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six months, we find that the structures of individuals’ cognitive abilities vary among each
other, and deviate greatly from the modal between-person structure. Working memory
contributes the largest share of common variance to both between- and within-person
structures, but the g factor is much less prominent within than between persons. We
conclude that between-person structures of cognitive abilities cannot serve as a surrogate
for within-person structures. To reveal the development and organization of human
intelligence, individuals need to be studied over time.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27576v1 | CC BY 4.0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019



1

2 Within-person structures of daily cognitive 

3 performance cannot be inferred from between-person 

4 structures of cognitive abilities
5

6

7 Florian Schmiedek1,2, Martin Lövdén1,3, Timo von Oertzen1,4, Ulman Lindenberger1,5,6

8

9 1 Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, 

10 Germany

11 2 DIPF | Leibniz Institute for Research and Information in Education, Frankfurt am Main, 

12 Germany

13 3 Aging Research Center, Karolinska Institutet, Stockholm, Sweden

14 4 Department of Psychology, Universität der Bundeswehr, München, Germany

15 5 European University Institute, San Domenico di Fiesole, Italy

16 6 Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany

17  

18 Corresponding Author:

19 Florian Schmiedek1,2

20 DIPF | Leibniz Institute for Research and Information in Education, Rostocker Straße 6, 60323 

21 Frankfurt am Main, Germany

22 Email address: schmiedek@dipf.de

23

24 Abstract

25 Over a century of research on between-person differences has resulted in the consensus that 

26 human cognitive abilities are hierarchically organized, with a general factor, termed general 

27 intelligence or “g,” uppermost. Surprisingly, it is unknown whether this body of evidence is 

28 informative about how cognition is structured within individuals. Using data from 101 young 

29 adults performing nine cognitive tasks on 100 occasions distributed over six months, we find that 

30 the structures of individuals’ cognitive abilities vary among each other, and deviate greatly from 

31 the modal between-person structure. Working memory contributes the largest share of common 

32 variance to both between- and within-person structures, but the g factor is much less prominent 

33 within than between persons. We conclude that between-person structures of cognitive abilities 

34 cannot serve as a surrogate for within-person structures. To reveal the development and 

35 organization of human intelligence, individuals need to be studied over time.
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38 The quantitative measurement of intelligence is one of the greatest accomplishments in the 

39 behavioral sciences (Nisbett et al., 2012). A century or more of research has resulted in a 

40 consensual view that human cognitive abilities are hierarchically organized (Carroll, 1993). At 

41 the bottom of the hierarchy, numerous specific abilities, such as numerical reasoning or verbal 

42 fluency, can be identified. Differences between individuals in specific abilities form broader 

43 abilities like reasoning or episodic memory, which again show substantial positive correlations 

44 with one another. This pattern has led researchers to postulate the concept of a general cognitive 

45 ability, or “g,” at the top of the hierarchy (Jensen, 1998; Spearman, 1927). Often equated with 

46 the term “intelligence,” the g factor is a dominant predictor of between-person differences in 

47 real-life outcomes such as educational success, vocational achievement, health, and mortality 

48 (Batty, Deary, & Gottfredson, 2007; Deary et al., 2007; Gottfredson & Deary, 2004; Schmidt & 

49 Hunter, 1998; Strenze, 2007).

50 Virtually all of the evidence on the hierarchical structure of human intelligence is based on 

51 associations among between-person differences in performance on batteries of cognitive tasks. A 

52 large body of research shows that both genetic and epigenetic differences (e.g., reflecting birth 

53 weight, nutrition, formal schooling, etc.) contribute to the hierarchical organization of these 

54 between-person differences (Deary, 2001). However, it is likely that many factors contributing to 

55 differences between individuals vary less, or differently, within individuals. One example are 

56 allelic variations of the genome, which are present between but not within individuals. 

57 Conversely, the factors that contribute to variations within persons over time may contribute 

58 little to average between-person differences. The effects of weather conditions on cognitive 

59 performance may be an example—at least for people living in the same place. Besides these 

60 pronounced examples, there is a host of factors that may influence both, differences between 

61 persons as well as variation within persons over time. For example, people differ from each other 

62 in their average level of motivation and they vary in their momentary levels of motivation over 

63 time (Brose et al., 2010). These different factors may potentially influence all tasks (contributing 

64 to the g factor), only tasks of one or more of the broader or narrower abilities (contributing to the 

65 variance of the corresponding ability factors), or only single tasks (contributing to the variance of 

66 just the corresponding task), and they might do so to different degrees at the different levels of 

67 analysis. Furthermore, the different factors that are operating might be correlated to different 

68 degrees across persons and/or across time. It can therefore be expected that corresponding 

69 correlation structures at the between-person and the within-person level could only be found 

70 after accounting for all the factors that differentially affect the different levels (Voelkle et al., 

71 2014).

