

A peer-reviewed version of this preprint was published in PeerJ
on 10 December 2019.

View the peer-reviewed version (peerj.com/articles/7907), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Tweedell AJ, Tenan MS. 2019. motoRneuron: an open-source R toolbox
for time-domain motor unit analyses. PeerJ 7:e7907
https://doi.org/10.7717/peerj.7907

https://doi.org/10.7717/peerj.7907
https://doi.org/10.7717/peerj.7907

motoRneuron: an open-source R toolbox for time-domain
motor unit analyses
Andrew J Tweedell Corresp., 1 , Matthew S Tenan 2

1 Human Research and Engineering Directorate, United States Army Research Laboratory, Aberdeen Proving Ground, Maryland, United States of America
2 Defense Health Agency, Falls Church, Virginia, United States of America

Corresponding Author: Andrew J Tweedell
Email address: andrew.j.tweedell.civ@mail.mil

Motor unit synchronization is the tendency of motor neurons and their associated muscle
ûbers to discharge near-simultaneously. It has been theorized as a control mechanism for
force generation by common excitatory inputs to these motor neurons. Magnitude of
synchronization is calculated from peaks in cross-correlation histograms between motor
unit discharge trains. However, there are many diûerent methods for detecting these
peaks and even more indices for calculating synchronization from them. Methodology is
typically laboratory-speciûc and requires expensive software, like Matlab or LabView. This
lack of standardization makes it diûcult to draw deûnitive conclusions about motor unit
synchronization. To combat this, we have developed a freely available, open-source
toolbox, <motoRneuron=, for the R programming language. This toolbox contains functions
for calculating time domain synchronization using diûerent methods found in the
literature. Our objective is to detail the program9s functionality and provide a clear use-
case for implementation. The programs primary function <mu_synch= automatically
performs the cross-correlation analysis based on user input. Automated peak detection
methods such as the cumulative sum method and the z-score method, as well as
subjective, visual analysis are available. Users can also deûne other parameters like the
number of recurrence intervals to be used and histogram bin size. The function outputs six
common synchronization indices, the common input strength (CIS), k9, k9-1, E, S, and
Synch Index. This toolbox allows for better standardization of techniques and for more
comprehensive data mining in the motor control community.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

1 motoRneuron: an open-source R toolbox for time-

2 domain motor unit analyses
3

4

5 Andrew J. Tweedell1, Matthew S. Tenan2

6

7 1Human Research and Engineering Directorate, United States Army Research Laboratory,

8 Aberdeen Proving Ground, Maryland, USA

9 2Defense Health Agency, Falls Church, Virginia, USA

10

11 Corresponding Author:

12 Andrew Tweedell

13 459 Mulberry Point Road, Aberdeen Proving Ground, MD, 21009, USA

14 Email address: andrew.j.tweedell.civ@mail.mil

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

15 Abstract

16 Motor unit synchronization is the tendency of motor neurons and their associated muscle fibers

17 to discharge near-simultaneously. It has been theorized as a control mechanism for force

18 generation by common excitatory inputs to these motor neurons. Magnitude of synchronization

19 is calculated from peaks in cross-correlation histograms between motor unit discharge trains.

20 However, there are many different methods for detecting these peaks and even more indices for

21 calculating synchronization from them. Methodology is typically laboratory-specific and requires

22 expensive software, like Matlab or LabView. This lack of standardization makes it difficult to

23 draw definitive conclusions about motor unit synchronization. To combat this, we have

24 developed a freely available, open-source toolbox, <motoRneuron=, for the R programming

25 language. This toolbox contains functions for calculating time domain synchronization using

26 different methods found in the literature. Our objective is to detail the program9s functionality

27 and provide a clear use-case for implementation. The programs primary function <mu_synch=

28 automatically performs the cross-correlation analysis based on user input. Automated peak

29 detection methods such as the cumulative sum method and the z-score method, as well as

30 subjective, visual analysis are available. Users can also define other parameters like the number

31 of recurrence intervals to be used and histogram bin size. The function outputs six common

