae, 101 

which were counted but not identified to a lower taxonomic level. The level of identification followed the WFD monitoring 102 

protocols targeting operational taxonomic units (OTUs) established by the Finnish Environment Institute SYKE [(Meissner 103 

et al. 2016a), see page 29]. Identification was performed by a single experienced consultant, who scored higher than 104 

average (i.e., >95%) in the most recent international macroinvertebrate taxonomic proficiency tests organised by Proftest of 105 

SYKE in 2016 (Meissner et al. 2016b).  106 

 107 

DNA extraction and tissue pooling 108 

To remove ethanol, specimens from each sampling site were dried overnight in sterile Petri dishes. Specimens were placed 109 

in sterile 20-mL tubes containing 10 steel beads (diameter, 5 mm) and homogenised by grinding at 4000 rpm for 30 min in 110 

an IKA ULTRA-TURRAX Tube Drive Control System. From each sample, three aliquots each containing on average 14.32 111 

mg (SD = 5.56 mg) of homogenised tissues were subjected to DNA extraction. Tissues were digested according to a 112 

modified salt DNA extraction protocol (Sunnucks & Hales 1996). Next, 15 µL of DNA were pooled from each of the three 113 

extraction replicates, digested with 1 µL of RNase A, and cleaned using a MinElute Reaction Cleanup Kit (Qiagen, Venlo, 114 

Netherlands). DNA concentrations were quantified on a Fragment Analyzer™ Automated CE System (Advanced Analytical, 115 

Heidelberg, Germany), and the concentrations of all samples were adjusted to 25 ng/µL DNA for PCR. 116 

 117 

PCR amplification, high throughput sequencing and bioinformatics 118 

All 18 samples were amplified in duplicate using four BF/BR freshwater macroinvertebrate fusion primer sets targeting 119 

fragments internal of the Cytochrome c oxidase subunit I (COI) Folmer region, described previously (Elbrecht & Leese 120 

2016b). Table S2 gives an overview of the combinations of fusion primers used for sample tagging with inline barcodes. 121 

Each PCR reaction consisted of 1× PCR buffer (including 2.5 mM Mg2+), 0.2 mM dNTPs, 0.5 µM each primer, 0.025 U/µL 122 

HotMaster Taq (5Prime, Gaithersburg, MD, USA), 12.5 ng of DNA, and HPLC-grade H2O to a final volume of 50 µL. 123 

PCRs were run on a Biometra TAdvanced Thermocycler with the following program: 94°C for 3 min; 40 cycles of 94°C for 124 

30 s, 50°C for 30 s, and 65°C for 2 min; and final extension at 65°C for 5 min. For a few of the samples, it was necessary to 125 

use a larger PCR volume (250 µL) due to the presence of PCR inhibitors (see Table S2). PCR products were purified and 126 

left-side size-selected using SPRIselect with a ratio of 0.76× (Beckman Coulter, Brea, CA, USA), and then quantified on a 127 

Qubit Fluorometer (HS Kit, Thermo Fisher Scientific, Waltham, MA, USA) and Fragment Analyzer™ Automated CE 128 
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System (Advanced Analytical Technologies GmbH, Heidelberg, Germany). PCR products were pooled with equal molarity 129 

and sequenced on two Illumina HiSeq 2500 lanes using the Rapid Run 250 bp PE v2 Sequencing Kit with 5% Phi-X spike-130 

in. Sequencing was carried out by GATC Biotech GmbH (Konstanz, Germany). 131 

 Bioinformatics processing was performed using the UPARSE pipeline in combination with custom R scripts 132 

(Dryad DOI) for data processing (Edgar 2013). Scripts are available on http://github.com/VascoElbrecht/JAMP (JAMP 133 

v0.10a). Reads were demultiplexed, and paired-end reads were merged using Usearch v8.1.1861 with the following settings: 134 

