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Abstract 18 

1) DNA metabarcoding holds great promise for assessment of stream ecosystems with macroinvertebrates. However, 19 

few large-scale studies have compared the performance of DNA metabarcoding with that of routine morphological 20 

identification. 21 

2) We tested metabarcoding using 18 macroinvertebrate samples from Finland using four primer sets. The samples were 22 

collected in 2013 and identified based on morphology as part of a Finnish stream monitoring program. Morphological 23 

identification was performed to the taxonomic level at which identification was reliable following standardized 24 

protocols. 25 

3) We identified over twice the number of taxa, with greater species-level resolution, using DNA metabarcoding than 26 

morphology-based identification. For each sample, we detected more taxa by metabarcoding than by previous 27 

morphological methods, and all four primer sets showed similarly good performance. There was a significant linear 28 

correlation between sequence abundance and the number of taxa in each sample, but the scatter was up to two orders of 29 

magnitude. Ecological status assessment indices calculated from morphological and DNA metabarcoding datasets were 30 
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mostly similar, with a few exceptions. With the recent drop in sequencing costs per sample, both methods identification 31 

are currently equally expensive. 32 

4) We used actual samples for monitoring to demonstrate that DNA metabarcoding can achieve similar results and 33 

better taxonomic resolution than current morphological identification methods. Metabarcoding has thus already become 34 

a viable and reliable invertebrate identification method for stream assessment. However, to unlock the full potential of 35 

DNA metabarcoding for ecosystem assessment key problems in current laboratory protocols and reference databases, 36 

specified in this work, will require further attention. 37 

 38 

 39 
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Introduction 42 

Macroinvertebrates are key biological quality indicators in national and international aquatic biomonitoring programs. 43 

A variety of bioassessment protocols are used in these monitoring programs (Birk et al. 2012). However, in all current 44 

protocols, biological quality components such as macroinvertebrates, diatoms, macroalgae, and fish, are identified 45 

based only on morphological properties. For benthic macroinvertebrates, the orders Ephemeroptera, Plecoptera, 46 

Trichoptera, and Diptera are often sensitive to pollution, and thus are ideal indicators of stressors affecting stream 47 

ecosystems. Unfortunately, identifying benthic taxa to species or even genus level is often difficult or impossible, and 48 

misidentification is frequent and highly dependent on experience (Sweeney et al. 2011). Thus, classification is often 49 

only performed to a high taxonomic level. However, different responses to stressors are possible at the species level 50 

(Macher et al. 2015), and these differences can go unnoticed with low taxonomic resolution. Furthermore, using human 51 

experts for morphological identification is time time-consuming and therefore expensive (Yu et al. 2012; Aylagas et al. 52 

2014). Misidentification, low comparability, and limited taxonomic resolution for difficult groups, such as chironomids, 53 

can lead to inaccurate assessments and potentially to the mismanagement of stream ecosystems (Stein et al. 2013). 54 

While also the use of computer vision based taxa identification has been explored  (e.g. (Kiranyaz et al. 2011; Ärje et al. 55 

2013; 2017)), in recent years DNA-based taxon identification has emerged as a potential alternative to morphological 56 

methods. The first DNA based case studies highlight the potential application of these methods to the assessment of 57 

freshwater macroinvertebrates (Hajibabaei et al. 2011; Carew et al. 2013; Elbrecht & Leese 2015; 2016b). DNA 58 

barcoding in particular has often been promoted as a useful tool for ecosystem monitoring and assessment (Baird & 59 

Sweeney 2011; Baird & Hajibabaei 2012; Taberlet et al. 2012). While several studies have established a number of 60 

benefits of DNA-based monitoring using DNA metabarcoding, additional large-scale studies of complete freshwater 61 

macroinvertebrate monitoring samples are needed. In marine, freshwater and terrestrial ecosystems, complete samples 62 

of arthropods and diatoms have been processed (Ji et al. 2013; Gibson et al. 2014; Zimmermann et al. 2014; Leray & 63 