32 synchronization indices, the common input strength (CIS), k9, k9-1, E, S, and Synch Index. This

33 toolbox allows for better standardization of techniques and for more comprehensive data mining

34 in the motor control community.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

35 Introduction

36

37 Motor unit synchronization is the tendency of separate motor units (i.e. motor neurons and their
38 associated muscle fibers) to discharge near-simultaneously (within 1 3 5 ms of each other) more
39 often than would be expected by chance (Farmer et al. 1997; Semmler 2002). It is often
40 interpreted as an indicator of functional connectivity between motor neurons through common
41 excitatory post-synaptic potentials (Sears & Stagg 1976). Typically, cross-correlation analyses
42 are employed, whereby the discharge times of one motor unit are correlated against those of
43 another concurrently active motor unit (Fig. 1) and a histogram is created based on these
44 recurrence intervals. Peaks in the histogram represent a higher probability of a discharge from
45 the response motor unit around that latency of the reference motor unit discharge (seen in Fig.
46 2B). Various indices are calculated from these peaks and their magnitude indicates the level of
47 synchronization (for review see (Farmer et al. 1997; Semmler 2002; Farina & Negro 2015)). This
48 time-domain synchronization appears to be a critical factor in force modulation. For example,
49 synchronous activation of muscle fibers produces longer and greater twitch forces than if they
50 were activated asynchronously (Merton 1954). In practice, this phenomenon is evidenced in
51 strength-trained individuals, who display higher motor unit synchrony than untrained individuals
52 do (Semmler & Nordstrom 1998; Fling et al. 2009). Although beneficial for producing high
53 forces, synchronization has been shown to be detrimental to force steadiness (Yao et al. 2000).
54 Thus, understanding motor unit synchronization seems to be important for modeling
55 neuromuscular performance.
56

57 Over the last few decades, it has become much easier and cheaper to collect motor unit action
58 potentials with either intramuscular or decomposed surface electromyography. Researchers have
59 gone from examining synchronization in 2-3 motor units to 15+ in a single contraction (Schmied
60 & Descarreaux 2010; Defreitas et al. 2014). Unfortunately, while data collection technology has
61 improved and multiplied, so have the options for synchronization analysis. Reconciling results
62 from different types of analyses remains difficult. Concerning the cross-correlation analysis,
63 there are numerous ways in which to determine the size and location of peaks present in
64 histograms. Methodology is largely laboratory specific, with some groups using automated
65 methods like the z-score method or the cumulative sum method. Before automated methods were
66 developed, subjective, visual analysis was used. Within these methods, parameters such as the
67 number of orders of recurrence intervals used and histogram bin size are likely to vary as well.
68 Additionally, there are a number of indices available to characterize synchronization magnitude.
69 Common input strength (CIS) and k9 (<k prime=) are most often reported; however, the Synch
70 Index (SI) and others are available. The lack of standardization in respect to motor unit
71 synchronization hinders are ability to make definitive conclusions. Therefore, we have developed
72 the open-source toolbox <motoRneuron= in the statistical programming language R (henceforth
73 referred to as R) for the calculation of time-domain synchronization using various peak
74 determination methods. This toolbox provides a list of functions to calculate recurrence intervals,
75 create and plot cross-correlation histograms, and ultimately, calculate synchronization indices.
76

77 R has quickly risen in popularity recently because of its very active user/developer base that
78 rapidly iterates to improve the functionality of the language. Typically, programs that perform
79 synchronization analyses are handed down through laboratories using paid software like Matlab
80 and LabView. Meanwhile, R and our toolbox are freely available. Source code for all R

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

81 functions are available to the user. MotoRneuron was created as a free, open-source platform
82 with which users can perform all necessary functions to calculate synchronization, or alter to suit
83 their unique needs. With the numerous ways to calculate synchronization, this toolbox allows for
84 better standardization of techniques and for more comprehensive data mining in the motor
85 control community. The objective is to detail the functionality of the motoRneuron toolbox for
86 investigating motor unit time-domain synchronization.

