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In recent years, the ûeld of sexual selection has exploded, with advances in theoretical
and empirical research complementing each other in exciting ways. This perspective piece
is the product of a <stock-taking= workshop on sexual selection and conûict. Our aim is to
identify and deliberate on outstanding questions and to stimulate discussion rather than
provide a comprehensive overview of the entire ûeld. These questions are organized into
four thematic sections we deem essential to the ûeld. First we focus on the evolution of
mate choice and mating systems. Variation in mate quality can generate both competition
and choice in the opposite sex, with implications for the evolution of mating systems.
Limitations on mate choice may dictate the importance of direct vs. indirect beneûts in
mating decisions and consequently, mating systems, especially with regard to polyandry.
Second, we focus on how sender and receiver mechanisms shape signal design. Mediation
of honest signal content likely depends on integration of temporally variable social and
physiological costs that are challenging to measure. We view the neuroethology of sensory
and cognitive receiver biases as the main key to signal form and the 8aesthetic sense9
proposed by Darwin. Since a receiver bias is suûcient to both initiate and drive ornament
or armament exaggeration, without a genetically correlated or even coevolving receiver,
this may be the appropriate 8null model9 of sexual selection. Thirdly, we focus on the
genetic architecture of sexually selected traits. Despite advances in modern molecular
techniques, the number and identity of genes underlying performance, display and
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secondary sexual traits remains largely unknown. In-depth investigations into the genetic
basis of sexual dimorphism in the context of long-term ûeld studies will reveal constraints
and trajectories of sexually selected trait evolution. Finally, we focus on sexual selection
and conûict as drivers of speciation. Population divergence and speciation are often
inûuenced by an interplay between sexual and natural selection. The extent to which
sexual selection promotes or counteracts population divergence may vary depending on
the genetic architecture of traits as well as the covariance between mating competition
and local adaptation. Additionally, post-copulatory processes, such as selection against
heterospeciûc sperm, may inûuence the importance of sexual selection in speciation. We
propose that eûorts to resolve these four themes can catalyze conceptual progress in the
ûeld of sexual selection, and we oûer potential avenues of research to advance this
progress.
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32 Abstract 

33 In recent years, the field of sexual selection has exploded, with advances in theoretical and 
34 empirical research complementing each other in exciting ways. This perspective piece is the 
35 product of a <stock-taking= workshop on sexual selection and conflict. Our aim is to identify and 
36 deliberate on outstanding questions and to stimulate discussion rather than provide a 
37 comprehensive overview of the entire field.  These questions are organized into four thematic 
38 sections we deem essential to the field. First we focus on the evolution of mate choice and 
39 mating systems. Variation in mate quality can generate both competition and choice in the 
40 opposite sex, with implications for the evolution of mating systems.  Limitations on mate choice 
41 may dictate the importance of direct vs. indirect benefits in mating decisions and consequently, 
42 mating systems, especially with regard to polyandry. Second, we focus on how sender and 
43 receiver mechanisms shape signal design. Mediation of honest signal content likely depends on 
44 integration of temporally variable social and physiological costs that are challenging to measure. 
45 We view the neuroethology of sensory and cognitive receiver biases as the main key to signal 
46 form and the 8aesthetic sense9 proposed by Darwin. Since a receiver bias is sufficient to both 
47 initiate and drive ornament or armament exaggeration, without a genetically correlated or even 
48 coevolving receiver, this may be the appropriate 8null model9 of sexual selection.  Thirdly, we 
49 focus on the genetic architecture of sexually selected traits. Despite advances in modern 
50 molecular techniques, the number and identity of genes underlying performance, display and 
51 secondary sexual traits remains largely unknown. In-depth investigations into the genetic basis of 
52 sexual dimorphism in the context of long-term field studies will reveal constraints and 
53 trajectories of sexually selected trait evolution.  Finally, we focus on sexual selection and conflict 
54 as drivers of speciation. Population divergence and speciation are often influenced by an 
55 interplay between sexual and natural selection. The extent to which sexual selection promotes or 
56 counteracts population divergence may vary depending on the genetic architecture of traits as 
57 well as the covariance between mating competition and local adaptation. Additionally, post-
58 copulatory processes, such as selection against heterospecific sperm, may influence the 
59 importance of sexual selection in speciation. We propose that efforts to resolve these four themes 
60 can catalyze conceptual progress in the field of sexual selection, and we offer potential avenues 
61 of research to advance this progress.
62
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64 Sexual selection, sexual conflict, mate choice, epigenetics, polyandry, speciation, sensory bias, 
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67 INTRODUCTION 

68 A great deal of the biodiversity on this planet, especially the spectacular traits at which 

69 humans marvel, are direct or indirect results of sexual selection. Darwin (1871) defined sexual 

70 selection as <the advantage which certain individuals have over other individuals of the same 

71 sex and species solely in respect of reproduction= (reproduction, in this context, meaning mating 

72 success).  The flowers of an alpine meadow, antelope horns, a dawn chorus of songbirds: all are 

73 snapshots of long histories of sexually selected diversification and exaggeration of signals and 

74 displays that have or once had effects on mating or fertilization success. For sexually 

75 reproducing organisms, intrasexual competition for reproductive opportunities is a powerful 

76 selective pressure, not only shaping the extravagant 8secondary sexual characters9 that Darwin 

77 originally set out to explain, but also with obvious potential to reinforce or even trigger 

78 speciation and dramatically affect macroevolution and biogeography. To explore biodiversity 

79 without an understanding of sexual selection is a bit like laying a jigsaw puzzle upside down.

80 With our current insight that reproduction is the hard currency of natural selection, it may 

81 seem strange that the notion of sexual selection required such a massive volume of reasoning and 

82 countless examples (Darwin 1871), and that despite this effort, it remained controversial for so 

83 long. Darwin identified two components of sexual selection: contest competition between rivals 

84 of the same sex (typically males) and mate choice (typically by females). Female choice in 

85 particular attracted criticism, first from Wallace (1895) and later by others (although, ironically, 

86 with arguments similar to the often useful 8good genes9 models of today; Cronin 1991; Hoquet & 

87 Levandowsky 2015; Prum 2012). Even when Fisher (1930) outlined the intuitively plausible 

88 runaway process involving a preferred male trait and a preference gene acting in females in his 

89 classic monograph, it was rather skeptically reviewed by Huxley (1938a; Huxley 1938b). 
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90 However, with the exception of Bateman (1948), the subject was largely ignored until the 

91 explosion of evolutionary and behavioural ecology in the 1970s, further sparked by the first 

92 demonstration of female choice in the wild (Andersson 1982). Conceptions of ornamental traits 

93 as quality advertisements (Williams 1966; Zahavi 1975) and how variation in such viability 

94 messages can be maintained (notably Hamilton & Zuk 1982), together with edited volumes like 

95 Bateson (1983) and Bradbury and Andersson (1987), generated questions and research programs 

96 for decades to come. 

97 The theoretical genetic modelling of Fisher9s trait-preference coevolution was pioneered 

98 by O9Donald (1962), Fisher9s last Ph.D. student, but runaway dynamics were not fully explored 

99 and demonstrated until the landmark models of Lande (1981) and Kirkpatrick (1982). These 

100 were advocated as the 8Lande-Kirkpatrick null model9 of sexual selection  by mate choice  by 

101 Prum (2010), partly as a reaction to decades of focus on indicator models and direct or indirect 

102 benefits of mate choice (reviewed by Kempenaers 2007; Kokko et al. 2003; Mead & Arnold 

103 2004). This and the neglect of the social competition that is the essence of sexual selection 

104 (Darwin 1871; West-Eberhard 1979),  have been called 8sexual selection amnesia9 by West-

105 Eberhard (2014).

106 Darwin emphasized adaptations arising from what is now termed pre-copulatory sexual 

107 selection, i.e. competition for matings. Since 1970 it has become accepted that sexual selection 

108 can continue after mating (post-copulatory sexual selection; see Birkhead 2010), and much work 

109 has been completed on its two components analogous to Darwin's male-male competition (i.e. 

110 sperm competition,  Parker 1970; Parker & Pizzari 2010) and female choice (i.e. sperm selection 

111 or cryptic female choice, Eberhard 1996; Firman et al. 2017; Thornhill 1983). Further, it is 

112 increasingly appreciated that the process of sexual selection is associated with, and frequently 
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113 exacerbates, sexual conflict (Table 1), i.e. cases where male and female fitness interests cannot 

114 be simultaneously satisfied (Parker 1979; Trivers 1972). Thus, after a long period of quiescence 

115 since its inception in 1871, the past 40 years have seen an upsurge of interest in sexual selection 

116 with the rise of new theory, modern computer technology, molecular biology and techniques in 

117 comparative analysis having fueled extensive developments. 

118

119 SURVEY METHODOLOGY

120 The enthusiastic resurgence of sexual selection theory in the 1970s and 880s stimulated a 

121 Dahlem Conference which sought to identify emerging directions (Bradbury & Andersson 1987) 

122 and the intensity of interest in the field has continued unabated. The recent workshop on sexual 

123 selection and sexual conflict held at Chalmers University/University of Gothenburg (<Origins of 

124 Biodiversity Workshop: Sexual selection and Sexual Conflict=, April 2017) aimed a renewed 

125 8stock-taking9 on diverse aspects of the subject. Our goal is not to review the entire field, or even 

126 subfields, of sexual selection and sexual conflict (e.g. Andersson 1994; Arnqvist & Rowe 2005; 

127 Birkhead & Møller 1998; Cummings & Endler 2018; Eberhard 1996; Hare & Simmons ; Jones 

128 & Ratterman 2009; Kuijper et al. 2012; Rosenthal 2017), but rather to pose a series of open 

129 questions emerging from the  workshop, naturally colored by our various interests, expertise and 

130 empirical systems. The questions we pose delimit broad themes within sexual selection and 

131 conflict, answers to which we  consider of critical importance to the advancement of the field as 

132 a whole. The subsections were either written independently or co-written before being compiled 

133 into four research themes within sexual selection (as per Andersson 1994) : 1) the evolution of 

134 mate choice and mating systems, 2) sender and receiver mechanisms shaping signal design and 

135 evolution, 3) the genetic architecture of sexual selection, and 4) sexual selection and sexual 
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136 conflict as drivers, or obstacles, of speciation. We hope that these lines of questioning will 

137 encourage discussion and offer non-specialists an insight into this ever-expanding area of 

138 evolutionary biology. 

139

140 (1) Evolution of mate choice and mating systems 

141 Anisogamy, the size difference between male and female gametes that results from the 

142 formation of  two sexes, is generally accepted as a primary force behind broad patterns of male-

143 male competition over mating opportunities and female-driven mate choice (e.g. Janicke et al. 

144 2016; Schärer et al. 2012). Over the last decade, there has been a revived focus on anisogamy 

145 (Table 1) and its evolutionary consequences (e.g. Janicke et al. 2016; Lehtonen & Kokko 2011; 

146 Lehtonen et al. 2016; Parker 2014; Schärer et al. 2012). The 8sexual cascade9 (Table 1), a 

147 successive sequence of events that has occurred during the long-term evolution of sexual strategy 

148 (Parker 2014; Parker & Pizzari 2015), provides a null expectation for competitiveness and 

149 choosiness in many taxa. Socio-ecological conditions can, however, arise that favor deviations 

150 from ancestral behavioural adaptations. Thus, despite the evolutionary irreversibility of 

151 anisogamy (Parker 1982), patterns such as male-mate choice and female-female competition 

152 over mates do arise and overwrite the ancestral influence of anisogamy. Much of this is well 

153 captured by operational sex ratio theory (Emlen & Oring 1977; Clutton-Brock & Parker 1992; 

154 reviewed in Kvarnemo & Simmons 2013), explaining often seen variation in competitiveness 

155 and choosiness, also on short time scales (e.g. Forsgren et al. 2004). Indeed, sex-specific 

156 investment in competition, mate choice, parental care, and sexual dimorphism vary dramatically 

157 across the animal kingdom (Ahnesjö & Bussière 2016; Janicke et al. 2016), and this variation 

158 deserves our attention and interest. 
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159 This shift in research interest is reflected by a number of reviews within the last decade 

160 demonstrating the prevalence of female competition and male choice (Edward & Chapman 2011; 

161 Hare & Simmons 2018; Rosvall 2011; Schlupp 2018; Stockley & Bro0Jørgensen 2011). 

162 Importantly, these behaviors are not restricted to species where there is an a priori expectation of 

163 sex-role 8reversal9, because male-mate choice can co-occur with female mate choice, and 

164 similarly, both sexes can show intra-sexual competition for mating opportunities. When both 

165 sexes vary in their quality as mates, selection can generate mating competition and selective 

166 mate choice in either sex (Owens et al. 1994; Owens & Thompson 1994; Parker 1983). It is 

167 therefore critical to our understanding of sexual selection that we do not let preconceived ideas 

168 about sex roles limit our predictions and study designs. 