-fastq_mergepairs with -fastq_maxdiffs 99, -fastq_maxdiffpct 99 and -fastq_trunctail 0 (Edgar & Flyvbjerg 2015). Primers 135 

were removed using cutadapt version 1.9 with default settings (Martin 2011). Sequences were trimmed to the same 217-bp 136 

region amplified by the BF1+BR1 primer set (and the reverse complement generated, if necessary) using fastx_truncate and 137 

fastx_revcomp. Only sequences of 207–227 bp were used for further analysis (filtered with cutadapt). Low-quality 138 

sequences were then filtered from all samples using fastq_filter with maxee = 0.5. Sequences from all samples were then 139 

pooled, dereplicated (minuniquesize = 3), and clustered into molecular operational taxonomic units (MOTUs) using 140 

cluster_otus with a 97% identity threshold (Edgar 2013) (includes chimera removal). 141 

 Pre-processed reads (Figure S2, step B) for all samples were de-replicated again using derep_fulllength, and 142 

singletons were included to maximise the information extracted from the sequence data. Sequences from each sample were 143 

matched against the MOTUs with a minimum match of 97% using usearch_global. Only OTUs with a read abundance 144 

above 0.003% in at least one sequencing replicate were considered in downstream analyses, as this can remove some 145 

ambiguous OUTs generated by PCR and sequencing errors (Elbrecht & Leese 2015). Taxonomic assignments for the 146 

remaining MOTUs were determined using an R script to search against the BOLD and NCBI databases. Taxonomic 147 

information was not further validated, and in the case of conflicting assignments between NCBI and BOLD databases, the 148 

taxonomic level for which both databases returned identical results was used. For assignment to species level, a hit with 98% 149 

similarity was required in at least one of the two databases; 95% similarity was required for assignment to genus level, 90% 150 

for family level, and 85% for order level. Only MOTUs that matched macroinvertebrates were used in the statistical 151 

analysis. In all further analyses, only MOTUs with a sequence abundance of at least 0.003% in both replicates of a sample 152 

were included. 153 

 154 

Bioassessment metrics 155 

National bioassessment metrics were calculated from both morphology and DNA metabarcoding data using the protocol for 156 

ecological status assessment for the 2nd cycle of WFD river basin management planning (Aroviita et al. 2012). 157 
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For this comparison, the DNA-based species lists were reduced to the OTU list used in the Finnish monitoring protocols. 158 

The assessment technique for stream macroinvertebrates includes three metrics: number of Type-specific Taxa (TT, 159 

Aroviita et al. 2008), number of Type-specific EPT-families (T-EPTh, Aroviita et al. 2012) and PMA-index (Percent Model 160 

Affinity, Novak & Bode 1992). Type-specific taxa are taxa typical for expected reference conditions in absence of human 161 

disturbance in a given national stream type and region. TT and T-EPTh utilise presence/absence data whereas the PMA-162 

index is a percent similarity between observed and expected assemblages utilising information on taxon relative abundance. 163 

The metrics are reported as normalised Ecological Quality Ratios (EQRs) that range from 0 (bad status) to 1 (high status) 164 

and is a quotient between observed metric value and value expected in the reference conditions. Also a site-specific mean 165 

EQR of the three metric EQRs was calculated. 166 

 167 

 168 

Results 169 

Sequencing run statistics 170 

The HiSeq Rapid run yielded 260.75 million read pairs (raw data available at SRA, accession number SRR4112287). After 171 

library demultiplexing, an average of 1.53 million (SD = 0.29 million) read pairs were retained (Figure S3). Unexpected 172 

sample tagging combinations (potential tag switching) were uncommon, with only 12 of 136 unused combinations above 173 

the 0.003% read abundance threshold and a maximum relative read abundance of 0.006% (Figure S4). After bioinformatic 174 

processing, a total of 750 MOTUs remained, of which 49.3% were shared among all four primer sets (Figure S5). The 175 

primer combination BF2+BR2 generated the highest number of MOTUs. Sequencing replicates for each sample yielded a 176 

mean fold difference in sequence abundance of 2.05 (expected 1.0), indicating high variation in sequence abundance 177 

between replicates (Figure S6). We detected a weak but significant negative correlation between relative read abundance per 178 

MOTU and variation between replicates in 13 out of 72 total samples (p ≤ 0.05, Figure S6), but the pattern was not 179 

consistent across all samples, as some highly abundant MOTUs also exhibited large differences between replicates. 180 