Knowlton 2015) and used to obtain assessment indices (Aylagas et al. 2016). However, DNA metabarcoding studies of 64 

complete macroinvertebrate samples from freshwater ecosystems are often limited to a few sampling sites (Hajibabaei 65 

et al. 2011; 2012) or selected taxon groups (Carew et al. 2013). Only (Gibson et al. 2015) performed large-scale studies 66 

of Canadian macrozoobenthos and demonstrated that DNA metabarcoding outperforms family- and order-level 67 

morphological identification approaches. While these results are promising, it should be noted that, in most European 68 

monitoring programs, taxa are identified to species level. For the application of DNA metabarcoding to routine stream 69 

monitoring, further optimized DNA-specific macrozoobenthos sampling and laboratory protocols have to be developed 70 

and validated. We recently explored primer bias and tissue extraction protocols using mock invertebrate samples of 71 

known composition with a one-step PCR metabarcoding protocol using the Illumina MiSeq sequencer (Elbrecht & 72 
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Leese 2015). We identified primer design as a critical component for species detection and developed primer sets 73 

specifically targeting freshwater macroinvertebrates (Elbrecht & Leese 2016b,a). While these BF/BR primers work well 74 

on mock communities and initial tests based on two stream benthos samples, they have not been tested in a larger 75 

biomonitoring context (Elbrecht & Leese 2016b; Elbrecht et al. 2016). Further, the sufficiency of available reference 76 

data, e.g., the BOLD database for freshwater macroinvertebrates (Ratnasingham & Hebert 2007), has not been fully 77 

explored in a metabarcoding context. Finally also laboratory constraints specific to organisms and stream ecosystems 78 

are may exist. Thus, it is important to further explore and validate the potential of DNA metabarcoding for routine use 79 

in stream assessment. 80 

In this study, we performed a one-to-one comparison of traditional morphological- and DNA metabarcoding-based 81 

identification in the context of bioassessment using benthic macroinvertebrate communities at 18 sites through a 82 

national Finnish stream bioassessment program. All samples were morphologically identified by an experienced 83 

taxonomist. Thus, the samples are ideally suited for performance comparisons of morphological and DNA-based 84 

identification in bioassessments and enable the critical evaluation of the current limitations of both approaches.  85 

 86 

Materials and Methods 87 

Sample collection and processing 88 

Benthic macroinvertebrates were collected in the fall of 2013 at 18 riffle sites in Finland as part of an official national 89 

stream monitoring program (Figure S1, Table S1). At each site, four 30 s kick-net samples covering most microhabitats 90 

at each site were obtained following national guidance for Water Framework Directive (WFD) monitoring (Meissner et 91 

al. 2016a). The samples were preserved in 70% ethanol in the field, and the invertebrates in each sample were later 92 

sorted in the laboratory. Collected specimens were stored in 70% ethanol, which was not replaced after collection, 93 

leading to an average ethanol concentration of 65.14% (SD = 2.83%) during long-term storage.  94 

 95 

All specimens were counted and identified based on morphology, mainly to the species or genus level, with the 96 

exception of Oligochaeta, Turbellaria, Nematoda, Hydracarina, and the dipteran families Chironomidae and Simuliidae, 97 

which were counted, but not identified to a lower taxonomic level. The level of identification followed the WFD 98 

monitoring guidance targeting operational taxonomic units (OTUs) established by the Finnish Environment Institute 99 

SYKE ((Meissner et al. 2016a), see page 29). Identification was performed by a single experienced consultant who 100 

participated in the most recent international macroinvertebrate taxonomic proficiency tests organized by Proftest of 101 

SYKE in 2016 and scored higher than average (i.e., >95%, (Meissner et al. 2016b)). For each site, four samples were 102 
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then pooled (hereafter referred to as a single sample). The samples were kept cool (8°C) for subsequent molecular 103 

analyses.  104 

 105 

DNA extraction and tissue pooling 106 

To remove the ethanol, specimens from each sampling site were dried overnight in sterile Petri dishes. Specimens were 107 

subsequently homogenized using an IKA ULTRA-TURRAX Tube Drive Control System with sterile 20 mL tubes and 108 