169 Below we examine a few general topics related to mate choice and mating systems (Table 

170 1). How and why organisms choose their partners may hinge on direct contributions to the 

171 quality of a reproductive bout or indirect genetic benefits. We discuss how details of pre- and 

172 post-copulatory processes can affect sexual selection, and how genetic benefits that derive from 

173 mating with a particular individual might be important in the context of both pathogens and 

174 inbreeding. Finally, we point out benefits of studying broadcast spawning, as this form of 

175 reproduction excludes pre-copulatory sexual selection. Future research into the relative 

176 contributions of direct vs. indirect benefits should take into account mating systems, temporal 

177 limitations placed on mate choice, and other selection pressures. 

178  

179 1a. Direct and indirect benefits of mate choice 3 implications for mating systems and sexual 

180 selection 

181 Mate choice can be time consuming, risky and might even result in individuals that are 
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182 too choosy not succeeding in finding a mate. We therefore expect individuals to gain important 

183 benefits from mate choice to cover these costs. Mate choice can evolve through the pursuit of 

184 both direct and indirect benefits (8benefits of mate choice9, Table 1) and can take the form of 

185 either pre- or post-copulatory selection (Edward & Chapman 2011; Jennions & Petrie 2000). 

186 Whereas mate choice for direct benefits primarily occurs before mating, mate choice driven by 

187 indirect benefits can continue after mating, and may be particularly important if the genetic 

188 quality of potential mates cannot be determined prior to mating. Post-copulatory mate choice 

189 therefore requires mating with multiple mates. 

190 In some taxa, such as migrating passerine birds, pair formation and therefore pre-mating 

191 mate choice occurs under severe time stress (e.g. Alatalo et al. 1988; Bensch & Hasselquist 

192 1992; Dale & Slagsvold 1996). This likely puts a premium on mate choice for direct benefits 

193 such as territory quality and social partner condition. A hasty assessment of indirect attributes 

194 such as 8good9, 8sexy9 or compatible genes (explained under 8benefits of mate choice9, Table 1), 

195 can then be corrected afterwards by mating with additional (extra-pair) partners. This 

196 8correction9 can either take the form of trading-up, that is, mating with an extra partner only if 

197 the additional partner9s genetic quality is better than that of the current social partner(s), or it can 

198 be achieved after mating with multiple partners via post-copulatory processes such as sperm 

199 competition and cryptic mate choice (Jennions & Petrie 1997; Jennions & Petrie 2000).

200 Genetic compatibility within mated pairs is a key aspect of mate choice that is attributed 

201 to selection for indirect benefits. Post-copulatory mate choice for complementary genes involved 

202 in immune function has been shown in fish, mammals and lizards (Olsson et al. 2003; Penn 

203 2002; Penn & Potts 1999) (sections 1c and 1e). In procellariform birds, high olfactory bulb-to-

204 brain ratios co-occur with long-term genetic monogamy (Bried et al. 2003; Zelano & Edwards 
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205 2002; Zelenitsky et al. 2011), and genetic compatibility based mate choice (Strandh et al. 2012). 

206 Might olfaction be causally linked to the evolution of mating systems? If there is such a link, 

207 taxa with relatively larger olfactory bulbs would be expected to be better at accurate mate choice 

208 for genetic compatibility prior to mating, possibly promoting long term genetic monogamy in 

209 such taxa (Colegrave et al. 2002). For example, a recent study shows low levels of extra-pair 

210 paternity and male-mediated mate choice based on Major Histocompatibility Complex (MHC) 

211 loci in a largely monogamous seabird (Hoover et al. 2018). On the other hand, mating systems 

212 other than monogamy (e.g. polygyny in lek-breeding species) may also promote olfaction based 

213 mate choice.

214 More research is needed to identify sexually selected traits contributing to direct benefits. 

215 When an individual can increase its mating success by offering direct benefits, then the traits that 

216 contribute to such benefits (e.g. being fecund, in good condition, able to secure and defend a fine 

217 territory, having good parenting skills) may be subject to mate selection. Given a genetic basis of 

218 a trait it can also respond to selection. Importantly, this means that many traits that are 

219 traditionally seen as products of natural selection are likely to also be affected by sexual 

220 selection, and hence pushed away from their naturally selected optima. That parental care can be 

221 under sexual selection is already well established (Kvarnemo 2010; Lindström & St. Mary 

222 2008), but a broader appreciation of other dually selected traits is likely to improve our 

223 understanding of trait evolution. 

224

225 1b. The influence of polyandry on sexual selection and sexual conflict  

226 The level of polyandry of a population will likely reflect the outcome of interactions 

227 between male- and female-driven strategies. Whereas male strategies are often assumed to drive 
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228 and females to resist polyandry, some degree of polyandry can be adaptive and actively 

229 promoted by females. Importantly, polyandry is likely to have drastic effects on the operation of 

230 sexual selection on males. The key implication is that polyandry creates a new source of 

231 variation in male reproductive success in the form of variation in paternity share arising from 

232 multiple matings by females and male-male competition over access to fertilization. 

233 The resulting two episodes of postcopulatory sexual selection (sperm competition and 

234 cryptic female choice; see above) add considerable complexity to the architecture of variation in 

235 male fertilization success (Webster et al. 1995), and consequently to the operation of sexual 

236 selection. Recent work has demonstrated that 3 contrary to previous expectations (e.g. Møller 

237 1998), polyandry can severely limit variation in fertilization success among males, which 

238 weakens precopulatory sexual selection on male mating success. This process can often 

239 drastically reduce the total opportunity for sexual selection on males, relegating it primarily to 

240 postcopulatory episodes (Collet et al. 2012; Jones et al. 2001; Shuster & Wade 2003). One 

241 important consequence of this effect is that polyandry acts to reduce the difference between male 

242 and female Bateman gradients (Parker & Birkhead 2013; 8Bateman gradient9, Table 1).  

243 Theory on the interaction between female strategies of sperm selection and male 

244 strategies of sperm allocation needs expansion and further development. For instance, early 

245 observations of increased proportional paternity in less as compared to more closely related 

246 males (Olsson et al. 1996) were found robust when controlling for effects such as unfertilized 

247 eggs and parental inbreeding-induced early offspring mortality (Olsson et al. 1999; Olsson et al. 

248 1997).  However, male ejaculation economics could also be influenced by detection (e.g. based 

249 on olfactory cues) of relatedness with the female and competing rivals (Olsson et al. 2004) as 

250 could female sperm choice per se, a supposition supported by male-female relatedness 
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251 interactions on a male9s probability of paternity (Olsson et al. 1996).  Female strategies may 

252 range from mechanical manipulation of ejaculates to biochemical selection for sperm in the 

253 female tract and at the ovum surface (Firman et al. 2017).  Patterns of cryptic female choice may 

254 thus influence male sperm allocation to matings (Ball & Parker 2003). Male strategies involve 

255 numerous trade-offs, e.g. between pre-mating expenditures such as mate searching, and post-

256 mating expenditures on sperm allocation, paternity guarding and paternal investment. The nature 

257 of precopulatory male-male competition (e.g. contest vs. scramble) also affects expenditure on 

258 pre- and post-mating male adaptations (Parker et al. 2013). So far, while some evidence exists 

259 for a trade-off between pre- and post-mating expenditures (Kvarnemo & Simmons 2013), it 

260 appears that the nature of precopulatory male-male competition is complex, and may be 

261 influenced by covariation between the scramble-contest axis and the level of polyandry (sperm 

262 competition) (reviewed in Parker 2016). 

263 When there is negative covariance between male (precopulatory) mating success and 

264 (postcopulatory) paternity share, such trade-offs may play a considerable role in the evolution 

265 and maintenance of alternative mating tactics (Fig. 1). As more fine-grained data on mating 

266 behaviour become available, detailed studies of the distribution of polyandry within populations 

267 and its ramifications on sexual selection can be developed, investigating for example how mating 

268 success of individual males correlate with the polyandry of their sexual partners (McDonald & 

269 Pizzari 2014; McDonald et al. 2013; McDonald & Pizzari 2016; Sih et al. 2009). This parameter 

270 represents the extent to which precopulatory sexual selection on male mating success (male 

271 8Bateman gradient9) can be strengthened or weakened by the distribution of polyandry in a 

272 population (McDonald & Pizzari 2016). 

273 Finally, while polyandry was originally assumed to exacerbate sexual conflict, there is 
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274 increasing appreciation that polyandry may have a more nuanced effect, by relaxing conflict over 

275 some precopulatory decisions (e.g. mating rates, Parker & Birkhead 2013), while creating 

276 conflict over postcopulatory reproductive decisions, such as female selection of sperm or 

277 paternal care. 

278

279  1c. Is extrapair mating a <Promiscuous Red Queen=? 

280 Birds provide a particularly interesting study system for genetic polyandry because they 

281 often copulate with partners outside the socially monogamous pair bond. Since the advent of 

282 molecular parentage testing tools in the 1980s, hundreds of paternity studies in birds have 

283 revealed that extrapair paternity is common, though the proportion of offspring sired by extrapair 

284 males is quite variable across and even within species (Griffith et al. 2002; Westneat & Sherman 

285 1997). Nevertheless, the question of why and how this variation in extrapair mating is 

286 maintained, especially among closely related species with similar phenotypes, ecology and life 

287 history, is still unresolved. 

288 The first generation of hypotheses attempting to explain patterns of paternity share in 

289 birds focused on how  the opportunity for extrapair copulations may vary with breeding density 

290 (Birkhead et al. 1987; Westneat et al. 1990) and breeding synchrony (Stutchbury & Morton 

291 1995; Westneat et al. 1990). Although these factors might explain some of the variation within 

292 species, they do not explain the broader picture of variation in extrapair paternity rates across 

293 species (Bennett & Owens 2002; Westneat & Sherman 1997). Consequently, over the last two 

294 decades, several attempts have been made to correlate extrapair paternity rates with various other 

295 variables linked to ecology and life history variation. Some evidence suggests that high extrapair 

296 paternity rates are associated with fast life histories, reduced paternal care, sexual dichromatism, 
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297 social monogamy (as opposed to polygyny; 8mating systems9, Table 1), seasonal migration and 

298 temperate breeding (reviewed in Arnold & Owens 2002; Bennett & Owens 2002; Hasselquist & 

299 Sherman 2001; Spottiswoode & Moller 2004). However, there are two major problems with 

300 these 8second generation9 explanations; they explain rather small proportions of the total 

301 variance among species, and causal mechanisms for how they influence extrapair paternity are 

302 difficult to infer. 

303 Similar conclusions were reached in a recent study restricted to Passerides (songbirds, 

304 Lifjeld et al. 2019) where species with higher extrapair paternity rates show stronger sexual 

305 dichromatism, are more migratory, and have reduced male care at the initial stages of the 

306 breeding cycle (nest-building and incubation). However, effect sizes were small and the direction 

307 of causality obscure. For example, the relationship with sexual dichromatism was largely due to 

308 changes in female, not male, coloration, which might be explained by plumage adaptations in 

309 females to promiscuous behaviour (i.e. more crypsis). Similarly, males may respond to high 

310 extrapair paternity rates by allocating more effort to extrapair mating than to parental care at the 

311 early stages of the nesting cycle when more females are available for extrapair copulation 

312 (Westneat et al. 1990). Hence, patterns of association may reflect consequences rather than 

313 causes of variation in extrapair paternity. These results imply a sobering conclusion that neither 

314 factors associated with social opportunities, ecology and life history variation, nor male 

315 secondary sexual traits, can explain the large variation in genetic polyandry documented among 

316 bird species in general or among songbirds in particular. Additionally, rates of extrapair paternity 

317 carry a rather weak phylogenetic signal (Lifjeld et al. 2019), which suggests that the behaviour is 

318 an evolutionarily labile trait that responds rapidly to changing selection pressures. 

319 How then can the diversity in avian genetic mating systems be explained? Extrapair 
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320 mating is an arena for sexual conflict where females might be better positioned to win in terms of 

321 controlling the process of internal fertilization, despite the higher value of winning for males 

322 (Lifjeld & Robertson 1992). Petrie and Kempenaers (1998) argued that variation in this behavior 

323 can only be understood by considering the benefits, costs and constraints to female choice. Their 

324 paper is a timely reminder, since some more recent studies seem to dismiss an adaptive role for 

325 female extrapair mating due to a lack of empirical evidence for female genetic benefits (e.g. 