87

88 Functionality and Application

89

90 R Programming Environment

91 MotoRneuron was developed in RStudio (v 1.1.453) using R (v 3.5.0) (R Development Core

92 Team 2015). It was configured on a Windows 10 computer (Enterprise V. 1703. Intel® Core #

93 2.80 GHz, x64-based processor). The toolbox is under the GNU General Public License version

94 3. This paper will discuss general methods used and applications for the motoRneuron toolbox.

95 For readers unfamiliar with the R language, sample motor unit data and R scripts with

96 instructions are provided in the Supplementary Material. In addition, packages will always

97 include help files for specific details about their functions. It is highly recommended to

98 download R and RStudio in order to follow along with the sample scripts provided. Briefly, R

99 uses command-line scripting to perform functions on data within the working environment.

100 Common data formats for R are vectors, matrices, lists, and data frames, which can be imported

101 into the working environment from any number of formats, including text or csv files.

102 MotoRneuron leverages many functions not included in base R which are automatically

103 incorporated by downloading the following add-on packages from Github or the Comprehensive

104 R Archive Network (CRAN): 8dplyr9, 8ggplot29, 8dygraphs9, 8magrittr9, and 8tseries9 (Milton-

105 Bache & Wickham 2014; Trapletti & Hornik 2018; Vanderkam et al. 2018; Wickham et al.

106 2018a; Wickham et al. 2018b).

107

108 To access motoRneuron through R and all the functions, sample data, and help files wherein, the

109 following functions are called in the console of RStudio. <install.packages= will automatically

110 download the package from CRAN. <library= will attach the packages items to your working

111 environment for use.

112

113 > install.packages("motoRneuron")

114 > library(motoRneuron)

115

116 Package Implementation

117 In general, there are three steps involved in calculating time-domain synchronization. First, the

118 cross-correlation histogram is created. Second, the size and location of the peak is determined.

119 Last, synchronization indices are calculated based on the size of the peak. The primary function

120 of motoRneuron is mu_synch, which completes all three steps based on the user9s inputs. The

121 function9s syntax and five formal arguments are:

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

122

123 mu_synch(motor_unit_1, motor_unit_2, method, order, binwidth, plot)

124

125 Motor_unit_1 and motor_unit_2 arguments are vectors of the discharge times of two motor unit

126 action potential trains. Included in motoRneuron is a real world data set that will be used to

127 reduce and analyze motor unit synchronization. The data set was selected from a previous study,

128 with informed consent and in accordance with the United States Army Research Laboratory

129 Institutional Review Board (approval number ARL 16-099), using fine wire electromyography

130 from the flexor digitorum superficialis during a 30-second isometric finger flexion task. The data

131 format is a data frame time series of two concurrently active motor units, named motor_unit_1

132 and motor_unit_2. Here we provide the code to read in the data and reduce into the constituent

133 motor units discharge times for further use in the package.

134

135 > Sample_data <- motoRneuron::motor_unit_data

136 > motor_unit_1 <- as.vector(subset(Sample_data, select = Time, motor_unit_1

137 == 1))

138 > motor_unit_2 <- as.vector(subset(Sample_data, select = Time, motor_unit_2

139 == 1))

140

141 Below is sample output from R for the two motor unit discharge vectors showing the first six

142 time points by calling the function head. For example, the first three discharge times for

143 motor_unit_1 are at 0.035, 0.115, and 0.183 seconds, while motor_unit_2 discharged at 0.1,

144 0.205, and 0.298 seconds.

145

146 > head(motor_unit_1)

147 ## [1] 0.035 0.115 0.183 0.250 0.306 0.377 ...

148 > head(motor_unit_2)

149 ## [1] 0.100 0.205 0.298 0.377 0.471 0.577 ...