10 steel beads (5 mm Ø) by grinding at 4000 rpm for 30 min. From each sample, three aliquots containing 15 mg (6.23 109 

mg) of homogenized tissues were used for DNA extraction. The tissue was digested following a modified salt DNA 110 

extraction protocol (Sunnucks & Hales 1996). Then, 15 µL of DNA was pooled from each of the three extraction 111 

replicates, digested with 1 µL of RNAse A, and cleaned using a MinElute Reaction Cleanup Kit (Qiagen, Venlo, 112 

Netherlands) following the manufacturer’s instructions. DNA concentrations were quantified using the Fragment 113 

Analyzer™ Automated CE System (Advanced Analytical, Heidelberg, Germany), and the concentrations of all samples 114 

were adjusted to 25 ng/µL DNA for PCR. 115 

 116 

DNA metabarcoding and bioinformatics 117 

All 18 samples were amplified in duplicate with four BF/BR freshwater macroinvertebrate fusion primer sets, described 118 

previously (Elbrecht & Leese 2016b). Table S2 gives an overview of the fusion primer combinations used for sample 119 

tagging with inline barcodes. Each PCR reaction was composed of 1× PCR buffer (including 2.5 mM Mg2+), 0.2 mM 120 

dNTPs, 0.5 µM each primer, 0.025 U/µL HotMaster Taq (5Prime, Gaithersburg, MD, USA), 12.5 ng of DNA, and 121 

HPLC H2O to obtain a total volume of 50 µL. PCRs were run using a Biometra TAdvanced Thermocycler with the 122 

following program: 94°C for 3 min, 40 cycles of 94°C for 30 s, 50°C for 30 s, and 65°C for 2 min, and 65°C for 5 min. 123 

For a few of the samples, it was necessary to use a larger PCR volume (250 µL) due to PCR inhibitors present in the 124 

samples (see Table S2). PCR products were purified and left sided size-selected using SPRIselect with a ratio of 0.76× 125 

(Beckman Coulter, Brea, CA, USA). They were quantified using a Qubit Fluorometer (HS Kit, Thermo Fisher 126 

Scientific, Waltham, MA, USA) and Fragment Analyzer™ Automated CE System (Advanced Analytical Technologies 127 

GmbH, Heidelberg, Germany). Samples were pooled to equal molarity, and sequened on two Illumina HiSeq 2500 128 

lanes using a rapid Run 250 bp PE v2 Sequencing Kit and 5% PhiX spike-in. Sequencing was carried out by GATC 129 

Biotech GmbH (Konstanz, Germany). 130 

For bioinformatic processing, the UPARSE pipeline was used in combination with custom R scripts (Dryad DOI) for 131 

data processing (Edgar 2013). Scripts are available on http://github.com/VascoElbrecht/JAMP (JAMP v0.10a). Reads 132 

were demultiplexed and paired-end reads were merged using Usearch v8.1.1861 with the following settings: -133 
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fastq_mergepairs with -fastq_maxdiffs 99, -fastq_maxdiffpct 99 and -fastq_trunctail 0 (Edgar & Flyvbjerg 2015). 134 

Primers were removed using cutadapt version 1.9 with default settings (Martin 2011). Sequences were trimmed to the 135 

same 217 bp region amplified by the BF1+BR1 primer set and the reverse complement build, if necessary, using 136 

fastx_truncate and fastx_revcomp. Only sequences of 207–227 bp were used for further analysis (filtered with cutadapt). 137 

Low-quality sequences were then filtered from all samples using fastq_filter with maxee = 0.5. Sequences from all 138 

samples were then pooled, dereplicated (minuniquesize = 3), and clustered into molecular operational taxonomic units 139 

(MOTUs) using cluster_otus with a 97% identity threshold (Edgar 2013) (includes chimera removal). 140 