326 Arnqvist & Kirkpatrick 2005; Forstmeier et al. 2014). Clearly, if female extrapair mating is 

327 adaptive, the benefits must either be direct (fertility insurance) or indirect (8good9, 8sexy9 or 

328 compatible genes), since females seem to obtain nothing but sperm through extrapair copulation. 

329 An implication of this assertion is that female genetic benefits could be small or non-existent in 

330 species with low rates of extrapair paternity, and that evidence for female genetic benefits should 

331 primarily be sought among species with extensive female extrapair mating. There is indeed 

332 evidence for genetic benefits, such as a higher cell-mediated immune response, (Arct et al. 2013; 

333 Fossoy et al. 2008; Garvin et al. 2006; Johnsen et al. 2000), increased heterozygosity (Foerster et 

334 al. 2003; Fossoy et al. 2008; Stapleton et al. 2007; Tarvin et al. 2005) and enhanced reproductive 

335 success for offspring sired by extrapair males (Foerster et al. 2003; Gerlach et al. 2012) in 

336 passerine species with high extrapair paternity rates.

337 There is evidence to indicate a key role for genes involved in immune function. Passerine 

338 birds have higher rates of extrapair paternity than other clades of birds (Griffith et al. 2002). 

339 They also have much more polymorphic and duplicated MHC genes (Hess & Edwards 2002; 

340 Minias et al. 2018; O'Connor et al. 2016; Westerdahl 2007), which play an important role in the 

341 adaptive immune system. These patterns could be causally linked. A study on eight species from 

342 the passerine sister families Muscicapidae and Turdidae found a positive correlation between 
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343 extrapair paternity rates and sequence diversity at the peptide-binding sites of MHC class II 

344 molecules (Gohli et al. 2013). In one of these species with high extrapair mating, the bluethroat 

345 Luscinia svecica, individuals can have up to 56 different alleles and thus a minimum of 28 

346 duplicated loci (Rekdal et al. 2018).  Gene duplications ensure a high within-individual allelic 

347 repertoire and can be favoured under high pathogen pressure (Bentkowski & Radwan 2019; 

348 Minias et al. 2018). Mate choice for resistant mates or mates that enhances the pathogen 

349 resistance in offspring will reinforce the natural selection for gene duplications. The positive 

350 correlation between extrapair mating and MHC diversity and duplication would therefore 

351 suggest that species that face strong pathogen-mediated selection evolve an extrapair mating 

352 strategy for immunogenetic benefits. 

353 In a 8Red Queen9 (Table 1) coevolutionary dynamic between pathogens and host 

354 immunity, the strength of pathogen-mediated selection may fluctuate within a species over time, 

355 and also vary among species with similar ecology and distribution at any point in time. If social 

356 mate choice does not provide enough options for females to choose the better genes, extrapair 

357 mating might evolve as an alternative mating strategy. Once most individuals have acquired an 

358 effective allelic repertoire to fight off pathogens, or social mate choice offers sufficient options, 

359 the benefit of female extrapair mating will be reduced and the mating system will revert towards 

360 sexual monogamy. This 8Promiscuous Red Queen9 hypothesis (Fig. 2) can therefore explain why 

361 divergence in extrapair mating systems evolves rapidly among closely related species. 

362 Genotyping of hypervariable and highly duplicated genes like the passerine MHC with 

363 next generation sequencing methods holds a great potential for testing predictions of the 

364 Promiscuous Red Queen hypothesis in species with extensive extrapair mating and highly 

365 diversified immune genes (Lighten et al. 2014; O'Connor et al. 2016; Sebastian et al. 2016). 
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366 Many sets of samples utilized previously for paternity studies should be readily available for 

367 testing of MHC diversity. 

368 Female extrapair mate choice for immune genes can result in different non-random 

369 combinations of parental alleles. Females might prefer specific beneficial alleles (good genes) or 

370 alleles that make a good match to her own alleles (compatible genes). What constitutes a 

371 favourable allelic match should be investigated by analyzing the fitness of individuals with 

372 different allelic repertoires (Milinski 2006). If maximum allelic diversity (in terms of number or 

373 sequence diversity of alleles)  yields the highest fitness, females should choose males with 

374 dissimilar alleles (Strandh et al. 2012).  If an intermediate allelic diversity is optimal, as too 

375 many alleles can lead to autoimmunity, then females should choose a mate that gives an 

376 intermediate allelic diversity in the offspring (reviewed in Milinski 2006). Regardless of what the 

377 optimal allelic diversity for individuals could be, the model predicts that extrapair offspring 

378 should have an allelic diversity closer to the population optimum than that of within-pair 

379 offspring. If the optimum lies close to the population mean, then observed choices may not differ 

380 from each other or from a random model in mean values, only in variances. Even if the mate 

381 choice optimum lies close to the population mean and there is stabilising selection (reduced 

382 variance) around this optimum in an ecological time frame, MHC diversity can still increase over 

383 evolutionary time if the optimum moves (Estes & Arnold 2007).

384 A further challenge will be to reveal a possible mechanism for the mating preference; 

385 either there could be pre-copulatory cues for a behavioral discrimination among males, or cryptic 

386 female sperm selection mechanisms in the oviduct or at the ovum (Firman et al. 2017). A recent 

387 study reported that the chemical composition of preen wax reflects similarity at MHC II 

388 genotypes in a songbird (Slade et al. 2016), which opens up the possibility for pre-copulatory 
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389 mate choice based on olfactory cues in passerine birds, as previously documented in seabirds 

390 (e.g. Strandh et al. 2012) (section 1a). 

391

392 1d. Inbreeding and mate choice 3 when are relatives preferred? 

393 Inbreeding affects fitness negatively in a wide range of taxa (Crnokrak & Roff 1999; 

394 Keller et al. 1994; Keller & Waller 2002), with an increase in genome-wide homozygosity in the 

395 offspring of related parents. Resulting effects on fitness can arise through partial dominance or 

396 overdominance; the result of either being the promotion of inbreeding avoidance mechanisms 

397 (Charlesworth & Charlesworth 1987; Marr et al. 2002). However, inbreeding may not 

398 systematically result in selection for inbreeding avoidance, and it is challenging to predict when 

399 an organism avoids, tolerates or even prioritizes consanguineous matings (Szulkin et al. 2013). 

400 Building on well-developed theory that underpins similar phenomena in organisms such as 

401 plants, where selfing is common, a consideration of both the costs of inbreeding avoidance and 

402 benefits of inclusive fitness is necessary. If inbreeding costs are sufficiently low, both sexes can 

403 be selected to inbreed (Kokko & Ots 2006; Parker 1979; Parker 2006) as a means to promote 

404 gains in inclusive fitness among related individuals. This can be achieved through extrapair 

405 copulations, although such mating decisions may come at the cost of a decrease in the fitness of 

406 extrapair relative to within-pair young (Lehtonen & Kokko 2015). However, although an 

407 increase in inclusive fitness was suggested  as an explanation for matings among related 

408 individuals as long as four decades ago (Parker 1979),  it has remained widely ignored by animal 

409 ecologists. More recent advances in evolutionary genetic theory have restored interest in 

410 questions related to inbreeding biology (Kokko & Ots 2006), and empirical data show refined 

411 mate choice based on female inbreeding status. In burying beetles, only females that are inbred 
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412 themselves, with greater risk of a genetic compromise by inbred partners, choose outbred males 

413 (Pilakouta & Smiseth 2017). 

414 Future work should address the relationship between sexual selection and inbreeding in 

415 wild animal populations (section 1e). Recent software developments, such as Rhh (Alho et al. 

416 2010), have proven very useful to investigate large data sets focusing on the effects of inbreeding 

417 on the process of sexual selection and other components of fitness (Bebbington et al. 2017; 

418 Forstmeier et al. 2012). Furthermore, progress in genomic and theoretical investigations of 

419 inbreeding (Hedrick & Garcia-Dorado 2016) and sexual selection (Anthes et al. 2017) provide a 

420 thorough foundation for future work on aspects of sexual selection and inbreeding biology in the 

421 wild. In the next section we take a closer look at how individuals may avoid inbreeding. 

422

423 1e. Inbreeding avoidance: when markers matter 

424 Inbreeding avoidance can occur through polyandry (Bretman et al. 2004; Firman & 

425 Simmons 2008; Foerster et al. 2003; Olsson et al. 1996; Simmons et al. 2006; Tregenza & 

426 Wedell 2002), dispersal (Bollinger et al. 1993; Greenwood 1980; Pusey 1987), and kin 

427 recognition (Gerlach & Lysiak 2006; Hoffman et al. 2007). In the latter, MHC haplotypes have 

428 been proposed as a cue associated with kin discrimination, due to potential correlations between 

429 the degree of shared MHC alleles and genome-wide relatedness (Brown & Eklund 1994; Penn & 

430 Potts 1999; Potts & Wakeland 1993). Individuals that mate with MHC dissimilar partners are 

431 then expected to avoid potential fitness costs associated with inbreeding, while optimizing 

432 (Kalbe et al. 2009; Madsen & Ujvari 2006; Reusch et al. 2001) or maximizing offspring MHC 

433 heterozygosity, via heterozygote advantage (Doherty & Zinkernagel 1975) or negative frequency 

434 dependence (Hedrick 2002; Milinski 2006; Slade & McCallum 1992). 
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435 MHC genes encode glycoproteins that bind pathogen-derived peptide fragments on cell 

436 surfaces, and thus play an important role in the immune system (Janeway et al. 2001; section 1c). 

437 Therefore, two selective forces may underlie MHC-based mate discrimination, inbreeding 

438 avoidance and enhanced immunocompetence. The function of MHC in mate choice and the 

439 importance of disentangling these two fitness-related phenomena has been demonstrated in wild 

440 Atlantic salmon (Salmo salar) (Landry et al. 2001), and in the Swedish sand lizard (Lacerta 

441 agilis) (Olsson et al. 2003).  Specifically, mated salmon pairs showed greater dissimilarity at 

442 their functional MHC class II ³ proteins than expected under random mating, but did not exert 

443 mate discrimination according to genetic relatedness or inbreeding avoidance.  

444 Although MHC loci may still act as a cue for kinship in some systems (reviewed by Penn 

445 & Potts 1999; Spurgin & Richardson 2010), MHC similarity between mated pairs should be 

446 interpreted with a degree of caution. It is essential to distinguish between degree of kinship and 

447 MHC similarity, and avoid generalization with regards to the genetic mechanisms underlying 

448 differential reproductive investment in vertebrates. In other words, a sound scientific approach in 

449 studies of disassortative mating patterns relies on an adequate choice of genetic marker. 

450 1f. Research on broadcast-spawning invertebrates can advance the field of sexual selection 

451 While Darwin (1871) dismissed the 8lowest classes9 from sexual selection, it is now 

452 appreciated that sexual selection can indeed operate in such taxa, albeit in different ways 

453 (Levitan 1998). There is every reason to suppose that even in sedentary broadcast spawners, 

454 sexual selection can affect gamete traits (Evans et al. 2012; Evans & Sherman 2013), gonads and 

455 even life history traits (Parker et al. 2018). For example, eggs exposed to experimental sperm 

456 mixtures can discriminate between sperm from different male genotypes (Palumbi 1999), and 

457 sperm move preferentially towards more genetically compatible ova (Evans et al. 2012). 
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458 Gonadosomatic indices of conspecific males and females can vary considerably as a result of 

459 sperm competition and sperm limitation levels, relative costs to the sexes of gonad tissue and 

460 gamete production, and the trade-off between growth and reproduction (Parker et al. 2018).

461 One of the benefits of studying broadcast spawning invertebrates in the context of sexual 

462 selection is that they represent an early stage in the sexual cascade (Parker 2014; Parker & 

463 Pizzari 2015) (Table 1), capturing a phase before the evolution of enhanced mobility and 

464 behavioural complexity, which, as Darwin realized, was essential for the evolution of adaptations 

465 through pre-copulatory sexual selection. Since it is often difficult to separate pre-and post-

466 copulatory components of sexual selection, sedentary broadcast spawning invertebrates present a 

467 unique opportunity to study the type of adaptation that can arise through sexual selection and 

468 sexual conflict at the gametic level, eliminating pre-copulatory considerations. A question that 

469 arises is why these taxa have remained 8frozen9 at a sedentary level, without selective forces 

470 favouring increased mobility and female targeted gamete release, since traces of such behaviour 

471 are seen in 8pseudo-copulation9 in some echinoderms (Keesing et al. 2011) and pairing behaviour 

472 in certain cnidarians (Tiemann et al. 2009).