 181 

Taxonomic identification 182 

Across all 18 samples, we identified a total of 126 taxa based on morphology, of which 61.1% were identified to species 183 

level (Table S3). Eight species lacked public reference sequences in BOLD or NCBI (Table S3), and more taxa were 184 

potentially missing at a lower taxonomic resolution (e.g., reference data for specimens only identified to family level). All 185 
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samples were dominated by a few common taxa, whereas rare taxa were only present in a subset of samples (mean Pielou’s 186 

evenness = 0.65, SD = 0.12, Figure S7).  187 

 A total of 750 MOTUs remained in the dataset after bioinformatic processing of the sequence data. Of these, we 188 

further analysed 573 target invertebrate hits. The MOTU table for DNA metabarcoding with taxonomic assignments, along 189 

with MOTU sequences, is available as supplementary Table S4. After taxonomic assignment using BOLD and NCBI, DNA 190 

metabarcoding revealed the presence of 288 morphotaxa: 208 species, 47 genera, 23 families, and 10 order or coarser 191 

resolution. Metabarcoding resolved more taxa at species level than morphology-based identification protocol (Figure S8). 192 

Moreover, DNA metabarcoding consistently detected a substantially greater number of taxa than morphology-based 193 

protocol across all samples with each primer combination (57.30% more taxa on average over all data, SD = 35.69%, Figure 194 

1). For groups that were morphologically identified to species or genus level, DNA metabarcoding detected 25.3% more 195 

taxa using OTUs. Despite enabling the identification of a substantial number of overlooked taxa, DNA metabarcoding did 196 

not detect an average of 32.51% (SD = 9.71%) of the taxa identified based on morphology in each sample (Figure 2, see 197 

Table S2 for undetected taxa). The proportion of detected taxa was similar for all primer pairs with 79.51% of 288 taxa 198 

being detected with all 4 primer combinations and only 9 taxa (3.13%) being detected exclusively with the BF2+BR2 199 

primer pair. Also in a principal component analysis (PCA) the primer pairs cluster closely together for all three stream types 200 

(Figure S9). The number of reads assigned to each morphotaxon was significantly positively correlated with the number of 201 

specimens per taxon for most samples and primer combinations (Figure 3). This correlation was significant for all 18 202 

samples for the combination BF2+BR2, but for only 13 or 14 samples for the other primer combinations. However, despite 203 

the positive correlations between read abundance and number of taxa, read abundance still varied by two orders of 204 

magnitude, and this was also reflected in the low adjusted R2 values for all primer sets (mean = 0.366 to 0.411). 205 

 Assessment metrics calculated from morphology and DNA metabarcoding data were generally similar (Figure 4, 206 

Table S1), especially for TT and T-EPTh metrics which utilise presence/absence data only. For a few samples, however, the 207 

status quality class changed with the DNA-based taxa lists. Most differing assessments were obtained with the PMA metric 208 

utilising relative abundances, which assigned most samples to poorer status with DNA-identification than with the 209 

morphological identification (Figure 4C). The overall status class (mean EQR) was generally similar between the two 210 

approaches, and only 5 cases were one class lower with the DNA-identification (Figure 4D).  211 

 212 

Discussion 213 

Performance of DNA metabarcoding 214 
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 Our results and other studies demonstrate that DNA-based identification methods can capture more diversity than routine 215 

morphological identification protocols, even though several of the morphologically identified taxa were not recovered using 216 

metabarcoding (Carew et al. 2013; Zimmermann et al. 2014; Lejzerowicz et al. 2015; Gibson et al. 2015; Clarke et al. 217 

2017). Not all Baetis morphospecies which were very abundant across most samples (e.g. B. niger) were detected with 218 

metabarcoding, potentially due to primer bias, morphological misidentification, recent speciation or likely because of lack 219 

of barcode sequences or conflicting taxonomic information in reference databases, as the Baetis species complex is difficult 220 

to identify based on morphology (Williams et al. 2006; Savolainen et al. 2007; Lucentini et al. 2011). DNA metabarcoding 221 

was especially powerful for resolving taxon diversity in groups that are difficult or unfeasible in current morphology-based 222 

biomonitoring protocols to distinguish morphologically in their larval stages, including dipteran families (chironomids and 223 

simuliids), mites, Oligochaeta, and Limnephilidae. In addition, EPT taxa that were morphologically identified only to the 224 

family (Limnephilidae) or genus level (e.g., Eloeophila and Hydroptila) could be identified to species level using DNA 225 

metabarcoding, indicating a significant advantage of the metabarcoding to biomonitoring. Consistent with our observations, 226 

higher taxonomic resolution of DNA-based methods in comparison with morphology-based identification has been 227 

demonstrated in many previous studies (Baird & Sweeney 2011; Sweeney et al. 2011; Stein et al. 2013a; Gibson et al. 228 