150

151 The motor unit with fewer discharges is called the reference unit, while the other is referred to as

152 the event unit. This distinction is made automatically within the function and is output as a part

153 of the motor unit characteristics. Method indicates which method(s) of cross-correlation peak

154 determination is to be used, while order and binwidth specifies how many orders of recurrences

155 intervals to calculate and the size of the bins for the histogram, respectively. Some researchers

156 argue that only first order intervals should be used for analysis, as the presence of harmonics

157 within the cross-correlation may cause non-physiological peaks to appear in the long latency

158 portions of the histogram (De Luca et al. 1993). Therefore, the default argument of order is set at

159 1, indicating only first order intervals are to be used; however, the function is flexible enough to

160 handle any order input by the user. Additionally, the binwidth argument is set at a default of

161 0.001 sec or 1 ms. This allows for appropriate resolution in short-term synchronization

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

162 measurements. What is returned from this function is a list of individual motor unit characteristic

163 data along with a list of all synchronization indices (detailed below). Characteristics for each

164 motor unit included are the number of discharges, the mean interspike interval (ISI), all ISI9s,

165 and the intervals for each specified recurrence order. The plot argument takes a TRUE or FALSE

166 to indicate whether the resulting histogram will be displayed or not.

167

168 Peak Determination Methods Available

169 The three methods employed in this toolbox reflect the three broad classes of cross-correlation

170 histogram peak determination in the current motor unit synchronization literature. The methods

171 argument allows the user to choose how a peak in the histogram will be determined. More

172 specifically, this code automatically computes the boundary bins of the peak based on certain

173 criteria.

174

175 The visual method - The bins of the histogram are progressively summed across from -100 to

176 +100 ms and subsequently divided by the baseline mean count (considered as <= -60 and >= 60

177 ms) to produce a <normalized= cumulative sum graph. Large increases or decreases in bin counts

178 are seen as large deflections in the cumulative sum graph. The user is asked to identify the peak

179 as the beginning and end of this large deflection (Nordstrom et al. 1992). An example of this plot

180 is shown in Fig. 2A, with boundaries chosen by a user highlighted. Visual_mu_synch is the

181 function syntax to call this method separately.

182

183 The cumulative sum (cumsum) method 3 The bins of the histogram are progressively summed

184 across from -100 to +100 ms to produce a cumulative sum. Peak boundaries are determined as

185 the bins associated with 10 and 90% of the range (maximum - minimum) of this cumulative sum.

186 The peak is considered significant if it9s mean bin count exceeds the sum of the mean and 1.96

187 times the standard deviation of the baseline bins (considered as <= -60 and >= 60 ms). If no

188 significant peak is detected, a default peak is used as ±5 ms (Keen et al. 2012).

189 Cumsum_mu_synch is the function syntax to call this method separately.

190

191 The z-score method - First, a random uniform distribution is used to create a cross-correlation

192 based on parameters from the experimental data. This new, <shuffled= histogram depicts the

193 correlation of two motor unit trains that are completely independent (i.e. flat). It is used to

194 calculate a significance threshold (Equation A) to compare with the experimental data.

195

196 ý) ÿÿýÿÿÿÿýÿÿýÿ ÿ/ÿÿý/ýýý = ÿÿÿÿ ÿÿÿ ýýÿÿý + (1.96 7 ýýÿÿýÿÿý ýÿÿÿÿýÿýÿ ýÿ ÿÿÿ ýýÿÿý)
197

198 Any bins in the experimental histogram within ±10 ms of 0 that crosses this threshold are

199 considered to be significantly greater than expected due to chance and subsequently used for

200 analysis. If no peak is detected, synchronization indices of 0 are returned. Because the z-score

201 method tests each bin individually, peak bins are not necessarily adjacent (Defreitas et al. 2014).

202 Zscore_mu_synch is the function syntax to call this method separately.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

203

204 The following R scripts calls the mu_synch function to perform all three methods for first order

205 recurrence intervals with a bin size of 1 ms. Each individual method can also be called separately

206 with their respective functions.