473

474 (2) Sender and receiver mechanisms shaping signal design 

475 The proximate physiological and neurological mechanisms for production, emission and 

476 perception of signals are essential keys to both adaptive and non-adaptive aspects of sexual 

477 communication. In particular, the  design and evolutionary trajectories of signals are shaped by 

478 both  content (e.g., accuracy and honesty of quality advertisements), and efficacy (e.g., sensory 

479 ecology and receiver psychology). In the sections below, we discuss developments and 

480 challenges in these two areas. 
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481 First, the mediation of signal honesty in many study systems likely depends on a dynamic 

482 and complex integration of social and physiological costs, which may be both spatially and 

483 temporally variable. It can be a formidable empirical challenge to measure the <right= parameters 

484 at the right time, but for detailed understanding of honest signaling, this is the way forward. 

485 Second, and especially relevant to the biodiversity theme of our workshop, we address 

486 the increasingly appreciated impact of receiver biases (sensory, perceptual or cognitive) on both 

487 design and diversification of sexually selected traits (see e.g. Cummings & Endler 2018; Ryan & 

488 Cummings 2013; ten Cate & Rowe 2007). Here also lie great empirical challenges, for example 

489 to objectively identify and quantify the relevant dimensions of signal traits, signaling conditions 

490 and sensory tuning, to experimentally demonstrate receiver biases, and, in appropriate cases, to 

491 phylogenetically reconstruct the origins and contingencies of these traits. 

492

493 2a. Mediation of signal honesty in a dynamic framework: integration of social and 

494 physiological costs 

495 Several models of sexual selection predict that signal traits are honest indicators of 

496 individual quality (Andersson 1986; Folstad & Karter 1992; Grafen 1990; Hamilton & Zuk 

497 1982; Zahavi 1975). An implicit prediction of these models is a consistency in the physiological 

498 mediation of honesty, that is, the costs associated with the trait should be fairly constant over 

499 time. This assumption is likely unrealistic given that physiological condition can change 

500 drastically, even over short periods of time (e.g. changes in physiology due to illness or a 

501 variable environmental context), while many signal traits are produced once and are fairly static. 

502 Further, the expression of signal traits is relative in the sense that the same signal can be viewed 

503 as more or less exaggerated, depending upon the social context, such as the signal intensity of 
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504 conspecifics in the population. The mechanisms that allow morphological signal traits to convey 

505 relevant information within a changeable social context is an interesting puzzle, especially in 

506 cases where traits are developed and then fixed for a set period of time during which 

507 reproductive transactions take place, such as horns and many aspects of plumage that are 

508 developed annually. For dynamic traits that can be modulated in real-time, such as song rate or 

509 acrobatic courtship display, the problem becomes a bit less complicated because signalers can 

510 behaviorally adjust to changing physiological conditions and social context. 

511 There is recent appreciation that even static signal traits have an active rather than 

512 constant relationship with physiology and behavior, which likely has important implications for 

513 determining how these signals remain coordinated with behavior as social contexts change (e.g. 

514 Merrill et al. 2014; Safran et al. 2008; Tibbetts 2014; Vitousek et al. 2014). Still, questions 

515 remain about if and how these interactions maintain the transmission of honest information to 

516 conspecifics. 

517 A cornerstone of both physiological and social cost models of honest signaling is that 

518 signal costs are less steep for high-condition compared to low-condition individuals, which 

519 creates variation in optimal signal expression (Grafen 1990). Social challenge of signal 

520 expression is relatively robust to this assumption (for a review see Webster et al. 2018), but 

521 necessarily reliant on frequency of challenge and either potential or realized social costs. 

522 Physiological costs can also vary conditionally, for example, both testosterone-induced 

523 immunosuppression and glucocorticoid-related ectoparasite load differ based on the quality of 

524 the signaler in blue tits (Roberts & Peters 2009) and sand lizards respectively (Lindsay et al. 

525 2016). Webster and colleagues (2018) argue that physiological costs, although subject to 

526 intensive scrutiny in the last few decades, may be a less evolutionarily stable mechanism for 
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527 honest signal mediation than social costs. Where selection for social punishment of cheaters 

528 should increase as the benefits of social status become higher, selection should favor a 

529 decoupling between costly physiological processes and trait expression, such as through 

530 upregulation of target sensitivity to hormonal stimulus. However, the limited empirical support 

531 for physiological cost models of honest signal mediation (i.e. immunocompetence handicap 

532 hypothesis,  Roberts et al. 2004) may instead reflect the challenges of detecting these costs. 

533 These challenges include the following. 1) The pleiotropic actions (Table 1) of key 

534 biomarkers of physiological state, such as pro- and antioxidants, testosterone, and 

535 glucocorticoids, can have contradictory effects on different body systems, requiring 

536 measurement of a broad panel of physiological costs. For example, simultaneous and opposing 

537 relationships have been detected between hormone titre and endo- vs. ectoparasite load (Fuxjager 

538 et al. 2011; Lindsay et al. 2016). 2) Time-lags between when biomarkers are elevated and when 

539 they exert their influence can obscure detection of costs and necessitate repeat sampling and a 

540 knowledge of multiple interacting physiological systems. For example, a direct link between 

541 oxidative stress and telomere length has been difficult to establish (Boonekamp et al. 2017), but 

542 when this relationship was examined across multiple sampling periods, it became clear that 

543 telomere length near the end of life is strongly predicted by measurements of oxidative stress 

544 experience earlier in life whereas simultaneously measured oxidative stress was unrelated 

545 (Olsson et al. 2018). 3) Physiological production costs are presumably accrued during a brief 

546 time-window of ontogeny, often distinct from the period in which the signal is utilized in socio-

547 sexual interactions. This necessitates researchers to have a deep knowledge of how and when 

548 signals are formed and requires application of appropriate experimental procedures during these 

549 critical time frames.
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550 The degree to which social enforcement vs. physiological costs mediate signal honesty 

551 likely varies with social context (gregariousness, presence of dominance hierarchies, population 

552 density) and it is clear that social costs can have physiological outcomes and vice versa. For 

553 example, testosterone stimulates aggressive behavior, and social aggression itself can increase 

554 testosterone further (<challenge hypothesis=, Wingfield et al. 1990). Such aggressive social 

555 engagement can simultaneously influence production of glucocorticoids (Creel 2001; Creel et al. 

556 2013), which, in turn, can impact investment in reproductive behaviors and testosterone 

557 production (Sapolsky et al. 2000). Both hormones have been causally and correlationally linked 

558 to signal expression in multiple systems (Cote et al. 2010; Cox et al. 2008; Fernald 1976; Leary 

559 & Knapp 2014; Lendvai et al. 2013; Lindsay et al. 2016; Lindsay et al. 2011; Mougeot et al. 

560 2004; Peters et al. 2000) and the relationship between signal and hormone titre itself can be 

561 bidirectional (Laubach et al. 2013; Safran et al. 2008; Tibbetts et al. 2016). If an individual is in 

562 poorer condition than when the signal was produced (and any production costs accrued), 

563 secondary physiological costs associated with carrying and defending an elaborate signal may 

564 accumulate. An emerging mismatch then, between the intensity of the signal and the behavior 

565 and apparent health of the signaler, allows the receiver to assess true condition (i.e. <integrative 

566 incongruence hypothesis=,   Tibbetts 2014), despite the fact that the signal itself may remain 

567 seasonally static. 

568 Ideas for future questioning and caveats to this type of research have been addressed 

569 elsewhere (Tibbetts 2014; Vitousek et al. 2014; Webster et al. 2018). Studies that include 

570 observations of trait and behavior combinations with explicit full-factorial tests that adjust signal 

571 intensity, behavior, and measure consecutive and simultaneous social and physiological costs are 

572 needed. Such research should be paired with examination of long-term fitness consequences of 
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573 potential costs.

574

575 2b. Receiver mechanisms and biases that shape signal design 

576 <Sensory biases may cause elaboration in the absence of the Fisherian process& and 

577 more reasonably be the null hypothesis and primitive model on which to build other components 

578 of sexual selection= (Price et al. 1987).

579 Flowers, fruit, aposematism, mimicry, begging, and, not least, socially and sexually 

580 selected threat signals: nature is full of spectacular signals that have evolved without genetically 

581 correlated preferences, and by simply exploiting a biased detection, preference or aversion in the 

582 intended receiver. Such receiver biases can be sensory, perceptual or cognitive (Ryan & 

583 Cummings 2013), hardwired or learning-based (ten Cate & Rowe 2007), adaptive or neutral, or 

584 even maladaptive if compensated by benefits in another context in which the bias is adaptive and 

585 perhaps originated. 

586 Like all communication signals, sexual displays can be deconstructed into two defining 

587 properties: information content, and efficacy (Andersson 2000; Guilford & Dawkins 1991). 

588 Traditionally, models of sexual selection were concerned with the adaptive significance of 

589 female choice and whether the information content of male ornaments conveyed direct or 

590 indirect (genetic) fitness consequences (Andersson 1994; see also section 1a, above). In contrast 

591 to such 8sender-precursor models9 (see Bradbury & Vehrencamp 2011) of signal evolution, 

592 8receiver-precursor models9 shift focus to efficacy aspects such as signal conditions (background, 

593 attenuation) and receiver properties, by exploring how signal design may originate and be 

594 exaggerated to exploit sensory or cognitive receiver biases (collectively termed 'perceptual 

595 biases' by Ryan & Cummings 2013). Empirically this was triggered by  classic studies of 
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596 preferences and biases that phylogenetically seemed to pre-date the visual or acoustic signal trait   

597 (Basolo 1990; Ryan et al. 1990). Additionally, exploitation of pre-existing biases has been 

598 suggested as a common origin of sexual signal evolution (Arnqvist 2006). Yet, despite the 

599 obviously crucial importance that receiver properties must have for signal design and evolution 

600 (Guilford & Dawkins 1991; Guilford & Dawkins 1993; Jansson & Enquist 2005), studies of 

601 sexual signal evolution have, with some notable exceptions (Arak & Enquist 1993; Enquist & 

602 Arak 1993), largely neglected receiver psychology (Table 1), and studies of receiver psychology 

603 have rarely interpreted results in an evolutionary context. 

604 While most studies of receiver biases in sexual selection have focused on mate choice, 

605 the application of receiver precursor models to agonistic (threat) signaling systems presents a 

606 very different context. Firstly, agonistic signals have the potential to be emancipated from the 

607 constraints of direct linkage to male quality; some mechanism must maintain signal honesty, but 

608 this maintenance may be achieved through socially mediated costs. Thus, agonistic signals may 

609 be more evolutionarily labile than epigamic signals, potentially allowing for higher rates of 

610 change in signal form. Secondly, the time scale for signal information to manifest can be much 

611 shorter for agonistic signals; a male can test the honesty of another male9s signal directly. This 

612 interaction also sets the stage for a learning signal function, essentially representing a 

613 discrimination task analogous to those shown to generate 8generalization9 in the psychology 

614 literature (Ghirlanda & Enquist 2003; ten Cate & Rowe 2007; Table 1). Therefore, agonistic 

615 signaling systems may be ideal candidates for investigating the influence of receiver biases on 

616 the evolution of signal form. Indeed, recent studies have revealed ongoing selection by receivers 

617 on agonistic signal design, compatible with patterns of convergent evolution in the direction of a 

618 receiver preference (Ninnes & Andersson 2014; Ninnes et al. 2015; Ninnes et al. 2017).
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619 One of the primary challenges for research into this field is to tidy up the definitions and 

620 terminology used in regard to receiver psychology. Whereas the environmental constraints and 

621 selective forces on both senders and receivers are well covered and structured in the Sensory 

622 Drive model (Cummings & Endler 2018; Endler & Basolo 1998), there is some confusion 

623 regarding the terms used to describe the neurological mechanisms of receiver biases (e.g. 

624 sensory, perceptual, cognitive), as well as the implications for signal selection (e.g. supernormal 

625 stimulus, generalization, peak-shift) (Endler & Basolo 1998; Ghirlanda & Enquist 2003; Ryan & 

626 Cummings 2013; ten Cate & Rowe 2007). Figure 3 is an attempt to distinguish some of these 

627 terms and how they relate to each other, but many questions remain. For example, are 8pre-

628 existing biases9 inherent hard-wired preferences, or a function of the psychology of 

629 discrimination tasks (i.e. generalization; Ghirlanda & Enquist 2003; ten Cate & Rowe 2007)? 

630 Future work should seek to integrate conceptual frameworks from biology and psychology to 

631 help elucidate mechanistic processes. For example, an examination of 8pre-existing biases9 in 

632 signal design should include methods standard to the field of psychology such as the generation 

633 of response gradients by testing responses at multiple points on a signal dimension. Second, is 

634 the impact of receiver psychology on sexual signal design, through selection on signal efficacy, 

635 underappreciated? 8Virtual evolution9 experiments have suggested that receiver biases similar to 

636 empirically demonstrated generalization gradients (Jansson & Enquist 2003), are sufficient to 

637 drive signal exaggeration (Jansson & Enquist 2005). This aligns with for example the consistent 

638 and pre-existing receiver biases found in closely related widowbirds and bishops (Euplectes spp), 

639 displaying varying degrees of signal exaggeration (Ninnes & Andersson 2014; Ninnes et al. 