2015). All four of our macroinvertebrate-specific BF/BR primer combinations yielded similarly good performance, 229 

consistent with our previous mock community tests (Elbrecht & Leese 2016b). 230 

 Morphology-based and DNA-based taxon lists yielded very similar results for the metrics used in WFD ecological 231 

status assessment, indicating that metabarcoding can produce usable taxonomic data for current assessment techniques. This 232 

finding is consistent with marine studies, which have demonstrated a good match between morphological assessments and 233 

presence/absence data, as well as DNA-based taxon lists (Aylagas et al. 2014; Lejzerowicz et al. 2015; Aylagas et al. 234 

2016a). Considering that the metrics used in this study were optimized for the routine morphological identification protocol, 235 

in some cases considering coarser taxonomic levels than genus or species, future DNA-based assessment might indeed be 236 

further improved by applying optimized metric calculation approaches and species-level trait databases (Mondy et al. 2012; 237 

Schmidt-Kloiber & Hering 2015). DNA metabarcoding can provide much more accurate taxonomic identification than 238 

morphology-based methods, and can even be used to detect cryptic species (Elbrecht & Leese 2015). The increase in 239 

accuracy provides an opportunity to investigate potential differences in ecological preferences and detect stressors based on 240 

indicator taxa when larval morphology alone is not sufficient (Macher et al. 2016). In future assessment techniques this 241 

valuable additional information could be integrated by refining and expanding the taxa lists for expected reference 242 

conditions. This might not only refine our conception of the condition of streams, but could also help to disentangle effects 243 

of multiple stressors on ecosystems. 244 
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 While DNA metabarcoding has the advantages of increased reproducibility and taxonomic resolution, it also has 245 

drawbacks, including the inability to quantify taxon abundance (Piñol et al. 2014; Elbrecht & Leese 2015). Although 246 

approaches to adjust for primer bias have been developed (Thomas et al. 2015), these methods are unlikely to succeed in 247 

complex communities; moreover, sequence abundance is affected by taxon biomass (Elbrecht et al. 2016). Nevertheless, in 248 

most samples, we detected a significant linear relationship between the number of morphologically identified specimens and 249 

the number of sequencing reads assigned to the respective OTUs. Although this could be interpreted as a potential means to 250 

estimate taxon abundance, the poor fit and high scatter of up to two orders of magnitude (similar to comparisons in other 251 

studies (Carew et al. 2013; Dowle et al. 2015; Leray & Knowlton 2015; Clarke et al. 2017)) prevent its practical 252 

exploitation. While  BF/BR primers exhibited less primer bias than the previously tested Folmer primers (Folmer et al. 1994; 253 

Elbrecht & Leese 2015), the bias remained substantial (Elbrecht & Leese 2016b). In addition, sequence abundance is likely 254 

further influenced by the different biomass of taxa and specimens of different sizes in a sample. Therefore, with exact 255 

biomass data for each specimen, the relationship to sequence abundance might be stronger. Nonetheless, we argue that 256 

particularly estimating biomass from PCR-based metabarcoding analyses could be useful when used in e.g. a semi-257 

quantitative way, even though primer bias hinders obtaining exact estimates. 258 

 Laboratory and sequencing costs are critical determinants of the viability of large-scale DNA-based monitoring (Ji 259 

et al. 2013). In this study, the sequencing costs per sample using one primer pair and two replicates (~1.5 million sequences) 260 

are 110 € (7900€ for the complete run at a commercial sequencing provider). Sequencing costs are likely to decline in the 261 

future and could be further decreased by pooling more samples in each sequencing run and by pre-sorting samples 262 

according to biomass (e.g. using sieves (Leray & Knowlton 2015; Aylagas et al. 2016b; Elbrecht et al. 2016)). All 263 

