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Motor unit synchronization is the tendency of motor neurons and their associated muscle
ûbers to discharge near-simultaneously. It has been theorized as a control mechanism for
force generation by common excitatory inputs to these motor neurons. Magnitude of
synchronization is calculated from peaks in cross-correlation histograms between motor
unit discharge trains. However, there are many diûerent methods for detecting these
peaks and even more indices for calculating synchronization from them. Methodology is
typically laboratory-speciûc and requires expensive software, like Matlab or LabView. This
lack of standardization makes it diûcult to draw deûnitive conclusions about motor unit
synchronization. To combat this, we have developed a freely available, open-source
toolbox, <motoRneuron=, for the R programming language. This toolbox contains functions
for calculating time domain synchronization using diûerent methods found in the
literature. Our objective is to detail the program9s functionality and provide a clear use-
case for implementation. The programs primary function <mu_synch= automatically
performs the cross-correlation analysis based on user input. Automated peak detection
methods such as the cumulative sum method and the z-score method, as well as
subjective, visual analysis are available. Users can also deûne other parameters like the
number of recurrence intervals to be used and histogram bin size. The function outputs six
common synchronization indices, the common input strength (CIS), k9, k9-1, E, S, and
Synch Index. This toolbox allows for better standardization of techniques and for more
comprehensive data mining in the motor control community.
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15 Abstract

16 Motor unit synchronization is the tendency of motor neurons and their associated muscle fibers 

17 to discharge near-simultaneously. It has been theorized as a control mechanism for force 

18 generation by common excitatory inputs to these motor neurons. Magnitude of synchronization 

19 is calculated from peaks in cross-correlation histograms between motor unit discharge trains. 

20 However, there are many different methods for detecting these peaks and even more indices for 

21 calculating synchronization from them. Methodology is typically laboratory-specific and requires 

22 expensive software, like Matlab or LabView. This lack of standardization makes it difficult to 

23 draw definitive conclusions about motor unit synchronization. To combat this, we have 

24 developed a freely available, open-source toolbox, <motoRneuron=, for the R programming 

25 language. This toolbox contains functions for calculating time domain synchronization using 

26 different methods found in the literature. Our objective is to detail the program9s functionality 

27 and provide a clear use-case for implementation. The programs primary function <mu_synch= 

28 automatically performs the cross-correlation analysis based on user input. Automated peak 

29 detection methods such as the cumulative sum method and the z-score method, as well as 

30 subjective, visual analysis are available. Users can also define other parameters like the number 

31 of recurrence intervals to be used and histogram bin size. The function outputs six common 

32 synchronization indices, the common input strength (CIS), k9, k9-1, E, S, and Synch Index. This 

33 toolbox allows for better standardization of techniques and for more comprehensive data mining 

34 in the motor control community.
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35 Introduction

36

37 Motor unit synchronization is the tendency of separate motor units (i.e. motor neurons and their 
38 associated muscle fibers) to discharge near-simultaneously (within 1 3 5 ms of each other) more 
39 often than would be expected by chance (Farmer et al. 1997; Semmler 2002). It is often 
40 interpreted as an indicator of functional connectivity between motor neurons through common 
41 excitatory post-synaptic potentials (Sears & Stagg 1976). Typically, cross-correlation analyses 
42 are employed, whereby the discharge times of one motor unit are correlated against those of 
43 another concurrently active motor unit (Fig. 1) and a histogram is created based on these 
44 recurrence intervals. Peaks in the histogram represent a higher probability of a discharge from 
45 the response motor unit around that latency of the reference motor unit discharge (seen in Fig. 
46 2B). Various indices are calculated from these peaks and their magnitude indicates the level of 
47 synchronization (for review see (Farmer et al. 1997; Semmler 2002; Farina & Negro 2015)). This 
48 time-domain synchronization appears to be a critical factor in force modulation. For example, 
49 synchronous activation of muscle fibers produces longer and greater twitch forces than if they 
50 were activated asynchronously (Merton 1954). In practice, this phenomenon is evidenced in 
51 strength-trained individuals, who display higher motor unit synchrony than untrained individuals 
52 do (Semmler & Nordstrom 1998; Fling et al. 2009). Although beneficial for producing high 
53 forces, synchronization has been shown to be detrimental to force steadiness (Yao et al. 2000). 
54 Thus, understanding motor unit synchronization seems to be important for modeling 
55 neuromuscular performance. 
56