640 2015; Ninnes et al. 2017; Pryke & Andersson 2002). Echoing previous researchers including 

641 Endler (1992), Ryan & Cummings (2013) and West-Eberhard (2014), we suggest that intensified 
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642 attention to the origins, mechanisms and response gradients of receiver biases will bring us 

643 closer to the neuroethology of signal selection  and the design and diversity of sexual signals. In 

644 section 4a we also discuss some of the implications of evolving receiver preferences on 

645 speciation.

646 Lastly, the notions  of 8aesthetic preferences9 and 8beauty, used in both Darwins and 

647 Fishers writings on female choice, have been treated as objective biological traits (Prum 2017; 

648 Renoult et al. 2016), leading to heated debate (e.g. Borgia & Ball 2018; Patricelli et al.). Renoult 

649 and Mendelson (2019) argue that aesthetic preferences represent neurobiologically efficient and 

650 thereby adaptive  cognitive processing, strongly resembling the 8inevitable signal recognition 

651 biases9 suggested by the artificial neural network models of Enquist and Arawk (1993). Most 

652 controversy has been instigated by Prum (2012; 2017) who  argues not only that the Fisherian 

653 process should be the null model of the evolution of mating preferences, but that any hereby 

654 evolved cognitive bias is the 8aesthetic sense9 while the exaggerated signal properties define 

655 8beauty9.   These assertions received  several critical responses (e.g. Borgia & Ball 2018; 

656 Patricelli et al.), also from quarters that  agree with Prum that <mate choice for indicators is often 

657 assumed as an explanation for the evolution of elaborate displays without sufficient 

658 consideration of other processes= (Patricelli et al. 2018). 

659 In our own view, perceptual and cognitive biases are likely to be key components of the 

660 8aesthetic sense9 that Darwin (1871) attributed to choosy females (see also Renoult 2016; 

661 Renoult et al. 2016). Moreover, since perceptual biases may drive ornament or armament 

662 exaggeration without involving any sender-receiver genetic covariance or the Fisher process 

663 (Price et al. 1987), it may be a simpler, and more testable, 8null model9 of signal selection in 

664 general, and as regards sexual selection, it would apply to both mate choice and contest 
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665 competition.

666  

667 (3) Genetic architecture of sexual selection

668 Understanding the genetic architecture of sexual selection, and thus evolvability and 

669 constraints on sexually selected traits, is a long-term goal of the field and one where substantial 

670 progress has been made in recent years. Notable examples include advances in our understanding 

671 of the genetic basis of stripes in cichlid fish (Kratochwil et al. 2018), QTL loci underlying song 

672 in Hawaiian crickets (Ellison & Shaw 2013) and other insects (Gleason et al. 2016), 

673 morphological traits known to be targets of sexual selection in birds (Hansson et al. 2018), and 

674 genes involved with conversion of red carotenoid pigments in birds (Lopes et al. 2016; Mundy et 

675 al. 2016). There is an increasing number of studies that demonstrate convincing heritability of 

676 key sexually selected traits, like copulatory organs or chemical signaling, and there are several 

677 examples demonstrating the evolutionary consequences of sexual selection, such as 

678 incompatibilities between species (Rose et al. 2014). However, the great progress in identifying 

679 genes associated with morphological, coloration and signaling traits known to be under sexual 

680 selection has not been accompanied by similar demonstrations of predicted evolutionary 

681 signatures in many such genes. Specifically, no example exists, to our knowledge, in which the 

682 genetic basis of a sexually selected trait has been shown to evolve rapidly in response to recent 

683 or ongoing sexual selection, either experimentally in the lab or in nature.

684 In contrast, rapid evolution is easier to detect in reproductive genes such as accessory 

685 gland and reproductive proteins (Finn & Civetta 2010; Hurle et al. 2007; Wyckoff et al. 2000) 

686 and many gene systems associated with interactions between sperm and egg as well as 

687 copulatory proteins have been identified in Drosophila. Proteomic approaches are adding detail 
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688 to our understanding of the complex chemical cocktails exchanged during mating in flies, 

689 primates and other groups (Claw et al. 2018; Gotoh et al. 2018; Wilburn et al. 2018). The 

690 predicted rapid evolution of genes involved in co-evolutionary interactions between the sexes, 

691 and between hosts and parasites, has been demonstrated repeatedly. For example, immune genes 

692 that may serve as 8good genes9 such as MHC genes (see section 1c) undergo a type of cycling 

693 characterized by rapid evolution (Eizaguirre et al. 2012). A greater understanding of the 

694 evolutionary dynamics of genes underlying signaling and performance traits therefore stands as a 

695 major gap in our field. 

696

697 3a. What genes underlie variation in performance?

698 A goal of contemporary research in the field of sexual selection is the identification of 

699 candidate loci for performance. Detailed and often time-intensive field studies of sexual selection 

700 are required to identify the phenotypes associated with display or mating success. When 

701 combined with modern sequencing techniques, these types of data make it possible to contrast 

702 the expression levels or genotypes of the successful individuals with the unsuccessful, revealing 

703 key loci underlying measures of performance. Although in principle straightforward, almost no 

704 published studies have used such a protocol (but see Johnston et al. 2013). While sequencing on 

705 a large scale can still be cost prohibitive, perhaps more importantly, the type of detailed 

706 behavioral observations producing reliable individual data on complex parameters like <mating 

707 success= are expensive in terms of investment in time and in effort. Field studies on the great 

708 snipe (Gallinago media) illustrate the latter point (Höglund et al. 2017).  To obtain reliable 

709 sample sizes, the field work has been conducted over many years under sometimes harsh field 

710 conditions and the data is subject to problems inherent to all multi-season datasets, such as 
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711 observer, site and year effects. 

712 Importantly, genotype effects on mating success may be context dependent, as appears to 

713 be the case in great snipes. The effect of candidate SNPs (Single Nucleotide Polymorphism) on 

714 great snipe mating success depended on whether birds were infected with avian malaria, as 

715 revealed by significant interaction terms among infection status and genotype in a few loci 

716 (Höglund et al. 2017). Genomic studies of sexual selection are emerging (see section 4e), and 

717 more such are required to make general conclusions. For this to be possible, long term studies 

718 with careful observations and detailed knowledge of natural history combined with genomic data 

719 is the only remedy.

720

721 3b. Genic capture and ongoing sexual selection: how many genes are enough? 

722 A classic question in sexual selection theory is to what extent the evolution of secondary 

723 sexual traits is constrained by the exhaustion of genetic variation resulting from the process of 

724 selection itself  ('the lek paradox'; Andersson 1994; Kirkpatrick 1982; Table 1). In some cases 

725 trait expression is dictated by allelic variation at a single locus, whereas in others trait expression 

726 is polygenically determined. If genetic variation limits exaggeration of secondary sex traits, this 

727 effect should decrease with the number of loci dictating trait development. For example, mating 

728 with close relatives contributes to loss of genetic variation and thus, inbreeding opposes 

729 sustained sexual selection and secondary sex trait evolution (Keller & Waller 2002). Empirical 

730 research in the fields of sexual selection and evolutionary genetics are inconsistent in terms of 

731 the generality of these fundamental processes. 

732 Much discussion has been directed toward the investigation of genetic architecture of 

733 multilocus signaling traits with the underlying idea that strongly condition-dependent traits 
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734 capture all the genetic variance in condition ('genic capture', Rowe & Houle 1996; Tomkins et al. 

735 2004; Table 1). Since many loci provide a large target for mutations, genetic variation could 

736 persist over time despite strong directional selection. Work on genic capture has until recently 

737 been largely theoretical, because the genotypes of few phenotypic traits are usually unknown in 

738 natural populations. An example demonstrates how genetic variation for a strongly polymorphic 

739 secondary sex trait, horn type in Soay sheep, is maintained by a trade-off between natural and 

740 sexual selection in a single gene (RXFP2) (Johnston et al. 2013). Horn shape is under strong 

741 sexual selection in males, but not in females, so another hypothesis, intra-locus sexual 

742 antagonism (see section 3c) could also be rejected (Johnston et al. 2013). Work on field caught 

743 Drosophila, however, showed that even with substantial genetic variance in a secondary sex trait, 

744 cuticular hydrocarbons, the vast majority of this variation was not closely associated with the 

745 direction of sexual selection (Hine et al. 2004). Despite condition-dependence of traits, genetic 

746 variation underlying trait expression can be depleted by sexual selection in the wild and thus 

747 genic capture did not offer a resolution to the lek paradox in this system. In an interesting 

748 empirical example of genic capture, chemical mutagenesis of the male guppy (Poecilia 

749 reticulata) germline negatively affected courtship displays but not colouration, indicating that the 

750 former is a large mutational target (Herdegen & Radwan 2015).  Such mutagenic approaches, 

751 when complemented with whole-genome sequencing to verify affected loci, offer a robust 

752 approach to study mutational targets, but are limited in their applicability to sexual selection on 

753 polygenic traits in the wild. Although the presence of only a few genes can be adequate for 

754 evolution of secondary sexual characters to proceed in some systems, multiple and variable 

755 genes may not be enough to sustain character evolution in other systems. 

756
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757 3c. How do genome processes impact sexual selection and sexual conflict?

758 Although much empirical research related to sexual selection has been conducted 

759 extensively at the organismal level, little progress has been made in identifying the genomic 

760 mechanisms responsible for various sexually selected traits (but see Johnston et al. 2011). 

761 Because sexual dimorphism is often the evolutionary outcome of sex-specific selective patterns 

762 such as sexual selection, understanding the molecular basis of sexually dimorphic traits is key to 

763 understanding evolution by sexual selection. Whereas sex-biased gene expression has been 

764 documented in various tissues in many taxa, demonstrating dimorphism at the molecular level 

765 (e.g. Leder et al. 2010; Mank et al. 2010; Zhang et al. 2007), it is unclear in many cases whether 

766 sex-biased genes are actually antagonistic or if they are a result of current or past antagonistic 

767 effects (Parsch & Ellegren 2013). Additionally, although there are numerous theoretical papers 

768 connecting the evolution of sex chromosomes, sex-biased expression and sexual antagonism (e.g. 

769 Kirkpatrick & Guerrero 2014; Mank et al. 2014; Parsch & Ellegren 2013), it has been difficult to 

770 test hypotheses in the wild (but see empirical advances by Hollis et al. 2014; and review by 

771 Mank 2017). Much of the difficulty in identifying the genomic bases of sexually selected traits is 

772 due to our limited understanding of the genome. It is increasingly feasible to gather DNA, 

773 mRNA and protein sequence data, yet understanding genomic and proteomic modifications, such 

774 as epigenetics or protein phosphorylation, and the details of interactions among molecules is also 

775 necessary to understand the final phenotype. 

776 It has become widely accepted that regulatory variation is the likely source for much of 

777 the observed phenotypic variation among and within species (e.g. Carroll 2008), and regulatory 

778 differences have been implicated as a mechanism resulting in sexual dimorphism (Williams et al. 

779 2008). If one considers the concept of intra-locus conflict, where males and females exhibit 
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780 different fitness optima at a genomic locus, conflict may be resolved by differential regulation of 

781 that gene in males and females without dramatic changes in the genome. As suggested by Rice 

782 (1984), the sex chromosomes may be hotspots for sexually antagonistic genes, but they also 

783 provide a potential mechanism for resolving both intra- and inter-locus conflict through the 

784 maintenance of sex-specific alleles. In effect these alleles must be largely regulatory, since there 

785 is little unique information on the sex chromosomes in many known systems, and recent work 

786 shows that noncoding regulatory sequences alone are sufficient to drive sex reversal in mice 

787 (Gonen et al. 2018). Consistent with this idea, replacement of Y chromosomes between species 

788 of flies results in genome-wide changes in gene expression, mediated by regulatory factors 

789 encoded on the Y chromosome (Branco et al. 2013; Sackton et al. 2011). Additionally, 

790 organisms without sex chromosomes still exhibit sex differences, most basically in gonad 

791 formation and physiology, but also in behaviour. Thus differential regulation leading to sexual 

792 dimorphism must be achieved through regulatory cascades that in some cases can be initiated by 

793 one or few genes, or even by the environment (Bachtrog et al. 2014).

794 Another question is which ontogenetic or polyphonic stage to sample individuals in order 

795 to understand the genetic basis of a sexually selected trait. Much of the obvious morphological 

796 and behavioral differences between the sexes are studied in sexually mature organisms, yet the 

797 molecular bases for many of these differences, particularly morphology or coloration, are likely 

798 due to differential expression initiated early in development before the trait becomes obvious 

799 (Hubbard et al. 2015). This is the case with sexually dimorphic abdominal pigmentation in D. 