laboratory steps from DNA extraction to library preparation currently  accumulate to 70 € per sample, leading to a total cost 264 

of 180 € per sample in this study, similar to previous estimates (Ji et al. 2013; Stein et al. 2014). Expenses related to 265 

laboratory infrastructure and bioinformatics (which can be reduced by automation and parallelization) as well as kick 266 

sample collection and sorting (Haase et al. 2004) may push the total costs per sample to 500–750 €, which is comparable to 267 

current morphology-based monitoring costs (Buss et al. 2015). Kick sample collection and sorting makes a major 268 

contribution to total expenses (up to 2/3rd  in Finland), which might be substantially reduced by homogenising complete 269 

kick samples without sorting or drying overnight. However, further optimisation of PCR inhibitor removal (e.g. using 270 

commercial DNA purification kits) is necessary, as organic and anorganic substrates likely cause impact on amplification 271 

efficiency. Environmental DNA is unlikely to be an alternative to sampling whole organisms for the detection of whole 272 

macroinvertebrate communities, as DNA quantity and thus detection rates in eDNA metabarcoding are low (Aylagas et al. 273 

2016a) and affected by additional biases (Barnes & Turner 2015). 274 
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 275 

Factors currently limiting DNA metabarcoding for ecosystem assessment 276 

The DNA metabarcoding protocol we used worked reliably across all 18 samples. However, we identified various 277 

opportunities to further improve the performance of metabarcoding. Figure 5 provides an overview of the limitations of 278 

DNA metabarcoding in relation to taxonomic assignment and the reference database, as well as the laboratory protocol 279 

routines. Across all 18 samples used in this study, our metabarcoding approach was unable to detect 32% of the 280 

morphologically identified taxa . Some of these omissions were linked to application of the precautionary principle, 281 

specifically, the tendency of human experts to relegate the identification of small specimens to coarser taxa (e.g., genus 282 

level) if higher taxonomic resolution cannot be established without doubt. In addition, the laboratory procedures used in 283 

routine monitoring campaigns are not fully adequate for DNA extraction. For example, the low alcohol concentration 284 

typically used for sample preservation during routine biomonitoring (typically 70% ethanol) may result in specimens still 285 

viable for morphological detection, but containing highly degraded DNA, impairing their accurate molecular detection. 286 

Collection and preservation of samples in 96% ethanol will likely prevent DNA degradation (Stein et al. 2013b). Further, 287 

although unlikely given the proven proficiency of the expert who performed our morphological identification, it remains 288 

possible that erroneous morphotaxonomical identification by the human expert may have introduced false taxa, contributing 289 

to the discrepancy between the results of the identification methods. Several additional factors, listed in Figure 5, may have 290 

influenced detection, either positively or negatively. 291 

 Laboratory methodology can strongly influence the absolute and relative amounts of invertebrates detected by 292 

DNA metabarcoding. Because primer/template mismatches can prevent certain taxa from being amplified by PCR, primer 293 

bias is one of the most serious concerns (Deagle et al. 2014; Piñol et al. 2014; Elbrecht & Leese 2015). The negative effects 294 

of primer bias can be reduced by incorporating primer degeneracy and carefully choosing primer sets suited for the targeted 295 

ecosystem and taxonomic groups (Elbrecht & Leese 2016a,b). However, even after primer optimisation, one-step PCR 296 

methods will be affected by primer bias. Therefore, it is unlikely that all taxa present in a sample can be detected by DNA 297 

metabarcoding, and primer bias makes it difficult to estimate abundance or biomass. PCR and sequencing errors, undetected 298 

chimeras, and misidentified reference sequences can also lead to false positive detection. Moreover, specimens in a sample 299 

can vary widely in biomass, depending on species and life stage. This not only prevents the estimation of taxon abundances, 300 

but can also prevent detection of small and rare taxa (Elbrecht et al. 2016). Because 68.3% of the taxa detected in this study 301 

were present in five or fewer samples, our data were likely affected by this bias. Primer bias and variation in taxon biomass 302 

taken together, make it difficult to relate read abundance to taxon abundance. Although presence/absence data might already 303 
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be sufficient for ecosystem assessment (Aylagas et al. 2014), one must acknowledge that relative abundance -based 304 