72 Without taking into account these factors, many of which are probably unknown or 

73 unobservable, there is no strong theoretical reason to expect a close correspondence between 

74 within-person and between-person structures of cognitive abilities (Molenaar, Huizenga, & 

75 Nesselroade, 2003). As an illustration, imagine that episodic memory and working memory 

76 correlate r = .70 when assessed in 100 different individuals at a single occasion. Further consider 

77 that each of these 100 individuals is assessed on 100 different days on the same two sets of 
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78 measures, and correlations are computed for each individual separately across the 100 days. How 

79 much do within-person correlations of these 100 individuals differ from each other? Will an 

80 observed between-person correlation of r = .70 fall within or outside the distributional range of 

81 the 100 within-person correlations? These questions await empirical testing. Nevertheless, in 

82 psychology and cognitive neuroscience, the structure of between-person variation is often treated 

83 as a proxy or surrogate for the organization of intelligent behavior at the individual level. Such 

84 research practice has become subject to challenge on theoretical grounds, necessitating a need for 

85 a formal comparison of between-person and within-person structures of psychological constructs 

86 directly (Borsboom, Mellenbergh, & van Heerden, 2003; Kievit et al., 2013; Lautrey, 2003; 

87 Molenaar, 2004). However, no comprehensive investigation of the correspondence between 

88 within- and between-person structures of cognitive abilities has been reported thus far.

89 To address this question, we conducted the COGITO study, in which 101 adults aged 20 to 31 

90 years worked on a battery of twelve cognitive tasks on over 100 daily occasions. In an earlier 

91 report, we demonstrated the presence of reliable day-to-day fluctuations in cognitive 

92 performance within individuals (Schmiedek, Lövdén, & Lindenberger, 2013; for similar results, 

93 see Rabbitt, Osman, Moore, & Stollery, 2001). Here we determine the degree of similarity 

94 between within-person and between-person structures of cognitive abilities using the Kullback-

95 Leibler (KL) divergence (Kullback & Leibler, 1951). Specifically, we investigate whether 

96 correlation structures based on between-person differences are similar to within-person structures 

97 based on repeated daily assessments. The KL divergence is an appropriate metric for this 

98 question because it provides a symmetrical measure of how much information (measured in nats 

99 = 1.44 bits) is lost when one statistical distribution (i.e., a between-person correlation matrix) is 

100 used to describe another distribution (i.e., a within-person correlation matrix; see below for 

101 further information).

102

103 Materials & Methods

104 Participants and Procedure

105 During the daily assessment phase of the COGITO Study, 101 younger adults (51.5% women, 

106 age: 20–31 years, M = 25.6, SD = 2.7) completed an average of 101 practice sessions. The 

107 sample was quite representative regarding general cognitive functioning, as indicated by 

108 comparisons of Digit-Symbol performance with data from a meta-analysis (Schmiedek, Lövdén, 

109 & Lindenberger, 2010). The attrition rate for those participants who had entered the longitudinal 

110 practice phase was low (for details on dropout rates and reasons for dropout in the different study 

111 phases, see Schmiedek et al., 2010).

112 Participants practiced individually in lab rooms containing up to six computer testing places. 

113 They could come to the lab and do testing sessions on up to six days per week (Mondays to 

114 Saturdays). On average, it took participants 197 days to complete the 100 sessions. Before and 

115 after this longitudinal phase, participants completed pre- and posttests in ten sessions that 

116 consisted of 2–2.5 h of comprehensive cognitive test batteries and self-report questionnaires. 

117 Participants were paid between 1450 and 1950 Euros, depending on the number and temporal 
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118 density of completed sessions. The ethical review board of the Max Planck Institute for Human 

119 Development, Berlin, approved the study. All research was performed in accordance with 

120 relevant guidelines. Informed written consent was obtained from all participants. 

121 Tasks

122 In each practice session, participants practiced twelve different tasks drawn from a facet structure 

123 cross-classifying cognitive abilities (perceptual speed, episodic memory, and working memory) 

124 and content material (verbal, numerical, figural-spatial) with two to eight blocks of trials each 

125 (for information on all practiced tasks, see Schmiedek, Lövdén, & Lindenberger, 2010). Three of 

126 a total of six tasks of perceptual speed were choice reaction tasks that were included to measure 

127 basic aspects of information processing. They were not considered in the current analyses. Here, 

128 we used three comparison tasks of perceptual speed that are more typical for cognitive test 

129 batteries applied in research on the structure of intelligence (see below for information on tasks 

130 applied here). 

131 For the episodic and working memory tasks, presentation time (PT) was adjusted individually 

132 based on pretest performance. For each task and each individual, mean accuracies for the 

133 different PT conditions at pretest were fitted with exponential time-accuracy functions (including 

134 freely estimated parameters for onset, rate, and asymptote as well as a lower asymptote 

135 parameter fixed to different values for each task, e.g., 0.10 for memory updating). The fitted 

136 values from these functions were used to choose PTs that are clearly above random guessing but 

137 below some upper level. The upper level was defined by the midpoint between the lower 

138 asymptote level and perfect accuracy [e.g., (0.10 + 1.0)/2 = 0.55 for Memory Updating; see 

139 below], while the minimum level was defined by the midpoint between the lower asymptote 

140 level and the upper level [e.g., (0.10 + 0.55)/2 = 0.325 for Memory Updating]. The PT was then 

141 chosen such that the predicted performance level based on the time-accuracy function was above 

142 the minimum level and below the upper level. If performance was above the upper level for the 

143 second-fastest PT, the fastest PT was chosen even if predicted accuracy was below the minimum 

144 level for the fastest PT. The lower asymptote level was set to 0.10 for Memory Updating, to 0.50 

145 for the 3-Back, and to 0.00 for the episodic memory tasks. For the Alpha Span task, we deviated 

146 from the described procedure and chose 0.00 as the lower asymptote, 0.40 as the minimum level, 

147 and 0.60 as the upper level on the basis of empirically observed time-accuracy functions. 