207

208 > mu_synch(motor_unit_1, motor_unit_2, method = c("Visual", "Zscore",

209 "Cumsum"), order = 1, binwidth = 0.001, plot = FALSE)

210

211 Recurrence_intervals and bin are support functions used within the synchronization functions to

212 compute the recurrence intervals and discretize the data for the histogram, but they can also be

213 called separately for individual use. A plot_bins function is also available that will display the

214 associated histogram in the Plot window of RStudio (Fig. 3D). This is useful for visually

215 checking data for abnormalities prior to calculating synchronization. The code below creates an

216 R list named 8first_order_intervals9 that contains the motor unit characteristic data along with

217 the first order recurrence intervals.

218

219 > first_order_intervals <- recurrence_intervals(motor_unit_1, motor_unit_2,

220 order = 1)

221

222 To access just the intervals, we need to index them using the 8$9 operator. Below, we use the

223 head function again just to view the first six elements of the first order intervals.

224

225 > head(first_order_intervals$`1`)

226 ## [1] -0.065 0.015 -0.022 0.045 -0.048 0.008 ...

227

228 Now these intervals are input to the bin function, along with the user-defined bin width, to

229 discretize the intervals into bins for the detection peaks. A data frame 8binned_data9 is created

230 with the code using a bin width of 1 ms. The resulting data frame contains a column depicting

231 the bin, or the amount of time in second before (negative) or after (positive) the reference motor

232 unit discharge, and the frequency of occurrence at that interval. This data frame can be put

233 directly into the plot_bins function to display the histogram (such as in Fig. 3D).

234

235 > binned_data <- bin(first_order_intervals$`1`, binwidth = 0.001)

236 > head(binned_data)

237 ## Bin Freq

238 1 -0.101 1

239 2 -0.100 0

240 3 -0.099 0

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

241 4 -0.098 0

242 5 -0.097 0

243 6 -0.096 0

244 > plot_bins(binned_data)

245 Synchronization Indices

246 Once the boundaries of the peak are established, the synchronization indices are calculated. Six

247 indices that are commonly found throughout the literature are automatically returned (Nordstrom

248 et al. 1992; De Luca et al. 1993; Kamen & Roy 2000). The peak of the histogram can be

249 considered two different regions; the region of counts that are expected due to chance and the

250 region containing <extra= counts more than what is expected due to chance (Fig. 2B). These

251 extra counts are typically the number of counts in the peak bins over a certain threshold. In the

252 Z-score method, this is the significance threshold calculated from the shuffled histogram

253 (Defreitas et al. 2014). In the Visual method, the threshold is the baseline mean bin count

254 (Nordstrom et al. 1992). The total counts in peak consists of the summation of the regions.

255 Synchronization indices attempt to quantify the relationship between these different regions. The

256 larger the magnitude of the indices, the higher the chances that the motor units are firing in

257 synchronization. The CIS index is commonly used because it allows for normalization with

258 respect to trial duration. Nordstrom et al. developed the CIS because most other indices available

259 at that time were influenced by discharge rate (Nordstrom et al. 1992). The equations used to

260 calculate the various indices are below.

261

262 ÿýÿ =
ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýýÿÿÿýÿýÿ ýÿ ýÿÿÿý (ý)

263 ý'
=

ýýýÿý ýýÿÿýý ÿÿ ýÿÿýÿýýÿýýÿý ýýÿÿýý ÿÿ ýÿÿý
264 ý' 2 1 =

ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýÿýýÿýýÿý ýýÿÿýý ÿÿ ýÿÿý
265 ý =

ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýÿÿÿÿÿÿ ýÿ ýÿýý/ÿÿýÿý ÿÿýÿ ÿÿÿÿÿÿÿýÿ ÿýýýÿ ÿÿÿý
266 ÿ =

ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿý ýýýÿý ÿÿÿÿÿÿ ýÿ ýÿýý/ÿÿýÿý ÿÿýÿ ÿýý/ ÿýýýÿ ÿÿÿýý
267 ÿý = ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýýýýÿý ýýÿÿýý

2

268

269 Along with the synchronization indices listed above, also reported is the peak duration and peak

270 center. These refer to the width of the peak and the bin location of the center of the peak,

271 respectively, to help characterize the latency of synchronization. Below is some example R

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

272 output of the synchronization results of data obtained from the Cumulative Sum technique for

273 motor unit synchronization. Here we see the CIS between the example motor units is 2.16, which

274 indicates 2.16 synchronous discharges per second. The peak duration was 10 ms centered at bin

275 0.