800 melanogaster (e.g. Williams et al. 2008), and most studies that identify differences in gene 

801 expression between species or ontogenetic stages are in fact identifying regulatory differences 

802 (Mallarino et al. 2016). This early development of dimorphism makes it difficult to associate the 
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803 phenotypic differences observed in adult organisms with specific DNA differences or mRNA 

804 expression that may underlie the trait. Studies examining the molecular basis of sexually selected 

805 signals in birds often focus on the seasonal elaboration of traits such as plumage color in an 

806 effort to identify relevant genes (Lopes et al. 2016; Mundy et al. 2016). New epigenetic 

807 techniques, such as ATAC-seq, can identify regions of the genome with open chromatin, 

808 unwound from nucleosomes and available for binding by transcription factors, and promise to 

809 identify new ways in which the genome can be differentially modulated between the sexes 

810 without requiring differences in DNA sequence (Buenrostro et al. 2015). 

811 Molecular pleiotropy and the physical location and recombination environment of a gene 

812 may constrain its evolvability and ease of study (see 8pleiotropy9, Table 1). For example, many 

813 proteins form complexes with other proteins or bind to DNA or RNA in order to carry out their 

814 function. These interactions limit the mutations that a given gene can accumulate before it is 

815 non-functional (Papakostas et al. 2014). Additionally, many genes are pleiotropic and may 

816 influence several, even quite different biological processes by being expressed at different times, 

817 in different tissues or by forming complexes with different protein partners. Linkage and 

818 recombination can also affect the evolvability of genes (Table 1). Genes that are in close 

819 proximity on a chromosome will likely be inherited together, thus linked allelic combinations of 

820 these genes will tend to be inherited together. In some cases linked loci can even become fixed, 

821 as when a chromosomal  inversion occurs, creating a 8supergene9 with diverse effects on the 

822 breeding phenotype (Kupper et al. 2016; Lamichhaney et al. 2016; Tuttle et al. 2016). Clearly, a 

823 better understanding of genome processes as well as how genes interact and are expressed in 

824 both sexes will aid in the understanding of sexually selected traits and sexual antagonistic genes.

825
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826 (4) Sexual selection and sexual conflict as drivers, or obstacles, of speciation

827 Sexual selection is an important evolutionary force in the context of speciation (e.g. 

828 Kraaijeveld et al. 2011; Panhuis et al. 2001; Ritchie 2007; Schaefer & Ruxton 2015). 

829 Traditionally, research in this field has focused on the role of sexual selection during early 

830 phases of population divergence, because divergence in display traits and preferences can 

831 quickly cause pre-zygotic isolation (Coyne & Orr 2004). This focus is not surprising given the 

832 huge variation we observe in sexually selected traits among relatively newly formed, closely 

833 related species. However, sexual selection through mate choice is unlikely to lead to speciation 

834 by itself (Ritchie 2007; Servedio & Burger 2014), an argument that has resulted in a growing 

835 interest in understanding sexual selection in the broader context of ecological speciation (Martin 

836 & Mendelson 2014; Scordato et al. 2014). 

837 There is also a growing awareness that cryptic forms of female choice, i.e. post-

838 mating/post-spawning processes resulting in conspecific sperm precedence, may be important 

839 sources of reproductive isolation (Howard 1999; Palumbi 2009; Swanson & Vacquier 2002; Van 

840 Doorn et al. 2001). In addition, male-male competition (Qvarnström et al. 2012; Tinghitella et al. 

841 2018) and sexual conflict (reviewed by Parker 2006) are becoming increasingly recognized as 

842 important mechanisms of speciation. Below, we discuss these novel lines of progress in our 

843 understanding of the role of sexual selection in speciation. Additionally, we provide some 

844 suggestions for use of genomic methods in testing current controversies in the field. 

845

846 4a. Mate choice and ecological speciation 

847 The vast majority of theoretical models evaluating the role of sexual selection in 

848 speciation are based on Fisherian processes of sexual selection (Lande 1981). Why has the 
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849 interest in benefit-driven mate choice been so slow in being transferred from research on sexual 

850 selection within populations to research on the role of sexual selection in speciation processes? 

851 At least one identified potential <problem= with benefit-driven mate choice in the context of 

852 speciation is associated with the unidirectional nature of choice. Disruptive selection is 

853 considered to be a prerequisite for population divergence under gene flow but disruptive 

854 selection on benefit-driven mate choice is generally not expected. Moreover, while differences in 

855 natural selection experienced by geographically separated populations may quickly lead to 

856 divergence in male display traits (Maan & Seehausen 2011), mating preferences (Table 1) may 

857 not change in a similar manner. For example, when a long bird tail signals some type of quality 

858 and males have evolved shorter tails in one population due to high local costs (e.g. strong 

859 predation pressures), females from that population would not be expected to prefer males with 

860 relatively short tails. Females from this population of short-tailed males should instead be 

861 expected to prefer to mate with males from long-tailed populations whenever they have a chance 

862 to do so. 

863 There are several possible solutions to this <problem=. First, female mate preferences 

864 may actually experience corresponding natural selection pressures as male display traits. Segami 

865 Marzal et al. (2017) found that cryptic female poison frogs experienced elevated predation risk 

866 when associating with an aposematic partner. Hence, predation may act directly on female 

867 choice favoring the evolution of preferences for less conspicuous males. Second, female mate 

868 preferences may be exposed to other environment-specific natural selection pressures that target 

869 their sensory system, resulting in population specific mate choice targets ('sensory drive', Table 

870 1, Boughman 2002; Endler 1992). In short, if a sensory trait, for example vision, is locally 

871 adapted and also involved in finding mates or assessing their quality, this functional linkage may 
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872 result in divergence in male display traits (Boughman 2002; see also section 2b where we discuss 

873 how receiver mechanisms and biases shape signal design). Moreover, Schluter and Price (1993) 

874 suggested that several male traits may reveal the same type of benefits but the perception of these 

875 traits may differ between environments resulting in different traits being the prime targets for 

876 benefit-driven mate choice in different environments. Empirical evidence suggest multiple 

877 effects of female sensory traits causing divergence in male courtship traits (Boughman 2001; 

878 Boughman 2002; Fuller & Noa 2010; Seehausen et al. 2008). Finally, a third possible solution is 

879 that mate preferences remain the same but assortative mating between populations that are 

880 adapted to different environments is still possible (Kopp et al. 2018). For example, immigrant 

881 males that lack genes underlying local adaptation are unable to develop large ornaments, such as 

882 bright coloration, enabling females to discriminate against them (van Doorn et al. 2009). Males 

883 that are well adapted to the local environment will therefore be more attractive to females, and 

884 offer direct benefits (e.g. territory quality) or genes that are related to local adaptation (reviewed 

885 in Safran et al. 2013). Thus, under certain prerequisites, genes that contribute to adaptation will 

886 spread in the population through both natural and sexual selection. In some systems, however, 

887 rare immigrants to a population appear to achieve enhanced survival and lower parasite loads 

888 compared to residents (Bolnick & Stutz 2017).  In section 4d below, we discuss how genomic 

889 approaches can be used to test the prerequisites for sexual and natural selection to jointly 

890 promote speciation.

891

892 4b. Cryptic female choice and post-copulatory reproductive isolation 

893 Choice mechanisms directly based on conspecific sperm traits rather than species-specific 

894 secondary sexual traits are known from external fertilizers, like abalones, sea urchins and oysters 
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895 (Vacquier & Swanson 2011) and fish (Yeates et al. 2013). Post-copulatory reproductive barriers 

896 are much less known in internal fertilizers, at least partly because of the difficulty of studying 

897 what goes on within the female reproductive tract (Birkhead & Brillard 2007). However, there is 

898 increasing evidence for such <cryptic= mechanisms of female choice, where heterospecific sperm 

899 is discriminated against also in internally fertilizing animals, like insects (Coyne & Orr 2004) 

900 and non-passerine birds (Birkhead & Brillard 2007).

901 Although pre-copulatory mate choice based on plumage and song traits is well known in 

902 passerine birds, little attention has been paid to possible post-copulatory reproductive barriers. 

903 Passerine sperm morphology is known to evolve rapidly (e.g. Hogner et al. 2013) and the rate of 

904 evolution is positively related to the risk of sperm competition (Rowe et al. 2015). One emerging 

905 question is therefore whether sperm divergence could be causally involved in reproductive 

906 isolation between incipient species pairs with sperm competition, through differential 

907 fertilization success of conspecific over heterospecific sperm. At the mechanistic level, this could 

908 work via co-evolution between sperm length and sperm storage tubule length (Briskie & 

909 Montgomerie 1992). In other words, sperm of a heterospecific male might be selected against 

910 because they are not the right size to fit in the sperm storage tubules. Alternatively, reproductive 

911 proteins in seminal- and ovarian fluid, which are known to evolve rapidly in other taxa (Turner 

912 & Hoekstra 2008), but see (Rowe et al. 2018), may be the key molecules involved in post-

913 copulatory selection mechanisms also in passerines. 

914 A recent study of two sympatric Ficedula flycatchers, suggests that female pied 

915 flycatchers (F. hypoleuca) that are constrained to pair with heterospecific males, are more prone 

916 to perform extra-pair copulations with conspecific males and able to exert cryptic choice in 

917 favour of their sperm, thereby reducing the risk of producing unfit hybrid offspring (Cramer et 
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918 al. 2016a). By in vitro testing of sperm velocity from males of each of the two species against 

919 cloacal fluid collected from females of both species, the authors found an asymmetric pattern: 

920 sperm from collared flycatcher (F. albicollis) males experienced a higher velocity reduction in 

921 pied flycatcher female fluid than in collared flycatcher fluid, but not vice versa. Furthermore, this 

922 effect was strongest for pied flycatcher females with a high likelihood of previous exposure to 

923 sperm of collared flycatcher males. Such effects were not seen in studies of four other, non-

924 hybridizing passerine species pairs, with a range of divergences in genetic distance and sperm 

925 morphology (Cramer et al. 2014; Cramer et al. 2016b), suggesting that selection against 

926 hybridization may have favored the evolution of this cryptic barrier in flycatchers.

927 Future studies, targeting the molecular mechanisms underlying sperm performance within 

928 conspecific and heterospecific female reproductive environments, will shed novel light on the 

929 type of selection acting at this cryptic level of female choice and the relative importance of pre- 

930 and post-copulatory mate choice in speciation processes.

931

932 4c Male-male competition and niche segregation

933 When males compete over females or resources needed to attract females, they often bias 

934 their aggression towards the most common male phenotype in the population (Qvarnström et al. 

935 2012; Tinghitella et al. 2018).  This means that both the invasion of, for example, new color 

936 morphs and stable polymorphism within populations become much more likely than in cases 

937 when mate choice acts as the main mechanism of sexual selection (reviewed in Qvarnström et al. 

938 2012; Tinghitella et al. 2018).  One may argue that such negative frequency-dependent selection 

939 driven by male aggression could promote divergence in e.g. color morphs with little divergence 

940 in niche use. In agreement with this line of reasoning, Seehausen and Schluter (2004) found that 
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941 sibling species of cichlid fishes in Lake Victoria were ecologically similar but markedly different 

942 in coloration. Closely related species of cichlids with similar color were also less likely to 

943 occupy the same habitat patches (Seehausen & Schluter 2004). Should we then expect the 

944 diversifying aspects of male-male competition to be unrelated to ecological speciation?   

945 There are at least three main reasons to expect that divergence in sexually selected traits 

946 used in male contest competition may often be associated with divergence in niche use. First, 

947 dominance hierarchies are often asymmetric between color morphs and population divergence in 

948 traits used in combat (e.g. horns, large bodies) is often directly associated with dominance 

949 strategies and thereby access to other resources than females (Forsgren et al. 1996; Qvarnström 

950 et al. 2012). We therefore predict population divergence in sexually selected traits used in male-

951 male competition and population divergence in niche use to often be associated. Second, at 

952 secondary contact between young species, selection against heterospecific aggression may 

953 contribute to increased niche segregation. Ongoing habitat segregation was for example observed 

954 in a recently formed hybrid zone between collared and pied flycatchers on the Swedish island, 

955 Öland. An asymmetry in male contest competition ability over nesting sites needed to attract 

956 females resulted in male pied flycatchers being displaced from deciduous forests patches into 

957 less preferred mixed forest habitats (Vallin et al. 2012).  As a consequence of this habitat 

958 segregation, the access to resources used to feed nestlings declined dramatically in breeding 

959 territories used by pied flycatchers but the risk of hybridizing with collared flycatchers also 

960 declined (Rybinski et al. 2016). Thus, habitat segregation not only led to reduced aggressive 

961 interactions between the two flycatcher species, but also to reproductive isolation. Third, 

962 environmental effects on the efficiency of different signaling traits may not only affect which 

963 traits become targets of female choice by being relatively more detectable or reliable (Schluter & 
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964 Price 1993) but also which traits become targets of male competition. Lacky and Boughman 

965 (2013) compared limnetic and benthic species of threespine stickleback fish across different 

966 habitats. They found that mixed habitats favored two trait combinations and thereby likely 

967 divergence and reproductive isolation while homogenous open habitats favored only one trait 

968 combination and thereby likely hindered trait divergence and reproductive isolation (Lackey & 

969 Boughman 2013).

970

971 4d. How does sexual conflict impact speciation processes?