148 Perceptual speed: Comparison tasks. In the numerical, verbal, and figural versions of the 

149 comparison task, either two strings of five numbers or digits each, or two colored three-

150 dimensional objects consisting of several connected parts (“fribbles”) appeared on the left and 

151 right of the screen. Participants had to decide as quickly as possible whether both stimuli were 

152 exactly the same or different. If different, the strings differed only by one number or letter and 

153 the objects differed only by one part. Number strings were randomly assembled using digits 1 to 

154 9. Letters were lower case and randomly assembled from all consonants in the alphabet, thus 

155 ensuring that they could not actually form real words. In each session, two blocks of 40 items 

156 were included with equal numbers of same and different stimuli. Images of fribbles used in this 

157 task are courtesy of Michael J. Tarr, Brown University, http://www.tarrlab.org/.
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158 All three comparison tasks were scored by dividing the number of correct responses by the total 

159 response time (in seconds) and multiplying this quotient by 60 (i.e., creating a score of correct 

160 responses per minute). To reduce the influence of outliers, scores above 100 were set to missing 

161 (0.5% of the observed data).

162 Episodic memory tasks.

163  Verbal episodic memory: Word Lists. Lists of 36 nouns were presented sequentially with 

164 PTs of 1000, 2000, or 4000 ms, and an interstimulus interval (ISI) of 1000 ms. Word lists 

165 were assembled so as to balance word frequency, word length, emotional valence, and 

166 imageability across lists. After presentation, words had to be recalled in the correct order 

167 by entering the first three letters of each word using the keyboard. Two blocks were 

168 included in each daily session. The performance measure was based on the percentage of 

169 correctly recalled words multiplied by a score ranging from 0 to 1, which represented the 

170 correctness of the order (based on a linearly rescaled tau rank correlation). The resulting 

171 scores were logit-transformed before entering the analyses.

172  Numerical episodic memory: Number-Noun Pairs. Lists of 12 two-digit numbers and 

173 nouns in plural case pairs were presented sequentially with PTs of 1000, 2000, or 4000 

174 ms; and an ISI of 1000 ms. After presentation, all numbers had to be entered based on 

175 random noun prompts. Two blocks were included in each daily session. The performance 

176 measure used in the analyses was the logit-transformed percentage of number of correctly 

177 recalled numbers. 

178  Figural-spatial episodic memory: Object Position Memory. Sequences of 12 coloured 

179 photographs of real-world objects were displayed at different locations in a six-by-six 

180 grid with PTs of 1000, 2000, or 4000 ms, and an ISI of 1000 ms. After presentation, 

181 objects appeared at the bottom of the screen and had to be moved to the correct locations 

182 in the correct order by clicking on objects and locations with the computer mouse. Two 

183 blocks were included in each daily session. The performance measure was the percentage 

184 of items placed in the correct locations multiplied by a score ranging from 0 to 1, which 

185 represented the correctness of the order (based on a linearly rescaled tau rank 

186 correlation). The resulting scores were logit-transformed before entering the analyses.

187 Working memory tasks.

188  Verbal working memory: Alpha Span. Ten upper-case consonants were presented 

189 sequentially together with a number located below the letter. For each letter, participants 

190 had to decide as quickly as possible whether the number corresponded to the alphabetic 

191 position of the current letter within the set of letters presented up to this step. Five of the 

192 ten items were targets. If position numbers were incorrect (non-targets), they differed 

193 from the correct position by +/- one. PTs were 750, 1500, or 3000 ms, and the ISI was 

194 500 ms. Eight blocks were included in each daily session. The performance measure used 

195 in the analyses was based on the percentages of correct responses. Scores were averaged 

196 across odd and even blocks and logit-transformed.
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197  Numerical working memory: Memory Updating. Participants had to memorize and 

198 update four one-digit numbers. In each of four horizontally placed cells, one of four 

199 single digits (from 0 to 9) was presented simultaneously for 4000 ms. After an ISI of 500 

200 ms, a sequence of eight “updating” operations were presented in a second row of four 

201 cells below the first one. The updating operations were subtractions and additions from -8 

202 to +8. The updating operations had to be applied to the digits memorized from the 

203 corresponding cells above and the new results then also had to be memorized. Each 

204 updating operation was applied to a cell different from the preceding one, so that no two 

205 updating operations had to be applied to one cell in sequence. PTs were 500, 1250, or 

206 2750 ms, and the ISI was 250 ms. The final result for each of the four cells had to be 

207 entered at the end of each trial. Eight blocks were included in each daily session. The 

208 performance measure used in the analyses was based on the percentages of correct 

209 responses. Scores were averaged across odd and even blocks and logit-transformed.

210  Spatial working memory: 3-Back. A sequence of 39 black dots appeared at varying 

211 locations in a four-by-four grid. For each dot, participants had to determine whether it 

212 was in the same position as the dot three steps earlier in the sequence or not. Dots 

213 appeared at random locations with the constraints that (a) 12 items were targets, (b) dots 

214 did not appear in the same location at consecutive steps, (c) exactly three items each were 

215 2-, 4-, 5-, or 6-back lures, that is, items that appeared in the same position as they had 2, 

216 4, 5, or 6 steps earlier. The presentation rate for the dots was individually adjusted by 

217 varying ISIs (500, 1500, or 2500 ms). PT was fixed at 500 ms. Four blocks were included 

218 in each daily session. The performance measure used in the analyses was based on the 

219 percentages of correct responses on trials 4-39. Scores were averaged across odd and 

220 even blocks and logit-transformed.