276

277 $`Cumsum Indices`

278 $`Cumsum Indices`$CIS

279 [1] 2.163168

280 $`Cumsum Indices`$kprime

281 [1] 3.79096

282 $`Cumsum Indices`$kminus1

283 [1] 2.79096

284 $`Cumsum Indices`$E

285 [1] 0.2110322

286 $`Cumsum Indices`$S

287 [1] 0.08638251

288 $`Cumsum Indices`$SI

289 [1] 0.2117218

290 $`Cumsum Indices`$Peak.duration

291 [1] 0.01

292 $`Cumsum Indices`$Peak.center

293 [1] 0

294

295 An advantage to R, as alluded to before, is its robust statistical computing. Using the R

296 environment allows for direct access to many statistical packages. The <stats= package comes

297 included in base R so many statistical tests are immediately available for testing synchronization

298 metrics. This eliminates the need for transforming and importing data into 3rd party statistical

299 software, such as SAS and SPSS. Simple tests such as t-tests and ANOVAS are common, while

300 more complex, multi-level models are available.

301

302 Bugs or errors in software are common in open-source scripted codes like R. As this is the first

303 stable version of the motoRneuron package, it is possible that users will notice performance

304 issues or errors stemming from R version fragmentation or other sources. Users are urged to

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

305 email any errors or issues found in motoRneuron to the package maintainer (Andrew Tweedell

306 andrew.j.tweedell.civ@mail.mil). Errors that can be fixed will be updated in new versions of the

307 package as they are found. As such, it is important to update the package continually to

308 guarantee efficient performance.

309

310 Discussion

311 MotoRneuron is a free package containing a list of functions capable of performing many

312 different cross-correlation analyses for calculating many time-domain synchronization metrics

313 for use in the motor control field. This free, all-inclusive software package enables researchers to

314 easily examine the many options for calculating and reporting synchronization indices.

315 Additionally, new data can be quickly reconciled with results from previous studies for better

316 physiologic interpretation. MotoRneuron is written in the R programming language, which

317 provides an open-source platform to perform data and statistical analysis on motor unit data.

318 MotoRneuron9s simplistic function syntax and detailed output allow for easy comprehension.

319 The package also allows for the visualization of these analyses through R9s powerful and

320 flexibility graphics capabilities. In the future, the package will be expanded to include frequency-

321 domain characterization as well.

322

323 Citation

324 Researchers using motoRneuron in a published paper should cite this article and indicate the

325 used version of the package.

326

327 Acknowledgements

328 The authors would like to acknowledge Courtney Haynes for her work as technical reviewer for

329 the manuscript. The authors would also like to acknowledge the entire R community for

330 providing a free platform for the creation and distribution of this package to the greater scientific

331 community.

332

333 References

334 De Luca CJ, Roy AM, and Erim Z. 1993. Synchronization of motor-unit firings in several human
335 muscles. Journal of Neurophysiology 70:2010-2023.
336 Defreitas JM, Beck TW, Ye X, and Stock MS. 2014. Synchronization of low- and high-threshold
337 motor units. Muscle Nerve 49:575-583. 10.1002/mus.23978
338 Farina D, and Negro F. 2015. Common synaptic input to motor neurons, motor unit
339 synchronization, and force control. Exercise and Sport Sciences Reviews 43:23-33.
340 10.1249/JES.0000000000000032
341 Farmer SF, Halliday DM, Conway BA, Stephens JA, and Rosenberg JR. 1997. A review of
342 recent applications of cross-correlation methodologies to human motor unit recording.
343 Journal of Neuroscience Methods 74:175-187.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

344 Fling BW, Christie A, and Kamen G. 2009. Motor unit synchronization in FDI and biceps
345 brachii muscles of strength-trained males. Journal of Electromyography and Kinesiology
346 19:800-809. 10.1016/j.jelekin.2008.06.003
347 Kamen G, and Roy A. 2000. Motor unit synchronization in young and elderly adults. European