972 In contrast to sexual selection, less research has targeted the consequences of sexual 

973 conflict on speciation. Several approaches concur with the notion that sexual conflict will also 

974 catalyse speciation, others suggest the reverse (see reviews by Gavrilets 2014; Parker 2006). The 

975 hypothesis that selection favours restriction of gene flow when hybrids between ecotypes have a 

976 fitness disadvantage relies on the tacit assumption that female interests will prevail in mating 

977 decisions. However, unless the hybrid disadvantage is sufficiently great, it will be in male 

978 interest to mate (Kokko & Ots 2006; Parker 1974; Parker 1979; Waser et al. 1986); a wide 

979 parameter zone exists over which sexual conflict applies and in this zone selection on females 

980 acts as a force favouring speciation by restricting gene flow, but selection on males acts as a 

981 force resisting speciation by promoting gene flow. While some empirical studies suggest that 

982 sexual conflict promotes speciation, others do not (Gavrilets 2014; Plesnar-Bielak et al. 2013). 

983 Extending this argument, Parker & Partridge (1998) suggested that under sexual conflict, 

984 8female win9 resolutions in given taxa may result in high species numbers and low genetic 

985 variation per species, whereas 8male win9 resolutions may result in taxa with low species 

986 numbers and high genetic variation per species. Which solution prevails depends on the value of 
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987 winning (generally greater for males) and 8power9, a measure related to the fitness costs of 

988 overcoming the current defense by the opposite sex (costs for females of preventing mating may 

989 often be less than the costs for males of imposing matings). Similarly, Magurran (1998) proposed 

990 that sexual conflict and male interests may be key to explaining the absence of speciation in 

991 Trinidadian guppies, Poecilia reticulata, where population differentiation is nevertheless high 

992 and female choice appears to reinforce divergence. Sneak mating by males is common, and may 

993 generate sufficient gene flow to prevent reproductive isolation. Early comparative attempts to 

994 establish a link between speciation rate and possible proxies for sexual conflict (sexual size 

995 dimorphism, polyandry) in mammals, butterflies and spiders were unsuccessful (Gage et al. 

996 2002), but recent work on shorebirds also gives some support to the notion that male interests 

997 (measured in terms polygamy) can act against speciation (D'Urban Jackson et al. 2017).

998 The role of sexual conflict in speciation certainly deserves further investigation. An 

999 interesting complication is that if two subpopulations, A and B, have diverged sufficiently, the 

1000 fitness consequences to males and females of A and B can become asymmetric, e.g. the relative 

1001 hybrid disadvantage in (i) male A x female B matings may differ from that in (ii) female A x 

1002 male B matings. Additionally, the balance for the sexes between the fitness value of winning (i.e. 

1003 between mating or not mating) and 8power9 (the fitness cost of overcoming defences) may differ 

1004 in these two possible pairings (Parker 1979; Parker & Partridge 1998). Such asymmetries could 

1005 hypothetically lead to a variety of situations: for example, sexual conflict could occur in case (i) 

1006 but not in case (ii), so that (depending on the 8value of winning value9/8power9 balance) selection 

1007 could favour speciation in one population but not the other, a form of <speciation conflict=.

1008

1009 4e. Genomic properties of speciation through sexual selection
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1010 Genomic approaches may help to bridge several important gaps in our current 

1011 understanding of the role of sexual selection in speciation. Detailed information about the 

1012 genomics underlying sexually selected phenotypes can be used to test key assumptions of 

1013 theoretical models on sexual selection (Wilkinson et al. 2015, see also section 3 above) and then 

1014 be placed into the context of speciation. Because, as mentioned above, divergent sexual selection 

1015 alone rarely causes speciation (Ritchie 2007), one particularly interesting aspect of 8the context 

1016 of speciation9 deals with how traits involved in several different aspects of reproductive isolation 

1017 can remain in linkage disequilibrium under gene flow (Butlin & Smadja 2018; Coyne & Orr 

1018 2004; Seehausen et al. 2014; Table 1). Hybridization can easily break up crucial trait-

1019 combinations through recombination and segregation (Table 1, Felsenstein 1981). The 

1020 completion of speciation under gene flow is therefore considered to be more likely when traits 

1021 involved in reproductive isolation have dual functions (Gavrilets 2004; Slatkin 1982; Smadja & 

1022 Butlin 2011). The completion of speciation occurs because, when a single trait is under divergent 

1023 natural selection and also involved in mate choice, the association between these two functions 

1024 cannot be easily broken by recombination. There are numerous examples of putative multiple 

1025 effect traits (8magic9 traits) involved in population divergence, many focusing on the signaling 

1026 side of sexual selection (Servedio et al. 2011; Smadja & Butlin 2011). One of the best examples 

1027 is from Heliconius butterflies, where the mimicry pattern also has a signaling function when 

1028 acquiring mates (Kronforst et al. 2006; Merrill et al. 2011). However, mate preferences can also 

1029 function as 8magic9 traits with dual functions. For example, in the context of sensory drive 

1030 speciation (Table 1) in teleost fishes. In short, if a sensory trait, for example vision, is locally 

1031 adapted and also involved in finding mates or assessing their quality, this means a functional 

1032 linkage between niche use and mate choice. Given the difficulties in unravelling the genetic 
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1033 background of especially mate choice, these systems could be good candidates for studies of 

1034 genetic architecture of mate preferences (Table 1). In Pundamilia cichlid fish and Heliconius 

1035 butterflies, where gene flow is evident and multiple effect traits have been invoked to be 

1036 instrumental in the speciation process, empirical results are consistent with few genes having a 

1037 major effect on female assortative mating (Haesler & Seehausen 2005; Kronforst et al. 2006; 

1038 Merrill et al. 2011; Svensson et al. 2017).

1039 When several different traits contribute to reproductive isolation, linkage disequilibrium 

1040 among the underlying loci may shelter against the homogenizing effects of gene flow. Barton 

1041 (1983) introduced the term 8coupling9 to refer to a process where buildup of linkage 

1042 disequilibrium between loci under divergent selection promotes speciation (Flaxman et al. 2014). 

1043 Such coupling occurs because each locus with an effect on reproductive isolation is then not only 

1044 influenced directly by selection acting on itself but also by indirect selection acting on the other 

1045 coupled loci leading to stronger overall isolation. Much scientific attention has been directed to 

1046 possible genetic coupling by physical linkage between isolation loci through proximity on 

1047 particular chromosomes (e.g. sex chromosomes, Qvarnstrom & Bailey 2009), particular parts of 

1048 chromosomes with low recombination rates (e.g. centromeres Ortiz-Barrientos et al. 2016) or 

1049 within recently formed chromosomal rearrangements (Noor et al. 2001). Empirical studies 

1050 suggest that differentiated loci are indeed enriched in genomic regions with reduced 

1051 recombination (Wolf & Ellegren 2017) but such patterns alone need to be interpreted with 

1052 caution. Genomic studies need to be tightly intertwined with knowledge about phenotypic effects 

1053 to reveal which differentiated loci that have effects on reproductive isolation as differentiation 

1054 per se does not impose a key function in the speciation process. To achieve this goal several 

1055 different methods need to be combined. First, ecological and behavioral studied are needed to 
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1056 reveal the function of phenotypic traits and their role in niche use, mating and most importantly 

1057 their barrier effects - their role in causing reproductive isolation. Second, the genetic variants 

1058 underlying these traits need to be revealed with genome wide association studies or similar 

1059 (GWAS, Rockman 2012). Finally, Butlin and Smadja (2018) recently suggested that more 

1060 scientific attention also needs to be directed towards the coupling processes themselves and that 

1061 the term 8coupling9 should be extended to include any process that generates coincidence of 

1062 barrier effects. Reaching these three goals is a challenging empirical undertaking but would 

1063 reveal key information about the speciation process, including the role of sexual selection in 

1064 driving reproductive isolation.

1065

1066 CONCLUSIONS 

1067 Our survey of emerging questions in sexual selection, while necessarily incomplete, 

1068 shows that the field is on the cusp of a major revolution. In many ways the theoretical framework 

1069 for the study of sexual selection and sexual conflict is robust, having been refined since the late 

1070 1960s. What is needed now are bold empirical attempts to understand the diverse molecular and 

1071 ecological mechanisms that could modulate the outcomes of sexual selection and sexual conflict.

1072 One obvious frontier of sexual selection resides in increased understanding of the 

1073 molecular genetic and physiological mechanisms of traits subjected to or contributing to sexual 

1074 selection and sexual conflict, an understanding that next-generation molecular methods will help 

1075 achieve. Although interesting in its own right, it is perhaps even more important what these 

1076 mechanisms imply about the history, constraints and evolvability of traits, allowing several 

1077 outstanding issues in sexual selection and sexual conflict to be addressed. A molecular 

1078 understanding of sexually selected traits will help the field discriminate between alternative 
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1079 hypotheses for the maintenance of variability in those traits, for example, whether they have 

1080 evolved via good genes mechanisms or by more arbitrary or neutral processes (Prum 2010; Prum 

1081 2017). A good example is the recent elucidation of the genes involved with carotenoid 

1082 metabolism in birds (Lopes et al. 2016; Mundy et al. 2016; Toews et al. 2017). With a clear 

1083 understanding of the genes that process ingested carotenoids, we can gain better estimates of the 

1084 true costs and constraints on those traits, which in turn can help predict their evolutionary 

1085 trajectories within and between species.

1086 It would, however, be short-sighted to conclude that molecular mechanisms alone will 

1087 bring a holistic understanding of sexual selection and conflict. Genetic mechanisms only have 

1088 meaning when appropriately placed in the context of the natural history and ecological and social 

1089 constraints that characterize different systems exhibiting sexual selection. Recent examples show 

1090 how molecular methods achieve their biggest impact when deployed in the context of large-scale 

1091 ecological and behavioral studies of naturally occurring variation in the wild (e.g. Bosse et al. 

1092 2017). And although an understanding of the historical origins of traits, i.e. ancestral constraints 

1093 and exaptations, is (or should be) the very essence of modern evolutionary biology, there is still a 

1094 striking lack of 'tree-thinking' that would facilitate understanding such constraints in biology in 

1095 general, and sexual selection in particular (Price et al. 2011). This trend is particularly true in the 

1096 study of the many micro- and macroevolutionary consequences of sexual selection (but see Prum 

1097 1997).

1098 Advances at the interface of molecular, ecological, behavioral and theoretical research 

1099 will require collaborations between experts in divergent areas, a goal that we hope our workshop 

1100 in Gothenburg has fostered.

1101
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1126

1127 FIGURES 

1128 Figure 1. Results of trade-offs between pre- and post-copulatory investment in polyandrous 

1129 species. A male's reproductive success (i.e. the total number of offspring produced, T) is 

1130 determined by: (a) the number of females with whom he mates successfully (mating success, M) 

1131 and their fecundity (i.e. average number of ova produced, N), and (b) the proportion of these that 

1132 he fertilises (P). When reproductive resources are limited, males face a trade-off between 

1133 investment in precopulatory (a) and postcopulatory competition (b). Under some conditions, 

1134 such trade-off can have alternative optima for different male types, setting the scene for 

1135 alternative mating tactics, in which a discrete phenotype, which invests preferentially in 

1136 attracting and monopolising females (e.g. territorial), co-exists and competes with phenotypes, 

1137 which invest preferentially in sperm competition (e.g. sneaker or satellite). Adapted from Parker 

1138 (1998). 