221 Validity of the tasks. To evaluate the validity of our tasks for the assessment of cognitive 

222 abilities, we made use of an established paper-and-pencil intelligence test battery, the Berlin 

223 Intelligence Structure (BIS) Test (Jäger, Süß, & Beauducel, 1997), which included the cognitive 

224 ability factors of perceptual speed, episodic memory, and reasoning (used here as the criterion 

225 ability for working memory). 

226 For the perceptual speed tasks, the latent correlation with BIS factor at pretest was .58, while the 

227 correlations with reasoning and episodic memory in the BIS were .25. At posttest, the correlation 

228 with perceptual speed in the BIS significantly decreased to .28, whereas the correlations to 

229 reasoning and episodic memory did not differ significantly (Table 1). For the working memory 

230 tasks, the latent correlations with reasoning ranged from .82 to .96 at pretest (for the different 

231 presentation times), and decreased to .50–.68 at posttest, with differences being significant for 

232 the two slower presentation time conditions. The correlations with perceptual speed and episodic 

233 memory in the BIS did not differ significantly between pretest and posttest (Table 2). For our 

234 EM tasks at pretest, the latent correlations with the BIS episodic memory factor ranged from .76 

235 to .82 and were lower for reasoning (.51–.54) and for perceptual speed (.51–.52). At posttest, 

236 none of the correlations differed significantly from the correlations at pretest (Table 3). In sum, 
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237 in line with early suggestions (Hofland, Willis, & Baltes, 1981; Labouvie et al., 1973), there 

238 were some indications that perceptual speed and working memory lost some of their criterion 

239 validity, when taking paper-and-pencil based assessments as reference. Because of this, we 

240 included the posttest scores into the comparisons of between-person and within-person 

241 structures.

242 Data Analysis

243 De-trending. All analyses were carried out with raw data and de-trended data. The de-trended 

244 data were computed by first smoothing every within-person time series using a Gaussian filter 

245 with a standard deviation of three sessions. Afterwards, the smoothed time series was subtracted 

246 from the raw time series to obtain the de-trended time series. The algorithm used is part of the 

247 Onyx SEM software system backend (von Oertzen, Brandmaier, & Tsang, 2015).

248 Kullback-Leibler divergences. Distances between correlation structures were computed as the 

249 symmetrical KL divergence (Kullback & Leibler, 1951). The KL divergence of two distributions 

250 A and B is the number of information units lost when describing a random variable by A if it 

251 really follows B. The symmetrical KL divergence is the sum of the distance from A to B and the 

252 distance from B to A. For normal distributions with covariance matrices 1 and 2 of K variables, 

253 the symmetrical KL is given by 

254 symKL (1, 2) = 2K + Tr(12
-1+21

-1)

255 Statistical testing with KL divergences. To establish that the differences of the within-person 

256 correlation matrices from each other and from the between-person centroid are significant, a null 

257 distribution was sampled, and the actual divergences were compared to this distribution. We 

258 simulated the same data structure as that of the actual data, namely, 101 data lines with nine 

259 tasks, under the null hypothesis that the underlying correlation matrix is the same for all 

260 participants, that is, either the within-person centroid or the between-person centroid. The 

261 average symmetrical KL divergence in the simulated data was computed for each of 10,000 

262 trials, either the KL divergence of all within-person pairs or the distance from each within-person 

263 pair to the between-person centroid, respectively. The actual average symmetrical KL divergence 

264 was then compared to this distribution. If, for example, the actual average symmetrical KL 

265 divergence is within the highest 5% of the simulated trials, this indicates a significant rejection of 

266 the null hypothesis with α = 5%. 

267 Multidimensional scaling (MDS). To illustrate the distance between within-person and 

268 between-person correlation matrices, KL divergences were embedded in a lower-dimensional 

269 space that preserves the maximal precision of the pairwise differences using MDS (Torgerson, 

270 1958). MDS finds a vector of coordinates for every correlation matrix such that the Euclidean 

271 distances between pairs of vectors are closest to the KL distances of the correlation matrices. A 

272 property of MDS is that a solution for fewer dimensions is a projection from the solutions for 

273 more dimensions, that is, the coordinates of the first dimensions are always the same for any 

274 number of dimensions in the MDS. A plot of the first two coordinates is read as an illustration of 

275 the distances of the covariance matrices. The MDS was computed using an algorithm that is part 

276 of the Onyx SEM software system backend (von Oertzen et al., 2015).
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277 Hierarchical factor models of centroid correlation matrices. Centroid correlation matrices 

278 based on the between-person and the raw or de-trended within-person data were calculated as the 

279 component-wise average of all correlation matrices. These correlation matrices were then 

280 submitted to confirmatory factor models (using SAS PROC CALIS) imposing a hierarchical 

281 structure, with tasks loading on three ability factors (i.e., perceptual speed, working memory, and 

282 episodic memory) that loaded on a general factor (thereby forming a saturated second-order 

283 factor sub-model). For the between-person correlation matrix, this resulted in very good model 

284 fit (2[24] = 20.77, p = .998; Root Mean Squared Error of Approximation (RMSEA) = .00; CFI) 

285 = 1.00; Standardized Root Mean Squared Residual (SRMR) = .06). Standardized factor loadings 

286 ranged from .60 to 1.00 for the perceptual speed tasks’, from .52 to .84 for the episodic memory 

287 tasks’, and from .46 to .50 for the working memory tasks’ loading on the respective ability 

288 factors. The ability factors’ loadings on the general factor were .27 for perceptual speed, .54 for 

289 episodic memory, and 1.00 for working memory. 