57 Over the last few decades, it has become much easier and cheaper to collect motor unit action 
58 potentials with either intramuscular or decomposed surface electromyography. Researchers have 
59 gone from examining synchronization in 2-3 motor units to 15+ in a single contraction (Schmied 
60 & Descarreaux 2010; Defreitas et al. 2014). Unfortunately, while data collection technology has 
61 improved and multiplied, so have the options for synchronization analysis. Reconciling results 
62 from different types of analyses remains difficult. Concerning the cross-correlation analysis, 
63 there are numerous ways in which to determine the size and location of peaks present in 
64 histograms. Methodology is largely laboratory specific, with some groups using automated 
65 methods like the z-score method or the cumulative sum method. Before automated methods were 
66 developed, subjective, visual analysis was used. Within these methods, parameters such as the 
67 number of orders of recurrence intervals used and histogram bin size are likely to vary as well. 
68 Additionally, there are a number of indices available to characterize synchronization magnitude. 
69 Common input strength (CIS) and k9 (<k prime=) are most often reported; however, the Synch 
70 Index (SI) and others are available. The lack of standardization in respect to motor unit 
71 synchronization hinders are ability to make definitive conclusions. Therefore, we have developed 
72 the open-source toolbox <motoRneuron= in the statistical programming language R (henceforth 
73 referred to as R) for the calculation of time-domain synchronization using various peak 
74 determination methods. This toolbox provides a list of functions to calculate recurrence intervals, 
75 create and plot cross-correlation histograms, and ultimately, calculate synchronization indices.  
76

77 R has quickly risen in popularity recently because of its very active user/developer base that 
78 rapidly iterates to improve the functionality of the language. Typically, programs that perform 
79 synchronization analyses are handed down through laboratories using paid software like Matlab 
80 and LabView. Meanwhile, R and our toolbox are freely available. Source code for all R 
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81 functions are available to the user. MotoRneuron was created as a free, open-source platform 
82 with which users can perform all necessary functions to calculate synchronization, or alter to suit 
83 their unique needs. With the numerous ways to calculate synchronization, this toolbox allows for 
84 better standardization of techniques and for more comprehensive data mining in the motor 
85 control community. The objective is to detail the functionality of the motoRneuron toolbox for 
86 investigating motor unit time-domain synchronization. 

87

88 Functionality and Application

89

90 R Programming Environment

91 MotoRneuron was developed in RStudio (v 1.1.453) using R (v 3.5.0) (R Development Core 

92 Team 2015). It was configured on a Windows 10 computer (Enterprise V. 1703. Intel® Core # 

93 2.80 GHz, x64-based processor). The toolbox is under the GNU General Public License version 

94 3. This paper will discuss general methods used and applications for the motoRneuron toolbox. 

95 For readers unfamiliar with the R language, sample motor unit data and R scripts with 

96 instructions are provided in the Supplementary Material. In addition, packages will always 

97 include help files for specific details about their functions. It is highly recommended to 

98 download R and RStudio in order to follow along with the sample scripts provided. Briefly, R 

99 uses command-line scripting to perform functions on data within the working environment. 

100 Common data formats for R are vectors, matrices, lists, and data frames, which can be imported 

101 into the working environment from any number of formats, including text or csv files. 

102 MotoRneuron leverages many functions not included in base R which are automatically 

103 incorporated by downloading the following add-on packages from Github or the Comprehensive 

104 R Archive Network (CRAN):  8dplyr9, 8ggplot29, 8dygraphs9, 8magrittr9, and 8tseries9 (Milton-

105 Bache & Wickham 2014; Trapletti & Hornik 2018; Vanderkam et al. 2018; Wickham et al. 

106 2018a; Wickham et al. 2018b). 

107

108 To access motoRneuron through R and all the functions, sample data, and help files wherein, the 

109 following functions are called in the console of RStudio. <install.packages= will automatically 

110 download the package from CRAN. <library= will attach the packages items to your working 

111 environment for use. 

112

113 > install.packages("motoRneuron")

114 > library(motoRneuron)

115

116 Package Implementation

117 In general, there are three steps involved in calculating time-domain synchronization. First, the 

118 cross-correlation histogram is created. Second, the size and location of the peak is determined. 

119 Last, synchronization indices are calculated based on the size of the peak. The primary function 

120 of motoRneuron is mu_synch, which completes all three steps based on the user9s inputs. The 

121 function9s syntax and five formal arguments are:
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122

123 mu_synch(motor_unit_1, motor_unit_2, method, order, binwidth, plot)

124

125 Motor_unit_1 and motor_unit_2 arguments are vectors of the discharge times of two motor unit 

126 action potential trains. Included in motoRneuron is a real world data set that will be used to 

127 reduce and analyze motor unit synchronization. The data set was selected from a previous study, 

128 with informed consent and in accordance with the United States Army Research Laboratory 

129 Institutional Review Board (approval number ARL 16-099), using fine wire electromyography 

130 from the flexor digitorum superficialis during a 30-second isometric finger flexion task. The data 

131 format is a data frame time series of two concurrently active motor units, named motor_unit_1 

132 and motor_unit_2. Here we provide the code to read in the data and reduce into the constituent 

133 motor units discharge times for further use in the package.  