1139

1140 Figure 2. A graphical illustration of the <Promiscuous Red Queen= hypothesis for the 

1141 evolution of immune gene diversity and variation in female promiscuity. The diversity of 

1142 immune genes in a population is shaped along two selection pathways, both subject to the Red 

1143 Queen dynamics of host-parasite  coevolutionary cycles (see text box). The first one, which is 

1144 relevant for all species, is natural selection caused directly by pathogens resulting in differential 

1145 survival of alleles. The strength of selection is determined by the abundance, diversity and 

1146 virulence of pathogens in the environment, primarily exposed through diet and habitat-specific 

1147 variables. The second pathway, sexual selection, kicks in when random mating (with respect to 
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1148 immune genes) is an inferior strategy compared to a mating preference for certain alleles. For 

1149 species that form pair bonds, mating preferences can theoretically be exerted both in the pairing 

1150 process and in subsequent extrapair matings, and can either target specific alleles (good genes) or 

1151 alleles that make a good match to the female9s own genotype (compatible genes). Pathogen-

1152 mediated selection can therefore act directly on organisms through a natural selection pathway, 

1153 and indirectly through a sexual selection pathway, under a <Red Queen= scenario. When social 

1154 mate choice is largely driven by non-genetic resource benefits and is random with respect to 

1155 genes, genetic preferences can be exerted in extrapair mate choice. Females can thereby get the 

1156 best (resources and genes) out of two separate choice situations. When social monogamy 

1157 constrains female choice of genes, extrapair mating will evolve. The stronger the genetic benefits 

1158 through pathogen-mediated selection on offspring fitness, the more effort females should devote 

1159 to extrapair mating. When beneficial alleles increase in frequency and pathogens become less 

1160 harmful, extrapair mating becomes less important. The <Promiscuous Red Queen= model is thus 

1161 a possible explanation to the variation in extrapair mating systems observed among species and 

1162 populations, especially in passerine birds. 

1163

1164 Figure 3: Generalization gradients and origins of receiver bias. (A) Receiver biases exert 

1165 directional selection on a signal trait (e.g. tail length in birds) and may create heightened 

1166 responsiveness to supernormal stimuli. The blue curve depicts responsiveness by an unbiased 

1167 receiver. Peak shift (orange line), area shift (green line), and open-ended (red line) 

1168 8generalization gradients9 (Table 1) are generated by discrimination learning, which here is 

1169 illustrated by a negative (S-) and a positive (S+) training stimulus. (B) Other receiver biases can 

1170 also derive directly from a peripheral sensory bias (e.g. in the retina), or from the higher level 
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1171 'Perceptual9 processing of the sensory input (e.g. visual cortex). The general increase in 

1172 phenotypic plasticity from peripheral to higher level neural processing is indicated. 
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Figure 1
Figure 1.Results of trade-oûs between pre- and post-copulatory investment in
polyandrous species.

A male's reproductive success (i.e. the total number of oûspring produced, T) is determined
by: (a) the number of females with whom he mates successfully (mating success, M) and
their fecundity (i.e. average number of ova produced, N), and (b) the proportion of these that
he fertilises (P). When reproductive resources are limited, males face a trade-oû between
investment in precopulatory (a) and postcopulatory competition (b). Under some conditions,
such trade-oû can have alternative optima for diûerent male types, setting the scene for
alternative mating tactics, in which a discrete phenotype, which invests preferentially in
attracting and monopolising females (e.g. territorial), co-exists and competes with
phenotypes, which invest preferentially in sperm competition (e.g. sneaker or satellite).
Adapted from Parker (1998).
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Figure 2
Figure 2.A graphical illustration of the <Promiscuous Red Queen= hypothesis for the
evolution of immune gene diversity and variation in female promiscuity.

The diversity of immune genes in a population is shaped along two selection pathways, both
subject to the Red Queen dynamics of host-parasite coevolutionary cycles (see text box). The
ûrst one, which is relevant for all species, is natural selection caused directly by pathogens
resulting in diûerential survival of alleles. The strength of selection is determined by the
abundance, diversity and virulence of pathogens in the environment, primarily exposed
through diet and habitat-speciûc variables. The second pathway, sexual selection, kicks in
when random mating (with respect to immune genes) is an inferior strategy compared to a
mating preference for certain alleles. For species that form pair bonds, mating preferences
can theoretically be exerted both in the pairing process and in subsequent extrapair matings,
and can either target speciûc alleles (good genes) or alleles that make a good match to the
female9s own genotype (compatible genes). Pathogen-mediated selection can therefore act
directly on organisms through a natural selection pathway, and indirectly through a sexual
selection pathway, under a <Red Queen= scenario. When social mate choice is largely driven
by non-genetic resource beneûts and is random with respect to genes, genetic preferences
can be exerted in extrapair mate choice. Females can thereby get the best (resources and
genes) out of two separate choice situations. When social monogamy constrains female
choice of genes, extrapair mating will evolve. The stronger the genetic beneûts through
pathogen-mediated selection on oûspring ûtness, the more eûort females should devote to
extrapair mating. When beneûcial alleles increase in frequency and pathogens become less
harmful, extrapair mating becomes less important. The <Promiscuous Red Queen= model is
thus a possible explanation to the variation in extrapair mating systems observed among
species and populations, especially in passerine birds.
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Figure 3
Figure 3: Generalization gradients and origins of receiver bias.

(A) Receiver biases exert directional selection on a signal trait (e.g. tail length in birds) and
may create heightened responsiveness to supernormal stimuli. The blue curve depicts
responsiveness by an unbiased receiver. Peak shift (orange line), area shift (green line), and
open-ended (red line) 8generalization gradients9 (see Table 1: Glossary) are generated by
discrimination learning, which here is illustrated by a negative (S-) and a positive (S+)
training stimulus. (B) Other receiver biases can also derive directly from a peripheral sensory
bias (e.g. in the retina), or from the higher level 'Perceptual9 processing of the sensory input
(e.g. visual cortex). The general increase in phenotypic plasticity from peripheral to higher
level neural processing is indicated.
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Table 1: Glossary
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1 Table 1:

2 Glossary

Anisogamy The within-species occurrence of gametes of two different sizes, which 

results in two sexes, males and females. Females produce the larger and 

males the smaller gametes.

Bateman 

Gradient

The slope of the linear regression of the number of offspring produced by 

an individual (reproductive success, or 8fertility9) on the number of its 

reproductive partners (mating success). This represents the multiplicative 

component of the gradient of precopulatory sexual selection acting on a 

trait. It is named after the seminal study of Bateman (1948), which used 

fruit flies, D. melanogaster, to suggest that the relationship between fertility 

and mating success is stronger in males, and argued that in an anisogamous 

population males can have higher potential reproductive rates than females, 

resulting in more intense intrasexual competition over mating opportunities 

in males.   

Benefits of 

mate choice 

8Direct9 benefits of mate choice are 8non-genetic9 and include resources 

that will benefit the choosing parent or its offspring, for example access to 

food, a safe territory, or parental care. 8Indirect9 benefits are 8genetic9 in 

the sense that by choosing a mate, a parent will secure 8good9 (viability-

related) genes or 8sexy9 genes (genes for traits that are attractive to the 

opposite sex) for its offspring, or genes that are compatible to the parent9s 

own genotype.

Generalization Responsiveness (preference or aversion) to novel stimuli, generated by 

discrimination learning, and along the dimension(s) of the training stimuli. 

The resulting generalization gradients (e.g. a preference function) can be 

either a Peak shift (peak response to stimuli stronger than the positive 

training stimulus), or an Area shift (peak not shifted, but function 

asymmetric and biased towards the reinforced direction). Finally, if the 

gradient does not show a decrease within the interval considered, the 

preference or aversion can be called Open-ended (see e.g. Ghirlanda & 

Enquist 2003; ten Cate & Rowe 2007, and Fig. 3).

Genic capture Female preferences for costly male traits results in the evolution of a 

genetic covariance between male condition, dictated by many genes, and a 

target male trait expression

Lek paradox The problem, commonly relating to female choice of males on leks, of how 

genetic variation for mate choice can persist despite directional selection for 

the trait in the other sex, this genetic variation forming the basis for the 

choice. Under directional selection, the favoured genes should fixate, so that 

all individuals of the selected sex should have the gene(s) making them 

attractive, thus removing the basis for the choice.

Linkage 

disequilibrium 

(LD)

LD is the non-random association of alleles at different loci. The term often 

causes confusion and LD may exist without physical linkage or allele 

frequencies in equilibrium. The speciation-with-gene-flow process is 

characterized by the build up of LD and genome-wide LD is the footprint of 

speciation. LD in specific genomic regions reflects the history of selection, 

gene conversion and other forces that cause gene-frequency evolution.
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Mating 

preference

A bias during mate choice which results in a skew towards mating with 

individuals that express specific phenotypic traits.

Mating system Monandry 3 females mating with one male. Monogamy 3 both sexes 

mating with one mate. Monogyny 3 males mating with one female. 

Polyandry 3 females mating with multiple males. Polygamy (or 

polygynandry) 3 both sexes mating with multiple mates. Polygyny 3 males 

mating with multiple females.

Pleiotropy One gene affects two or more traits (genetic pleiotropy), or one hormone 

affects two or more traits (hormonal pleiotropy).

Receiver bias Used here and by some other authors (ten Cate & Rowe 2007) to include all 

biased responses (preferences or aversions), whether generated by 

peripheral sensory systems (sensory bias), neural processing (perceptual 

bias) or learning or imprinting (cognitive bias). Ryan and Cummings 

(2013) suggest that Sensory and Cognitive bias should be included in 

Perceptual bias. See Fig. 3

Receiver 

psychology

A phrase coined by Guilford and Dawkins (1991) <to encompass the 

cognitive mechanisms in signal receivers that process incoming information 

and could potentially influence signal evolution=(Rowe 2013).

Recombination The production of offspring with different combination of alleles at 

different loci than their parents. Recombination often refers to the exchange 

of genetic material between homologous chromosomes during meiosis 

(chromosomal crossover).

Red Queen A theory proposing that organisms must constantly evolve in response to 

their ever-changing environment. The <Red Queen= analogy is derived from 

Lewis Carroll9s fantasy novel <Through the Looking-Glass= (1871) where 

the Red Queen tells Alice that <it takes all the running you can do, to keep 

in the same place=. The Red Queen theory has been applied to many forms 

of coevolution among species, for example the antagonistic interactions 

between parasites and their hosts, and the benefit of sex. In sexual selection 

theory, Hamilton and Zuk (1982) proposed that sexual ornaments signal the 

bearer9s resistance to parasites, which is a <Red Queen= model assuming a 

female preference for good genes. The <Red Queen= logic can also be 

applied to explain female preferences for rare or dissimilar alleles at 

immune genes that give a broader allelic repertoire and better pathogen 

resistance in the offspring, as argued here (the <Promiscuous Red Queen= 

hypothesis, see Fig. 2.) 

Segregation Pairs of alleles segregate (separate) into different gametes during meiosis. 

This is referred to as Mendel9s law of segregation.

Sensory drive A model proposed by Endler (1992) which encompasses evolutionary 

interactions between the (abiotic and biotic) environment, sensory system 

and courtship signals, taking into account pre-existing bias and sensory 

exploitation. Sensory and signalling systems coevolve under the constraints 

of the environment which hence influence the evolutionary trajectory in a 

predictable direction (Cummings & Endler 2018; Endler 1992).

Sexual cascade The set of sequential evolutionary transitions in sexual strategy of eukaryote 

organisms, each transition under appropriate conditions giving rise to the 
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selective forces that generate the next. Some taxa remain 8frozen9 at a given 

stage without further change. The cascade begins with isogamous syngamy 

in unicells. Development towards multicellularity favours anisogamy and 

generates a unity sex ratio. In early, sedentary marine organisms with 

broadcast spawning, sexual selection is restricted to sperm competition and 

sperm selection. Development of mobility permits diversion of expenditure 

on sperm into 8female-targeting9 (moving to and release of sperm adjacent 

to spawning females), which may ultimately facilitate internal fertilization 

and the many forms of pre-copulatory sexual selection documented by 

Darwin (1871).

Sexual conflict A situation in which the fitness of a male and a female cannot be both 

maximized separately and simultaneously, by the same trait or reproductive 

decision. This can arise as social conflict between prospective sexual 

partners, when a reproductive decision (e.g. whether to mate with each 

other or not) is adaptive for one individual but detrimental to the other. This 

conflict is often mediated by sex-limited traits and can give rise to sexually 

antagonistic patterns of intersexual coevolution in which the antagonistic 

effect of alleles at some loci is counteracted by the effect of alleles at other 

loci (inter-locus). Another form of 8conflict9 can arise when there is a 

divergence in the male and female phenotypic optima, and gene expression 

is not sex limited. In this case a locus can segregate for different alleles 

which may have sexually antagonistic effects when expressed in males and 

females, i.e. an allele that is beneficial when expressed in females may be 

detrimental when expressed in males and vice versa (intra-locus).

Sexual 

selection

Selection that depends on the advantage which certain individuals have over 

other individuals of the same sex and species, in exclusive relation to 

mating and fertilization (Andersson 1994; Darwin 1871).
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