290 For the centroid within-person correlation matrix of raw data, model fit was also very good 

291 (2[24] = 9.03, p = 1.00; RMSEA = .00; CFI = 1.00; SRMR = .04). However, as the number of 

292 independent observations for the average within-person correlation matrix is unknown due to 

293 possible autocorrelations of the repeated assessments, the fit indices based on 2 (RMSEA and 

294 CFI) for this, and the analysis of de-trended data below, need to be interpreted with caution. 

295 Standardized factor loadings ranged from .71 to .78 for the perceptual speed tasks, from .46 to 

296 .53 for the episodic memory tasks, and from .54 to .65 for the working memory tasks loading on 

297 the respective ability factors. The ability factors’ loadings on the general factor were .55 for 

298 perceptual speed, .71 for episodic memory, and 1.00 for working memory. 

299 For the centroid within-person correlation matrix of raw data, model fit was again very good 

300 (2[24] = .90, p = 1.00; RMSEA = .00; CFI = 1.00; SRMR = .02). Standardized factor loadings 

301 ranged from .44 to .63 for the perceptual speed tasks’, from .31 to .46 for the episodic memory 

302 tasks’, and from .16 to .44 for the working memory tasks’ loading on the respective ability 

303 factors. The ability factors’ loadings on the general factor were -.06 for perceptual speed, .82 for 

304 episodic memory, and 1.00 for working memory. In other words, while there were only very 

305 small amounts of shared variance among the working memory tasks, the common variance was 

306 strongly shared with the episodic memory tasks once variance due to longer-term trends was 

307 taken out.

308

309 Results

310 For the present analyses, we used nine cognitive tasks that are (a) suitable for intensively 

311 repeated assessments and (b) representative of broad ability factors in established hierarchical 

312 models of intelligence. Specifically, the tasks represent perceptual speed with comparison tasks, 

313 episodic memory with different recall tasks, and different working memory paradigms. The latter 

314 were chosen because of the close relation of working memory to the important factor of fluid 

315 intelligence/reasoning in our study (Schmiedek, Lövdén, & Lindenberger, 2014) and in the 

316 literature (Conway, Kane, & Engle, 2003; Duncan, 2013; Kyllonen & Christal, 1990; Wilhelm, 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27576v1 | CC BY 4.0 Open Access | rec: 11 Mar 2019, publ: 11 Mar 2019



317 Hildebrandt, & Oberauer, 2013), and the fact that they are much better suited for repeated 

318 assessment across 100 occasions than typical reasoning tasks. Latent factor correlations with 

319 ability factors from an established paper-and-pencil test of intelligence showed that the ability 

320 factors of the practiced tasks show patterns of good convergent and discriminant validity at 

321 pretest, which do shift to some degree at posttest (see Method: Validity of the tasks, for details). 

322 Presentation times of episodic memory and working memory tasks were individually adjusted 

323 based on pretest performance to avoid floor or ceiling effects, and then kept constant throughout 

324 the daily testing occasions. At pretest and posttest, participants worked on all tasks under all 

325 possible presentation time conditions, providing reliable measurements of between-person 

326 correlation structures that correspond to each of the presentation time constellations of the 

327 within-person covariance structures. That is, for each individual pattern of presentation time 

328 conditions of the 101 participants, the corresponding presentation time conditions from the 

329 pretest (or posttest) data could be picked to compute a between-person correlation matrix that 

330 matches the presentation times of this participant’s within-person data. As the correlations with 

331 the abilities of the paper-and-pencil intelligence test did change from pretest to posttest, we 

332 included both, the between-person structures from pretest and from posttest, into the analysis to 

333 be able to evaluate the between/within differences in relation to the changes of the between-

334 person structures.

335 For all unique comparisons of the resulting 202 between-person (101 from pretest and 101 from 

336 posttest) and 202 within-person correlation matrices (101 based on raw data and 101 based on 

337 de-trended data), a total of 163,216 KL divergences were calculated. These distance measures 

338 were then submitted to MDS to represent the relative distance of the within-person matrices to 

339 the between-person matrices, and of the within-person matrices (or between-person matrices) to 

340 each other in a low-dimensional space (Fig. 1).