Pre-processed reads (Figure S2, step B) for all samples were dereplicated again using derep_fulllength, but singletons 141 

were included. Sequences from each sample were matched against the MOTUs with a minimum match of 97% using 142 

usearch_global. Only OTUs with a read abundance above 0.003% in at least one sequencing replicate were considered 143 

in downstream analyses. Taxonomic assignments for the remaining MOTUs were determined using an R script to 144 

search against the BOLD and NCBI databases. Taxonomic information was not further validated, and, in the case of 145 

conflicting assignments between NCBI and BOLD databases, the taxonomic level where both databases returned 146 

identical results was used. For assignment to the species level, a hit with 98% similarity was required in at least one of 147 

the two databases, and 95% similarity was required for assignment to the genus level, 90% for the family level, and 85% 148 

for the order level. Only MOTUs that matched macroinvertebrates were used in the statistical analysis. In all further 149 

analyses, only MOTUs with a sequence abundance of at least 0.003% in both replicates of a sample were included. 150 

 151 

Results 152 

Sequencing run statistics 153 

The HiSeq Rapid run yielded 260.75 million read pairs (raw data available at SRA, accession number SRR4112287). 154 

After library demultiplexing on average 1.53 million (SD = 0.29 million) read pairs were retained (Figure S3). 155 

Unexpected sample tagging combinations (potential tag switching) were low with only 12 of 136 unused combinations 156 

above the 0.003% read abundance threshold and a maximum relative read abundance of 0.006% (Figure S4). After 157 

bioinformatic processing a total of 750 MOTUs remained, of which 49.3% were shared between all four primer sets 158 

(Figure S5). The primer combination BF2+BR2 generated the highest number of MOTUs. Sequencing replicates for 159 

each sample showed a mean difference in sequence abundance of a factor of 2.05 (expected 1.0), indicating high 160 

variation in sequence abundance between the two replicates (Figure S6). There is a weak but significant negative 161 

correlation between relative read abundance per MOTU and variation between replicates for 13 out of 72 total samples 162 

(p ≤ 0.05, Figure S6), but there was no consistent pattern across all samples, as also highly abundant MOTUs showed 163 

large differences between replicates in some cases. 164 
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 165 

Taxonomic identification 166 

A total of 126 taxa were identified based on morphology across all 18 samples of which 61.1% were identified to 167 

species level (Table S3). Five species lacked reference sequences in BOLD or NCBI (Table S2), and more taxa were 168 

potentially missing at a lower taxonomic resolution (e.g., reference data for specimens only identified to the family 169 

level). All samples were dominated by a few common taxa whereas rare taxa were only found in some samples (mean 170 

Pielou’s evenness = 0.65, SD = 0.12, Figure S7).  171 

In total, 750 MOTUs remained in the dataset after bioinformatic processing of the sequence data. Of these, 573 target 172 

invertebrate hits were further analyzed. The MOTU table for DNA metabarcoding with taxonomic assignments as well 173 

as MOTU sequences is available as supplementary Table S4. After taxonomic assignment using BOLD and NCBI, 174 

DNA metabarcoding revealed the presence of 288 morphotaxa (208 species, 47 genera, 23 family, 10 order or higher 175 

level). More taxa were resolved at species level with metabarcoding than by morphological determination (Figure S8). 176 

DNA metabarcoding consistently detected a substantially greater number of taxa than morphology-based identification 177 

across all samples with each primer combination (57.30% more taxa on average over all data, SD = 35.69%, Figure 1). 178 

The difference between methods was mainly explained by the coarse taxonomic level obtained using morphology-based 179 

identification for dipteran families, mites, Oligochaeta, and Limnephilidae. For groups that were morphologically 180 

identified to species or genus level, DNA metabarcoding detected 25.3% more taxa using OTUs. Despite enabling the 181 

identification of a substantial number of overlooked taxa, DNA metabarcoding did not detect an average of 32.51% (SD 182 