134

135 > Sample_data <- motoRneuron::motor_unit_data

136 > motor_unit_1 <- as.vector(subset(Sample_data, select = Time, motor_unit_1  

137 == 1))

138 > motor_unit_2 <- as.vector(subset(Sample_data, select = Time, motor_unit_2  

139 == 1))

140

141 Below is sample output from R for the two motor unit discharge vectors showing the first six 

142 time points by calling the function head. For example, the first three discharge times for 

143 motor_unit_1 are at 0.035, 0.115, and 0.183 seconds, while motor_unit_2 discharged at 0.1, 

144 0.205, and 0.298 seconds. 

145  

146 > head(motor_unit_1)

147 ##   [1]  0.035  0.115  0.183  0.250  0.306  0.377 ...  

148 > head(motor_unit_2)

149 ##   [1]  0.100  0.205  0.298  0.377  0.471  0.577 ...    

150

151 The motor unit with fewer discharges is called the reference unit, while the other is referred to as 

152 the event unit. This distinction is made automatically within the function and is output as a part 

153 of the motor unit characteristics. Method indicates which method(s) of cross-correlation peak 

154 determination is to be used, while order and binwidth specifies how many orders of recurrences 

155 intervals to calculate and the size of the bins for the histogram, respectively. Some researchers 

156 argue that only first order intervals should be used for analysis, as the presence of harmonics 

157 within the cross-correlation may cause non-physiological peaks to appear in the long latency 

158 portions of the histogram (De Luca et al. 1993). Therefore, the default argument of order is set at 

159 1, indicating only first order intervals are to be used; however, the function is flexible enough to 

160 handle any order input by the user. Additionally, the binwidth argument is set at a default of 

161 0.001 sec or 1 ms. This allows for appropriate resolution in short-term synchronization 
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162 measurements. What is returned from this function is a list of individual motor unit characteristic 

163 data along with a list of all synchronization indices (detailed below). Characteristics for each 

164 motor unit included are the number of discharges, the mean interspike interval (ISI), all ISI9s, 

165 and the intervals for each specified recurrence order. The plot argument takes a TRUE or FALSE 

166 to indicate whether the resulting histogram will be displayed or not. 

167  

168 Peak Determination Methods Available

169 The three methods employed in this toolbox reflect the three broad classes of cross-correlation 

170 histogram peak determination in the current motor unit synchronization literature. The methods 

171 argument allows the user to choose how a peak in the histogram will be determined. More 

172 specifically, this code automatically computes the boundary bins of the peak based on certain 

173 criteria. 

174

175 The visual method - The bins of the histogram are progressively summed across from -100 to 

176 +100 ms and subsequently divided by the baseline mean count (considered as <= -60 and >= 60 

177 ms) to produce a <normalized= cumulative sum graph. Large increases or decreases in bin counts 

178 are seen as large deflections in the cumulative sum graph. The user is asked to identify the peak 

179 as the beginning and end of this large deflection (Nordstrom et al. 1992). An example of this plot 

180 is shown in Fig. 2A, with boundaries chosen by a user highlighted. Visual_mu_synch is the 

181 function syntax to call this method separately. 

182

183 The cumulative sum (cumsum) method 3 The bins of the histogram are progressively summed 

184 across from -100 to +100 ms to produce a cumulative sum. Peak boundaries are determined as 

185 the bins associated with 10 and 90% of the range (maximum - minimum) of this cumulative sum. 

186 The peak is considered significant if it9s mean bin count exceeds the sum of the mean and 1.96 

187 times the standard deviation of the baseline bins (considered as <= -60 and >= 60 ms). If no 

188 significant peak is detected, a default peak is used as ±5 ms (Keen et al. 2012). 

189 Cumsum_mu_synch is the function syntax to call this method separately. 

190

191 The z-score method - First, a random uniform distribution is used to create a cross-correlation 

192 based on parameters from the experimental data. This new, <shuffled= histogram depicts the 

193 correlation of two motor unit trains that are completely independent (i.e. flat). It is used to 

194 calculate a significance threshold (Equation A) to compare with the experimental data. 