341 We found that within-person structures based on raw data differed reliably from the 

342 corresponding between-person structures from pretest (average KL divergence = 5.90; p < .001; 

343 for information on how p values were determined, see Data analysis: Statistical testing with KL 

344 divergences), and among each other (average KL divergence = 6.84; p < .001; SDDimension 1 = 

345 3.66; SDDimension 2 = 1.81). When within-person data were first de-trended to account for longer-

346 term trends such as practice-related improvements (for details, see Data analysis: De-trending), 

347 within- and between-person structures from pretest did show no overlap at all (Fig. 1; difference 

348 between within- and between-person structures from pretest: average KL divergence = 5.67; p < 

349 .001; differences among within-person structures for de-trended data: average KL divergence = 

350 3.01; p < .001; SDDimension 1 = 2.57; SDDimension 2 = 2.14). For raw data, MDS Dimension 1 

351 (horizontal) correlated strongly with the magnitude of the first eigenvalue of the within-person 

352 correlation structures (r = -.78; p < .001). For de-trended data, MDS Dimension 1 even fully 

353 separated all within- from all between-person structures and was again strongly correlated with 

354 the first eigenvalue of the within-person structures (r = -.59; p < .001). Together, this indicates 

355 that the size of the differences between within- and between-person structures was associated 

356 with the degree to which longer-term changes (that are likely to reflect practice-related 
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357 improvements) or short-term fluctuations are general across tasks, and thereby mimic the 

358 positive manifold of between-person differences. In other words, individuals with a greater hint 

359 of g in the structure of their daily fluctuations were more similar to the between-person structure 

360 than individuals with no such hint. The average loadings of the tasks on the normalized first 

361 eigenvector (with a theoretical maximum of three for nine exactly equal loadings, whereby lower 

362 values indicated less equal loadings or even some negative loadings) were 2.93 (SE = 0.0044) for 

363 the between-person, 2.08 (SE = 0.13) for the raw within-person, and 1.06 (SE = 0.14) for the de-

364 trended within-person structures, indicating that the g factor was less dominant for the within-

365 person structures, particularly when practice-related trends were taken out. When comparing the 

366 within-person structures with the between-person structures at posttest, which were significantly 

367 different from the between-person structures at pretest (average KL divergence = 4.15; p < .001), 

368 the resulting average divergences were even larger (average KL divergence = 9.77; p < .001, for 

369 within-person structures based on raw data; average KL divergence = 14.08; p < .001, for within-

370 person structures based on de-trended data). It therefore seems not likely that the differences of 

371 the within-person structures from the between-person structures at pretest can be explained by 

372 practice-induced changes of the psychometric properties of the tasks (see Method: Validity of the 

373 Tasks) that lead to the apparent shift of the between-person structures from pretest to posttest—at 

374 least for the majority of participants whose within-person structures did not lie in the area 

375 between the between-person structures from pretest and posttest (Fig. 1).

376 When KL divergences were calculated separately for each ability factor, the within- and 

377 corresponding between-person correlation patterns still differed reliably from each other, with 

378 the distance being smallest for the working memory factor, both for raw and for de-trended data 

379 (Fig. 2). Importantly, these separate distances correlate only weakly with each other across 

380 persons (correlations for raw/de-trended data: -.02/.03 for perceptual speed and working 

381 memory, .44/.19 for perceptual speed and episodic memory, and .31/-.13 for working memory 

382 and episodic memory; with correlations of .19 or higher being significant at  < .05). This 

383 indicates that for different individuals, the overall deviation of within-person, and corresponding 

384 between-person structures can be attributed to different patterns of deviations at the level of 

385 separate abilities. Put simply, some individuals showed greater deviations for tests of perceptual 

386 speed, others for tests of working memory, and still others for tests of episodic memory factors.

387 The observed divergences of within-person structures from each other and from between-person 

388 structures have important implications for the predictability of behavior. At the between-person 

389 level, knowing how a person performs on a particular cognitive task allows prediction, to some 

390 extent, of her/his individual performance (relative to other persons’) on other cognitive tasks. It 

391 remains an open question, however, to what degree knowledge of a person’s performance level 

392 on a particular task and a particular day also allows prediction of that person’s performance 

393 (relative to her or his average) on other tasks on the same day. To answer this question, we 

394 conducted a series of regression analyses that aimed at predicting performance of each person on 

395 each task and each day with performance of the same person at the same day on the remaining 

396 eight tasks. The regression coefficients for these other tasks were based on: either (a) the 
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397 individual within-person correlation matrix of this person, (b) the average within-person 

398 correlation matrix, or (c) the between-person correlation matrix from pretest. We ran all of these 

399 models once for the raw, and once for the de-trended data. We also conducted a set of prediction 

400 models in which we did the reverse, that is, we tried to predict between-person differences at 

401 pretest on single tasks using scores on the other eight tasks and regression equations based on 

402 information either from the corresponding between-person correlation matrix or from the 

403 individual or average within-person matrices. In total, about 90,000 prediction models (101 

404 persons * 101 days * 9 tasks) were run and results averaged for each of the bars in Fig. 3, Panels 

405 A and B, and 909 prediction models (101 persons * 9 tasks) were run and results averaged for 

406 each of the bars in Fig. 3, Panel C.

407 Summary results from this large number of predictions (see Fig. 3) follow a consistent pattern. 

408 Predictions are best when between-person information is used to predict between-person 

409 differences and when individual within-person information is used to predict individual within-

410 person variability. It is worst when within-person information is used to predict between-person 

411 differences and when between-person information is used to predict individual within-person 

412 variability; prediction with the average within-person structure fell in-between. It was striking to 

413 find that for almost all of the tasks, trying to predict de-trended within-person variability using 

414 between-person models did not work any better (or was even worse) than simply taking the 

415 within-person means.