estimates are likely possible if identical protocols are used across all sample sites, thus leading to similar biases across 305 

samples.  306 

 Some of our samples were also affected by PCR inhibition, a problem that could be solved by using larger PCR 307 

volumes to dilute PCR inhibitors or with additional clean-up steps. However, because monitoring protocols must work in all 308 

stream ecosystems, independent of environmental conditions, PCR inhibition remains a major challenge for the application 309 

of DNA metabarcoding in this context. Ideally, methods should be developed and tested for purifying DNA from complete 310 

kick-net samples without pre-sorting specimens from debris (e.g., sediment, small stones, leaves, and organic particles). 311 

This would allow researchers to skip the time-consuming pre-sorting steps, during which up to 30% of specimens can be 312 

missed (Haase et al. 2010). Thus, circumvention of pre-processing would allow inclusion of often overlooked small taxa, 313 

potentially detecting more taxa. 314 

 Several other laboratory-specific factors might also affect metabarcoding. For example, tag switching is an issue 315 

potentially generating additional MOTUs across several samples multiplexed in one library (Esling et al. 2015; Schnell et al. 316 

2015). However, we did not observe such effects on our samples, or in our previous studies using the fusion primer system 317 

with inline tagging. However, O´Donnell et al. (2016) showed that tags can lead to biases in read abundance, and our 318 

samples are potentially affected by this phenomenon, as evidenced by the observed ~2-fold variation in read abundances 319 

between the replicates for a given sample. It is of critical importance to minimise tag switching and determine the level of 320 

tagging induced bias between replicates and its effect on the data. In our case, variation in read abundance might have 321 

resulted in underestimation of diversity, because we conservatively discarded all reads not present in both replicates. 322 

Although we obtained good taxonomic resolution, it is important to be aware of, and account for, these shortcomings, as 323 

well as to solve these problems by modifying current protocols.  324 

 Clearly, DNA metabarcoding is not perfect, and of the many different protocols being developed, few have been 325 

extensively validated. Method ‘ground truthing’ is essential to build trust in metabarcoding methods for monitoring, and the 326 

various candidate protocols and modifications must be validated using the same standard invertebrate mock communities. 327 

Sample sets specifically designed for such validation efforts would not only reveal biases, but could also be used to accredit 328 

monitoring offices in order to ensure that their laboratory work meets quality standards, and that their results are comparable 329 

with those of other accredited offices. Once a well-established standardised metabarcoding protocol is developed, the 330 

analysis of high-throughput metabarcoding data could be carried out on cloud-based systems, facilitating comparisons and 331 

easy updating of all bioinformatic analyses. Further, common metadata standards and central storage of all monitoring 332 
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related metabarcoding data could serve as a valuable resource for research, e.g., by providing accurate maps of taxa 333 

presence over a large geographic and temporal scales with unprecedented accuracy. 334 

 The second major factor influencing our results is database accuracy, along with the reliability of morphology-335 

based identification of specimens deposited in databases. Here, we specifically constrained our comparison to MOTUs with 336 

assigned taxonomic information from the BOLD and NCBI reference databases and did not consider other MOTUs, despite 337 

the potential to further increase assessment accuracy. Within the framework of the WFD, ecological assessment of aquatic 338 

ecosystems in many countries currently evaluates taxa, associated traits and indicator values; therefore, metabarcoding must 339 

compete on the same level. While we think it is feasible to infer traits by correlating MOTUs with abiotic data from 340 

sampling locations, we currently lack metabarcoding datasets of sufficient size to verify this. Furthermore, it is desirable to 341 

maintain and associate taxonomic information with MOTUs, to relate ecological information to obtained sequences, and to 342 

associate correlative found traits and ecological preferences back to the taxa detected by metabarcoding. Currently, 343 

available databases are still incomplete, and not all taxa have barcodes. Additionally, the accuracy of identification of larvae 344 

and adult invertebrates varies depending on expert experience, and even databases like BOLD, specifically built for DNA 345 

barcoding, contain misidentified taxa or conflicting taxonomic assignments for the same BIN (Barcode Index Number, 346 