195

196 ý) ÿÿýÿÿÿÿýÿÿýÿ ÿ/ÿÿý/ýýý =  ÿÿÿÿ ÿÿÿ ýýÿÿý + (1.96 7 ýýÿÿýÿÿý ýÿÿÿÿýÿýÿ ýÿ ÿÿÿ ýýÿÿý) 
197

198 Any bins in the experimental histogram within ±10 ms of 0 that crosses this threshold are 

199 considered to be significantly greater than expected due to chance and subsequently used for 

200 analysis. If no peak is detected, synchronization indices of 0 are returned. Because the z-score 

201 method tests each bin individually, peak bins are not necessarily adjacent (Defreitas et al. 2014). 

202 Zscore_mu_synch is the function syntax to call this method separately. 
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203

204 The following R scripts calls the mu_synch function to perform all three methods for first order 

205 recurrence intervals with a bin size of 1 ms. Each individual method can also be called separately 

206 with their respective functions.

207

208 > mu_synch(motor_unit_1, motor_unit_2, method = c("Visual", "Zscore", 

209 "Cumsum"), order = 1, binwidth = 0.001, plot = FALSE)

210

211 Recurrence_intervals and bin are support functions used within the synchronization functions to 

212 compute the recurrence intervals and discretize the data for the histogram, but they can also be 

213 called separately for individual use. A plot_bins function is also available that will display the 

214 associated histogram in the Plot window of RStudio (Fig. 3D). This is useful for visually 

215 checking data for abnormalities prior to calculating synchronization. The code below creates an 

216 R list named 8first_order_intervals9 that contains the motor unit characteristic data along with 

217 the first order recurrence intervals.  

218

219 > first_order_intervals <- recurrence_intervals(motor_unit_1, motor_unit_2, 

220 order = 1) 

221

222 To access just the intervals, we need to index them using the 8$9 operator. Below, we use the 

223 head function again just to view the first six elements of the first order intervals. 

224

225 > head(first_order_intervals$`1`)

226 ## [1] -0.065 0.015 -0.022 0.045 -0.048 0.008 ...

227

228 Now these intervals are input to the bin function, along with the user-defined bin width, to 

229 discretize the intervals into bins for the detection peaks. A data frame 8binned_data9 is created 

230 with the code using a bin width of 1 ms. The resulting data frame contains a column depicting 

231 the bin, or the amount of time in second before (negative) or after (positive) the reference motor 

232 unit discharge, and the frequency of occurrence at that interval. This data frame can be put 

233 directly into the plot_bins function to display the histogram (such as in Fig. 3D).   

234   

235 > binned_data <- bin(first_order_intervals$`1`, binwidth = 0.001)

236 > head(binned_data)

237 ##  Bin Freq

238 1 -0.101    1

239 2 -0.100    0

240 3 -0.099    0
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241 4 -0.098    0

242 5 -0.097    0

243 6 -0.096    0

244 > plot_bins(binned_data)

245 Synchronization Indices

246 Once the boundaries of the peak are established, the synchronization indices are calculated. Six 

247 indices that are commonly found throughout the literature are automatically returned (Nordstrom 

248 et al. 1992; De Luca et al. 1993; Kamen & Roy 2000). The peak of the histogram can be 

249 considered two different regions; the region of counts that are expected due to chance and the 

250 region containing <extra= counts more than what is expected due to chance (Fig. 2B). These 

251 extra counts are typically the number of counts in the peak bins over a certain threshold. In the 

252 Z-score method, this is the significance threshold calculated from the shuffled histogram 

253 (Defreitas et al. 2014). In the Visual method, the threshold is the baseline mean bin count 

254 (Nordstrom et al. 1992). The total counts in peak consists of the summation of the regions. 

255 Synchronization indices attempt to quantify the relationship between these different regions. The 

256 larger the magnitude of the indices, the higher the chances that the motor units are firing in 

257 synchronization. The CIS index is commonly used because it allows for normalization with 

258 respect to trial duration. Nordstrom et al. developed the CIS because most other indices available 

259 at that time were influenced by discharge rate (Nordstrom et al. 1992). The equations used to 

260 calculate the various indices are below. 