416 We next took a closer look at the divergence of the average between- and within-person 

417 structures. The distribution of the correlation matrices in the MDS solution showed indications of 

418 normality in quantile-quantile plots (see Fig. 1 in Supplemental materials). Therefore, the 

419 centroid correlation matrix of the within-person cluster and the centroid correlation matrix of the 

420 between-person cluster were considered as viable average representations of within-person and 

421 between-person structures, respectively. Confirmatory modelling of a hierarchical factor 

422 structure was used to compare the two average correlation matrices. The model specified first-

423 order ability factors for episodic memory, working memory, and perceptual speed, and a second-

424 order general ability factor.

425 Average between-person data and average within-person raw data showed similar factor loadings 

426 for perceptual speed and working memory; for episodic memory, within-person raw data showed 

427 lower loadings than between-person data (Fig. 4A). When de-trending the data, within-person 

428 factor loadings were further reduced, particularly for the working memory tasks, indicating that 

429 shared within-person variance among tasks was to some degree due to longer-term trends (e.g., 

430 practice-related improvements). Comparing the loadings of ability factors on the general factor 

431 (Fig. 4B) revealed that the general factor was identical to the working memory factor both 

432 between and within individuals, whereas the loading of perceptual speed on the general factor 

433 was much less strong for the raw, and absent for the de-trended within-person data.

434

435 Discussion
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436 Our results demonstrate that well-established between-person findings provide little information 

437 about correlations among day-to-day fluctuations in cognitive performance within healthy 

438 younger adults. Knowing that a given person shows high or low levels of performance on a 

439 particular task or ability relative to herself/himself on a particular day does not allow us to 

440 predict this person’s performance on different tasks or abilities on the same day, unless his/her 

441 within-person structure has been assessed. Individuals showed idiosyncratic correlational 

442 patterns, resulting in weak average loadings of tasks on ability factors for de-trended data, and in 

443 ability-specific deviations of within-person structures from between-person structures. The g 

444 factor was less prominent within than between persons, and within-person structures with larger 

445 first eigenvalues were more similar to between-person structures than within-person structures 

446 with smaller first eigenvalues. Measures of working memory contributed a large share of the 

447 common variance in both between- and within-person structures, confirming the central role of 

448 working memory for human intelligence (Conway et al., 2003; Duncan, 2013; Kyllonen & 

449 Christal, 1990; Wilhelm et al., 2013).

450

451 Conclusions

452 The present findings do not militate against the practical utility of hierarchical between-person 

453 structures for prediction and personnel selection. However, the data show that between-person 

454 differences cannot be taken as a surrogate for within-person structures. Instead, if the aim is to 

455 describe, explain, and modify cognitive structures at the individual level, we need to measure 

456 and follow individuals over time. To understand the cognitive, motivational, and experiential 

457 mechanisms generating heterogeneity among within-person structures, researchers need to 

458 measure individual people intensively in time (Voelkle, 2015). Our findings indicate that the 

459 hierarchical model of intelligence is not necessarily the best template for capturing the 

460 organization of intelligence within individuals. Dynamic network models with reciprocal causal 

461 effects between different cognitive mechanisms may be more appropriate (van der Maas et al., 

462 2006). In line with calls for person-oriented medicine (Schork, 2015) and person-oriented 

463 neuroscience (Finn et al., 2015; Mechelli, Penny, Price, Gitelman, & Friston, 2002), there is an 

464 urgent need for the person-oriented study of behavior (Molenaar & Campbell, 2009; Nesselroade 

465 & Schmidt McCollam, 2000). To make fundamental progress in understanding the development 

466 and organization of intelligence, we need to exploit the insight gained from following individuals 

467 over time and measure them sufficiently often to reveal the structural dynamics of their 

468 behavioral repertoire.

469 We would like to note that the scientific rationale of developmental research is not restricted to 

470 describing differences between the structure of within-person variability and the structure of 

471 between-person differences for particular age periods such as young adulthood, as was done in 

472 this article. Rather, its goal is to identify mechanisms that are contributing to (i) short-term 

473 variability and (ii) long-term change within individuals, or to (iii) differences between 

474 individuals, or to two or more of these components of variation (Nesselroade, 1991; Voelkle et 

475 al., in press). The relative importance of different mechanisms to these three components of 
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476 variation may depend upon the age range studied and on other sampling characteristics. 

477 Therefore, the present results should not be generalized to other age periods. Rather, the present 

478 analyses and findings are a first, and admittedly descriptive, step towards the more general goal 

479 of delineating the driving forces of individual differences in development (Baltes, Reese, & 

480 Nesselroade, 1988).

481
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Table 1(on next page)

Table 1

Correlations of the perceptual speed factor to ability factors of the Berlin Intelligence
Structure Test.
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1 Table 1: 

2 Correlations of the perceptual speed factor to ability factors of the Berlin Intelligence Structure 

3 Test.

BIS-PS

Pretest .578

Posttest .278

2 Test of Difference 11.275

BIS-Reasoning

Pretest .245

Posttest .146

2 Test of Difference 0.756

BIS-EM

Pretest .252

Posttest .159

2 Test of Difference 0.944

4 Note. Differences between pretest and posttest correlations were tested with likelihood-ratio 

5 tests, comparing the model in which the correlation were freely estimated with a model in which 

6 it was constrained to be equal. The resulting 2 tests all have df = 1 and a critical value (with  = 