= 9.71%) of taxa identified based on morphology in each sample (Figure 2, see Table S2 for undetected taxa). The 183 

proportion of detected taxa was similar for all primer pairs, with a slightly higher detection rate for the BF2+BR2 pair 184 

than for other combinations. There was a significant positive correlation between the number of reads assigned to each 185 

morphotaxon and the number of specimens per taxon for most samples and primer combinations (Figure S9). This 186 

correlation was significant for all 18 samples for the combination BF2+BR2, while for other primer combinations it was 187 

only significant for 13 or 14 samples. However, despite the positive correlations between read abundance and number 188 

of taxa, there is still a variation of two orders of magnitude in read abundance. This was also reflected by the low 189 

adjusted R2 values (mean = 0.386, SD = 0.130).  190 

Assessment indices calculated from morphology and DNA metabarcoding data were generally similar (Figure 3, Table 191 

S1).  For only a few samples the assessed ecological status changed with the DNA-based taxa lists. Most of the different 192 

assessments were obtained for DNA-identification based calculation of the PMA (Percent model affinity index, (Novak 193 

& Bode 1992)) which assigned many samples to only good status, whereas morphological identification did lead to 194 
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more high status assessment results (Figure 3C). Note that for this comparison, the DNA-based species lists had to be 195 

reduced to the guidance target OTU list used for Finnish assessment. 196 

 197 

Discussion 198 

Performance of DNA metabarcoding 199 

Our results clearly show that DNA-based identification methods can capture more diversity than routine morphological 200 

ones despite the fact that several of the morphologically identified taxa were not recovered with the DNA-based 201 

technique. DNA metabarcoding was especially powerful in resolving taxon diversity for those groups that are difficult 202 

to determine morphologically in their larval stages such as many chironomids and simuliids. In addition, also EPT taxa 203 

that were morphologically identified only to family (Limnephilidae) or genus level (e.g., Eloeophila and Hydroptila) 204 

could be identified to species level using DNA metabarcoding. Our observed increased taxonomic resolution of DNA 205 

over morphologically based identification has been demonstrated in many previous studies (Baird & Sweeney 2011; 206 

Sweeney et al. 2011; Stein et al. 2013; Gibson et al. 2015). All four of our applied macroinvertebrate-specific BF/BR 207 

primer combinations showed similarly good performance, consistent with our previous mock community tests (Elbrecht 208 

& Leese 2016b). 209 

When using current ecological status related metric calculation methods, results were very similar for morphology-210 

based and our DNA-based taxon lists, indicating that metabarcoding is on par with current assessment methods. A good 211 

match of morphological assessments against presence/absence data as well as DNA-based taxon lists has also been 212 

demonstrated in pioneering marine studies (Aylagas et al. 2014; 2016). Considering that the indices used in this study 213 

were optimized for morphological identification, in some cases not considering species or genus level but even more 214 

coarse taxonomic levels, future DNA-based assessment might be further improved by applying optimized metric 215 

calculation approaches and species level trait databases (Schmidt-Kloiber & Hering 2015). DNA metabarcoding can 216 

provide much more accurate taxonomic identification than can morphology and can even be used to detect cryptic 217 

species (Elbrecht & Leese 2015). This gain in accuracy gives us a chance to investigate potential differences in 218 

ecological preferences and allows stressor detection based on indicator taxa when larval morphology alone is not 219 

sufficient (Macher et al. 2015). This valuable additional information could be integrated into future assessment indices, 220 

and might not only clarify the condition of a stream, but can also potentially help to disentangle the precise stressors 221 

affecting the ecosystem. 222 

While DNA metabarcoding has the advantages of increased reproducibility and taxonomic resolution, it also has 223 

drawbacks, including the inability to quantify abundance or biomass (Piñol et al. 2014; Elbrecht & Leese 2015). 224 