261

262 ÿýÿ =
ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýýÿÿÿýÿýÿ ýÿ ýÿÿÿý (ý)

263 ý'
=

ýýýÿý ýýÿÿýý ÿÿ ýÿÿýÿýýÿýýÿý ýýÿÿýý ÿÿ ýÿÿý
264 ý' 2 1 =

ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýÿýýÿýýÿý ýýÿÿýý ÿÿ ýÿÿý
265 ý =

ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýÿÿÿÿÿÿ ýÿ ýÿýý/ÿÿýÿý ÿÿýÿ ÿÿÿÿÿÿÿýÿ ÿýýýÿ ÿÿÿý
266 ÿ =

ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿý ýýýÿý ÿÿÿÿÿÿ ýÿ ýÿýý/ÿÿýÿý ÿÿýÿ ÿýý/ ÿýýýÿ ÿÿÿýý
267 ÿý = ÿýýÿÿ ýýÿÿýý ÿÿ ýÿÿýýýýÿý ýýÿÿýý 

2

268

269 Along with the synchronization indices listed above, also reported is the peak duration and peak 

270 center. These refer to the width of the peak and the bin location of the center of the peak, 

271 respectively, to help characterize the latency of synchronization. Below is some example R 
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272 output of the synchronization results of data obtained from the Cumulative Sum technique for 

273 motor unit synchronization. Here we see the CIS between the example motor units is 2.16, which 

274 indicates 2.16 synchronous discharges per second. The peak duration was 10 ms centered at bin 

275 0. 

276

277 $`Cumsum Indices`

278 $`Cumsum Indices`$CIS

279 [1] 2.163168

280 $`Cumsum Indices`$kprime

281 [1] 3.79096

282 $`Cumsum Indices`$kminus1

283 [1] 2.79096

284 $`Cumsum Indices`$E

285 [1] 0.2110322

286 $`Cumsum Indices`$S

287 [1] 0.08638251

288 $`Cumsum Indices`$SI

289 [1] 0.2117218

290 $`Cumsum Indices`$Peak.duration

291 [1] 0.01

292 $`Cumsum Indices`$Peak.center

293 [1] 0

294

295 An advantage to R, as alluded to before, is its robust statistical computing. Using the R 

296 environment allows for direct access to many statistical packages. The <stats= package comes 

297 included in base R so many statistical tests are immediately available for testing synchronization 

298 metrics. This eliminates the need for transforming and importing data into 3rd party statistical 

299 software, such as SAS and SPSS. Simple tests such as t-tests and ANOVAS are common, while 

300 more complex, multi-level models are available. 

301

302 Bugs or errors in software are common in open-source scripted codes like R. As this is the first 

303 stable version of the motoRneuron package, it is possible that users will notice performance 

304 issues or errors stemming from R version fragmentation or other sources. Users are urged to 
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305 email any errors or issues found in motoRneuron to the package maintainer (Andrew Tweedell 

306 andrew.j.tweedell.civ@mail.mil). Errors that can be fixed will be updated in new versions of the 

307 package as they are found. As such, it is important to update the package continually to 

308 guarantee efficient performance.

309

310 Discussion

311 MotoRneuron is a free package containing a list of functions capable of performing many 

312 different cross-correlation analyses for calculating many time-domain synchronization metrics 

313 for use in the motor control field. This free, all-inclusive software package enables researchers to 

314 easily examine the many options for calculating and reporting synchronization indices.  

315 Additionally, new data can be quickly reconciled with results from previous studies for better 

316 physiologic interpretation. MotoRneuron is written in the R programming language, which 

317 provides an open-source platform to perform data and statistical analysis on motor unit data. 

318 MotoRneuron9s simplistic function syntax and detailed output allow for easy comprehension. 

319 The package also allows for the visualization of these analyses through R9s powerful and 

320 flexibility graphics capabilities. In the future, the package will be expanded to include frequency-

321 domain characterization as well.

322

323 Citation

324 Researchers using motoRneuron in a published paper should cite this article and indicate the 

325 used version of the package.
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Figure 1(on next page)

Recurrence Intervals Diagram

Schematic representation of the recurrence intervals between two concurrently active motor
units. Each discharge from one motor unit is used as a reference point to determine forward
and backward latencies to the discharges of the second motor unit. The ûrst order intervals
are the latencies to the ûrst forward and backward discharges (noted in red). The second
order are the second forward and backward discharges (noted in purple).
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Figure 2(on next page)

Cumulative Sum and Histogram

(A) Example of cumulative sum graph of bin counts. (B) Cross-correlation histogram rendered in RStudio
using the <ggplot= package. Peak boundaries (blue lines) were determined by visual analysis of the
cumulative sum graph, where a peak is seen as a large deûection near time 0. Synchronization indices are
calculated based on the relationship between the counts of the histogram expected due to chance (in red)
and the counts that are in excess of what is expected (in blue). In most cases, this threshold for
determination (red line) is the baseline mean count of the histogram.
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Figure 3(on next page)

RStudio Graphical User Interface

R integrated development environment RStudio9s graphical user interface. The interface is
made up of four panels: (A) R script panel, (B) Console, (C) Global Environment, (D) Plot
panel depicting an example cross-correlation histogram.
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