348 journal of applied physiology 81:403-410. 10.1007/s004210050061
349 Keen DA, Chou LW, Nordstrom MA, and Fuglevand AJ. 2012. Short-term synchrony in diverse
350 motor nuclei presumed to receive different extents of direct cortical input. Journal of

351 Neurophysiology 108:3264-3275. 10.1152/jn.01154.2011
352 Merton PA. 1954. Interaction between muscle fibres in a twitch. Journal of Physiology 124:311-
353 324.
354 Milton-Bache S, and Wickham H. 2014. magrittr: A Forward-Pipe Operator for R. 1.5 ed.
355 Nordstrom MA, Fuglevand AJ, and Enoka RM. 1992. Estimating the strength of common input
356 to human motoneurons from the cross-correlogram. Journal of Physiology 453:547-574.
357 R Development Core Team. 2015. R: A language and environment for statistical computing.
358 Vienna, Austria.: R Foundation for Statistical Computing. .
359 Schmied A, and Descarreaux M. 2010. Influence of contraction strength on single motor unit
360 synchronous activity. Clinical Neurophysiology 121:1624-1632.
361 10.1016/j.clinph.2010.02.165
362 Sears TA, and Stagg D. 1976. Short-term synchronization of intercostal motoneurone activity.
363 Journal of Physiology 263:357-381.
364 Semmler JG. 2002. Motor unit synchronization and neuromuscular performance. Exercise and

365 Sport Sciences Reviews 30:8-14.
366 Semmler JG, and Nordstrom MA. 1998. Motor unit discharge and force tremor in skill- and
367 strength-trained individuals. Experimental Brain Research 119:27-38.
368 Trapletti A, and Hornik K. 2018. tseries: Time Series Analysis and Computational Finance. 0.10-
369 45. ed.
370 Vanderkam D, Shevtsov P, Allaire J, Owen J, Gromer D, Thieurmel B, and Laukhuf K. 2018.
371 dygraphs: Interface to 'Dygraphs' Interactive Time Series Charting Library. 1.1.1.6 ed.
372 Wickham H, Chang W, Henry L, Lin Pedersen T, Takahashi K, Wilke C, and Woo K. 2018a.
373 ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics. 3.0.0 ed.
374 Wickham H, Francois R, Henry L, and Muller K. 2018b. dplyr: A Grammar of Data
375 Manipulation. 0.7.6 ed.
376 Yao W, Fuglevand RJ, and Enoka RM. 2000. Motor-unit synchronization increases EMG
377 amplitude and decreases force steadiness of simulated contractions. Journal of

378 Neurophysiology 83:441-452. 10.1152/jn.2000.83.1.441
379

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

Figure 1(on next page)

Recurrence Intervals Diagram

Schematic representation of the recurrence intervals between two concurrently active motor
units. Each discharge from one motor unit is used as a reference point to determine forward
and backward latencies to the discharges of the second motor unit. The ûrst order intervals
are the latencies to the ûrst forward and backward discharges (noted in red). The second
order are the second forward and backward discharges (noted in purple).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

Figure 2(on next page)

Cumulative Sum and Histogram

(A) Example of cumulative sum graph of bin counts. (B) Cross-correlation histogram rendered in RStudio
using the <ggplot= package. Peak boundaries (blue lines) were determined by visual analysis of the
cumulative sum graph, where a peak is seen as a large deûection near time 0. Synchronization indices are
calculated based on the relationship between the counts of the histogram expected due to chance (in red)
and the counts that are in excess of what is expected (in blue). In most cases, this threshold for
determination (red line) is the baseline mean count of the histogram.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

Figure 3(on next page)

RStudio Graphical User Interface

R integrated development environment RStudio9s graphical user interface. The interface is
made up of four panels: (A) R script panel, (B) Console, (C) Global Environment, (D) Plot
panel depicting an example cross-correlation histogram.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27578v1 | CC0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019