Despite the development of approaches to adjust for primer bias (Thomas et al. 2015), these are unlikely to succeed for 225 
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complex diverse communities and are additionally affected by biomass (Elbrecht et al. 2016). Nevertheless, we found a 226 

significant linear correlation for most samples between morphologically identified taxon abundance and number of 227 

sequencing reads assigned to the respective OTUs. While this could be interpreted as an opportunity to estimate taxon 228 

biomass, one has to acknowledge the poor fit and the scatter of up to two orders of magnitudes. While the BF/BR 229 

primers show less primer bias than previously tested Folmer primers (Folmer et al. 1994; Elbrecht & Leese 2015), this 230 

bias is still substantial (Elbrecht & Leese 2016b). Sequence abundance might be further influenced by specimen 231 

biomass of different taxa. We could only determine the correlation between read number and taxon abundance, which is 232 

a proxy for biomass. With exact biomass data for each specimen, the linear correlation and thus the estimate of biomass 233 

with respect to abundance might be further improved. We nevertheless argue that estimating biomass from PCR-based 234 

metabarcoding analyses remains very difficult owing to primer bias, but could provide utility. 235 

Laboratory and sequencing costs are critical for the viability of large-scale DNA-based monitoring (Ji et al. 2013). In 236 

this study, our ready to load library was sequenced using the HiSeq Rapid system, generating 3 million read pairs per 237 

sample (1.5 per replicate), for a total cost of 7900€ by a commercial sequencing provider. We sequenced each sample 238 

using four primer pairs to examine the performance of different primer pairs, resulting in a total of 72 samples being 239 

sequenced with two replicates each. This results in a per-sample sequencing cost of 110€. For routine monitoring in the 240 

future, only one best-working primer pair would be used. Sequencing costs can be further reduced by pooling more 241 

samples in the same sequencing run and pre-sorting samples according to biomass, even though specimen sorting would 242 

increase the cost of sample processing (Elbrecht et al. 2016). In the protocol used here, standard reagent costs for DNA 243 

extraction, single-step PCR, library quantification, and clean-up were approximately 70€. This results in a combined 244 

cost of reagents plus sequencing of 180€ per sample, which is in line with previously estimated costs (Stein et al. 2014). 245 

Laboratory rent and maintenance, sample collection, personnel costs, and bioinformatics costs probably push the total 246 

costs per sample to 500–750€, which is comparable to the current cost of Finnish morphology-based costs per site. 247 

Sample collection is a large contributor to these expenses, as laboratory work and bioinformatics can be highly 248 

parallelized and automated. 249 

 250 

Factors currently limiting DNA metabarcoding for ecosystem assessment 251 

The DNA metabarcoding protocol we utilized worked reliably across all 18 samples. However, we identified various 252 

opportunities to further improve the performance of metabarcoding. Figure 4 gives an overview of the limitations of 253 

DNA metabarcoding related to taxonomic assignment and the reference database as well as to the laboratory protocols. 254 

Across all 18 samples in this study, we were unable to detect 32% of taxa identified morphologically using our 255 

metabarcoding approach. Some of these are linked to the practice of the cautionary principle of human experts to leave 256 
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the identification of small specimens to coarser taxa (e.g. genus level)  if higher taxonomic resolution cannot be 257 

established without doubt. Additionally, laboratory procedures used in routine monitoring campaigns may not be 258 

adequate for DNA extraction. The low alcohol concentration typically used for sample preservation during routine 259 

biomonitoring may result in specimens that are still viable for morphological detection, but have strongly degraded 260 

DNA, impairing detection. Further, although unlikely, given the proven proficiency of the expert used in the 261 

morphological identification, the introduction of false taxa through erroneous morphotaxonomical identification by the 262 

human expert may have influenced the observed discrepancy between the results of the identification methods. Several 263 

additional factors listed in Figure 4 may have influenced detection, positively or negatively. 264 