7 .05) of 3.841; significant differences (pretest vs. posttest) are shown in bold face; BIS: Berlin 

8 Intelligence Structure Test; PS: Perceptual Speed; EM: Episodic Memory.
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Table 2(on next page)

Table 3

Correlations of the episodic memory factor to ability factors of the Berlin Intelligence
Structure Test.
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1 Table 2:

2 Correlations of the working memory factor to ability factors of the Berlin Intelligence Structure 

3 Test.

Presentation Time Condition

1 2 3

BIS-PS

Pretest .703 .639 .609

Posttest .500 .433 .394

2 Test of Difference 1.569 3.188 3.175

BIS-Reasoning

Pretest .819 .957 .868

Posttest .679 .505 .500

2 Test of Difference 0.938 20.699 13.691

BIS-EM

Pretest .505 .680 .615

Posttest .683 .515 .624

2 Test of Difference 1.186 2.337 0.007

4 Note. Differences between pretest and posttest correlations were tested with likelihood-ratio 

5 tests, comparing the a model in which the correlation were freely estimated with a model in 

6 which it was constrained to be equal. The resulting 2 tests all have df = 1 and a critical value 

7 (with  = .05) of 3.841; significant differences (pretest vs. posttest) are shown in bold face; BIS: 

8 Berlin Intelligence Structure Test; PS: Perceptual Speed; EM: Episodic Memory.
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Table 3(on next page)

Table 2

Correlations of the working memory factor to ability factors of the Berlin Intelligence
Structure Test.
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1 Table 3: 

2 Correlations of the episodic memory factor to ability factors of the Berlin Intelligence Structure 

3 Test.

Presentation Time Condition

1 2 3

BIS-PS

Pretest .517 .507 .516

Posttest .405 .407 .426

2 Test of Difference 2.205 2.162 1.983

BIS-Reasoning

Pretest .509 .506 .543

Posttest .489 .416 .443

2 Test of Difference 0.066 1.693 2.392

BIS-EM

Pretest .822 .759 .790

Posttest .698 .677 .708

2 Test of Difference 3.449 1.785 1.859

4 Note. Differences between pretest and posttest correlations were tested with likelihood-ratio 

5 tests, comparing the a model in which the correlation were freely estimated with a model in 

6 which it was constrained to be equal. The resulting 2 tests all have df = 1 and a critical value 

7 (with  = .05) of 3.841; significant differences (pretest vs. posttest) are shown in bold face; BIS: 

8 Berlin Intelligence Structure Test; PS: Perceptual Speed; EM: Episodic Memory.
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Figure 1(on next page)

Figure 1

Comparisons of between-person and within-person structures of cognitive abilities. Locations
of within-person (raw data: red dots; de-trended data with longer-term trends taken out:
green dots) and between-person structures (at pretest: blue dots; at posttest: yellow dots) on
the first two dimensions of a multidimensional scaling solution for the Kullback-Leibler (KL)
divergences between all within- and between-person structures. Between-person structures
are based on performance of the same sample on the same tasks under different
presentation time conditions, and are relatively similar to each other. Within-person
structures evidently differ more from each other and clearly overlap little (for raw data) or
nor not at all (for de-trended data) with the between-person structures.
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Figure 2(on next page)

Figure 2

KL divergences between within- and between-person structures for different abilities on the
basis of (A) raw, and (B) de-trended within-person data. Calculating KL divergences
separately for the different ability factors shows that within- and between-person structures
differ reliably from each other for each ability. These differences are more pronounced for
episodic memory and perceptual speed than for working memory. Error bars indicate the
standard deviations from simulated distributions under the null hypothesis of no difference
between within- and between person structures. All = all nine tasks; WM = working memory;
PS = perceptual speed; EM = episodic memory.
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Figure 3(on next page)

Figure 3

Differential predictive validity of within- and between-person structures. Performance on
each of the nine tasks was predicted by performance on the remaining eight tasks.
Regression coefficients were based on between-person correlations (dark bars), average
within-person correlations (middle blue bars), or individual within-person correlations (light
bars). The bars show relative positive information gain compared to predicting performance
with the corresponding means. Positive values can be interpreted as coefficients of

determination (multiple R2), while zero values refer to predictions equal or worse than
prediction with the mean. (A-B) Performance of each person on each single task on each
daily session (WM1–3 = working memory tasks; PS1–3 = perceptual speed tasks; EM1–3 =
episodic memory tasks) was predicted by this person’s performance on the other eight tasks
on the respective same day. Results are shown for raw (A) and de-trended (B) within-person
data. (C) Performance of each person on each task at pretest was predicted by this person’s
performance on the remaining eight tasks on that occasion. Predictions are best when
between-person information is used to predict between-person differences (C), and when
individual within-person information is used to predict individual within-person variability (A).
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Figure 4(on next page)

Figure 4

Factor loadings of hierarchical models. Factor loadings of working memory (WM), perceptual
speed (PS), and episodic memory (EM) tasks on corresponding ability factors (A) and of
ability factors on the general factor g (B), based on a hierarchical model applied to the
centroids (average correlation matrices) of the individual structures shown in Fig. 1. At both
the between-person and within-person level, the g factor was identical to WM, but the PS
factor related to the g factor only when between-person or raw data within-person variance
was analyzed (B).
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