(Ratnasingham & Hebert 2013)). Databases require stricter standards and quality control, including incentives for data 347 

providers and managers to better curate their data after the initial release. Sample degradation and misidentification could 348 

have affected both our  18 samples and  also the reference databases. Those errors could have further propagated into false 349 

positives or negatives in both the morphologically-generated taxon list and our metabarcoding-based assessments. It is 350 

imperative that taxonomical experts and molecular biologists come together to discuss and solve conflicting cases, 351 

especially as traditional taxonomic expertise fades. DNA metabarcoding provides an excellent opportunity for traditional 352 

taxonomists to contribute to reference databases and the increased taxonomic resolution  make it  possible to associate 353 

ecological information with difficult groups such as Diptera.  354 

 355 

Conclusions 356 

We demonstrated that DNA metabarcoding is a viable alternative to morphology-based identification of macroinvertebrates, 357 

as both the assessment results and costs are very similar for both methods. DNA metabarcoding detected more taxa than 358 

morphology-based analysis in all samples examined. If combined with ecological species traits, DNA metabarcoding could 359 

potentially improve assessment results over those obtained through morphological identification alone. Despite its merits, 360 

the DNA-based approach has still minor technical issues, which, along with unreliability in reference databases, must be 361 
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resolved before the full potential of DNA metabarcoding can be unlocked. This will require coordinated efforts such as the 362 

DNAqua-Net project, which combines contributions from molecular biologists, ecologists and taxonomists (Leese et al. 363 

2016).  364 
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Figures 379 

 380 

Figure 1: Number of morphotaxa detected by morphological and DNA-based identification methods across all 18 sample 381 

sites. The number of taxa detected by DNA-based identification was compared among four primer pairs (different symbols). 382 

The boxplot on the right compares the overall performances of DNA- and morphology-based identification across samples. 383 

 384 

385 
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 386 

Figure 2: Percentage of morphologically-identified taxa detected with four different primer pairs across all 18 sample sites. 387 

Primers pairs are indicated by different symbols, and overall detection rates for the primer pairs are shown on the right. 388 

389 
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 390 

Figure 3: Relative logarithmic sequence abundance plotted against logarithmic number of specimens from each 391 

morphologically identified taxon for all 18 individual samples. The four primer combinations are indicated by colour, with a 392 

linear regression line plotted in case of a significant positive linear correlation (p=<0.05) and the adjusted R2 value is given 393 

for the respective primer pair. 394 

 395 

396 
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 397 

Figure 4: Comparison of Finnish macroinvertebrate WFD assessment metrics calculated with taxa lists based on 398 

morphological- and DNA-based (primers BF2+BR2) identification. The metrics are shown as normalised Ecological 399 

Quality Ratios (EQR) ranging from 0 (low status) to 1 (values can >1 if more taxa are observed than expected on average). 400 

For all four metrics, the results of morphological- and DNA-based assessments were significantly correlated (Pearson 401 

correlation, p > 0.0001). A) Occurrence of stream Type-specific Taxa (TT, based on presence/absence data). B) Occurrence 402 

of stream Type-specific EPT families (EPTh, based on presence/absence family data). C) Percent model affinity (PMA, 403 

based on relative abundance data). D) Mean EQR of the three metrics.404 
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 405 

Figure 5: Overview of factors currently limiting the application of DNA metabarcoding to ecosystem assessment, with 406 

potential solutions. 407 

 408 

409 
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Figure S2. Flow chart detailing bioinformatics steps in our metabarcoding pipeline. 555 

 556 

Figure S3. Scatterplot showing the number of reads obtained for the samples. 557 
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Figure S4. Matrix indicating potential tag switching. 559 
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Figure S5. Bar plot showing the number of OTUs shared among different primer sets. 561 
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Figure S6. Plot showing reproducibility between replicates. 563 
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Figure S7. Presence of morphotaxa across samples. 565 
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Figure S8. Comparison of taxonomic resolution between morphology and DNA metabarcoding. 567 
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Figure S9. Principal component analysis (PCA) comparing performance of the 4 used primer sets.  569 
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Table S1. Sample site coordinates and calculated assessment indices. 571 
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Table S2. Tagging combinations used in the metabarcoding library. 573 
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Table S3. Overview of morphotaxa identified based on morphology across samples. 575 
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