Laboratory methodology can strongly bias the absolute and relative amounts of invertebrates detected by DNA 265 

metabarcoding. Primer bias is one of the most common concerns, as primer and template mismatches can prevent 266 

certain taxa from being amplified by PCR (Deagle et al. 2014; Piñol et al. 2014; Elbrecht & Leese 2015). By adding 267 

primer degeneracy and carefully choosing primer sets suited for the targeted ecosystem and taxonomic groups, the 268 

negative effects of primer bias can be reduced (Elbrecht & Leese 2016b,a). However, even with primer optimization, 269 

one-step PCR methods will be affected by primer bias. Thus, it is unlikely that all taxa present in a sample can be 270 

detected by DNA metabarcoding, and abundance or biomass estimation is difficult owing to primer bias. PCR and 271 

sequencing errors, undetected chimeras, and misidentified reference sequences can further lead to false positive 272 

detection. Additionally, specimens in a sample can vary widely in biomass, depending on species and life stage. This 273 

not only prevents the estimation of taxon abundances, but can also lead to a lack of detection of small and rare taxa 274 

(Elbrecht et al. 2016). Our data were likely affected by this bias, as 68.3% of taxa were present in just five or fewer 275 

samples. The issue of primer bias and variation in taxon biomass makes it difficult to relate read abundance to taxon 276 

abundance. While presence/absence data might already be sufficient for ecosystem assessment (Aylagas et al. 2014), 277 

one has to acknowledge that relative abundance-based estimates might be possible if identical protocols are used across 278 

all sample sites, leading to similar biases across samples. Some of our samples were additionally affected by PCR 279 

inhibition, which could be solved by using larger PCR volumes to dilute PCR inhibitors or by additional clean-up steps. 280 

However, PCR inhibition is a major issue for the application of DNA metabarcoding to monitoring, as the protocol 281 

should work in all stream ecosystems, independent of environmental conditions. Ideally, methods to purify DNA from 282 

complete kick samples are developed and tested without pre-sorting specimens from debris (e.g., sediment, small stones, 283 

leaves, and organic particles). This would allow to skip the time consuming pre-sorting steps, during which, up to 30% 284 

of the specimens can be missed (Haase et al. 2010). Thus, circumventing preprocessing  would include a large 285 

proportion of the currently potentially unstudied diversity. 286 

Metabarcoding might be affected by several other laboratory-specific factors. For example, tag switching is an issue 287 

when several samples are multiplexed in one library (Esling et al. 2015; Schnell et al. 2015). However, we did not 288 
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observe these effects on our samples or in our previous studies using the fusion primer system with in line tagging. 289 

However, (O’Donnell et al. 2016) showed that tags can lead to biases in read abundance, and our samples are 290 

potentially affected by this, as evidenced by the observed variation in read abundances of a average factor of ~2 291 

between the two replicates for the same sample. It is of critical importance to validate that tag switching is at a 292 

minimum and the level of bias between replicates and its effect on the data are known. In our case, variation in read 293 

abundance will potentially result in minimal underestimation of diversity, as we conservatively discarded all reads not 294 

present in both replicates. Although we obtained good taxonomic resolution, it is important to be aware of and account 295 

for these shortcomings and to develop modifications to the protocols to solve these problems. DNA metabarcoding is 296 

not perfect; many different protocols are being developed, of which few have been extensively validated. Method 297 

groundtruthing is essential to build trust in metabarcoding methods for monitoring, and different protocols and 298 

modifications should be validated using the same standard invertebrate mock communities. Such validation samples 299 

would not only reveal biases, but could also be used to accredit monitoring offices to ensure that their laboratory work 300 

meets quality standards and that results are comparable with those of other accredited offices. Once a well-established 301 

standardized metabarcoding protocol is developed, the analysis of high-throughput metabarcoding data could be carried 302 

out on cloud-based systems. This would facilitate comparisons and easy updating of all bioinformatic analyses. Further, 303 

common metadata standards and central storage of all monitoring related metabarcoding data could be a valuable 304 

resource for research, e.g. by providing accurate maps of taxa presence over a large geographic and temporal scales 305 

with unprecedented accuracy. 306 

The second major factor influencing our results is database accuracy and the reliability of morphology-based 307 

identification of specimens deposited in databases. Here, we specifically constrained our comparison to MOTUs with 308 

assigned taxonomic information from the BOLD and NCBI reference databases and did not consider other MOTUs, 309 

despite the potential to further increase assessment accuracy. Within the framework of the Water framework Directive 310 

ecological assessment of aquatic ecosystems in many countries is currently taxa and associated traits or indicator values; 311 

thus metabarcoding has to compete on the same level. While we think it is feasible to infer traits by correlating MOTUs 312 

with abiotic data from sampling locations, we currently lack appropriately large metabarcoding datasets to verify this. 313 

Further, it is desirable to keep and associate taxonomic information with MOTUs, to relate ecological information to 314 

obtained sequences, but also associate correlative found traits and ecological preferences back to the taxa detected with 315 

metabarcoding. Currently, available databases are still incomplete and not all taxa have barcodes. Additionally, the 316 

identification accuracy for larvae and adult invertebrates varies depending on expert experience, and even databases like 317 

BOLD, specifically built for DNA barcoding, contain misidentified taxa or conflicting taxonomic assignments for the 318 

same BIN. Databases require stricter standards and quality control, including incentives for data providers and 319 

managers to better curate their data after the initial release. Sample degradation and misidentification in the 18 samples, 320 
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but also in the reference databases, could have led to false positives or negatives in both the morphologically generated 321 

taxon list and our metabarcoding-based assessments. It is imperative that taxonomical experts and molecular biologists 322 

come together to discuss and solve conflicting cases, especially as traditional taxonomic expertise is fading. DNA 323 

metabarcoding provides an excellent opportunity for traditional taxonomists to contribute to reference databases and, 324 

thanks to the increased taxonomic resolution using DNA barcoding, to associate ecological information with difficult 325 

groups, like Diptera.  326 

 327 

Conclusions 328 

We demonstrated that DNA metabarcoding is a viable alternative to morphology-based identification of 329 

macroinvertebrates as both costs and  assessment results are very similar. DNA metabarcoding detected more taxa in all 330 

samples, which ,if linked with ecological species traits, could potentially improve assessment results over those 331 

obtained through morphological identifications. Despite its merits, several shortcomings of DNA-based method as well 332 

as challenges with reference databases have to be tackled before unlocking  the full potential of DNA metabarcoding. 333 

This will require coordinated efforts such as the DNAquanet project combining work from molecular biologists, 334 

ecologists and taxonomists (Leese et al. 2016).  335 
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Figures 350 

 351 

Figure 1: Number of morphotaxa detected by morphological and DNA-based identification methods across all 18 352 

sample sites. The number of taxa detected by DNA-based identification was compared among four primer pairs 353 

(different symbols). The boxplot on the right compares the overall performances of DNA- and morphology-based 354 

identification across samples. 355 

 356 

357 
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 358 

Figure 2: Proportion of morphologically identified taxa detected with the four different primer pairs across all 18 359 

sample sites. Primers pairs are indicated by different symbols, and overall detection rates for the primer pairs are shown 360 

on the right. 361 

362 
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 363 

Figure 3: Comparison of Finnish macroinvertebrate WFD assessment indices calculated with taxa lists based on 364 

morphological- and DNA-based (BF2+BR2 primer) identification. The three indices are shown as normalized 365 

Ecological Quality Ratios (EQR) ranging from 0 (Bad status) to 1 (High status with no anthropogenic alteration). For all 366 

four indices, there was a significant correlation between morphological- and DNA-based assessments (Pearson 367 

correlation, p > 0.0001). A) Occurrence of river Type-Specific Taxa (TT, based on p/a data). B) Occurrence of river 368 

Type-Specific EPT-families (EPTh, based on p/a data). C) Percent model affinity (PMA, based on relative abundance 369 

data). D) Mean EQR of the three indices.370 
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 371 

Figure 4: Overview of factors currently limiting the application of DNA metabarcoding for ecosystem assessment, with 372 

potential solutions. 373 

 374 

375 
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