
 

A peer-reviewed version of this preprint was published in PeerJ
on 28 February 2020.

View the peer-reviewed version (peerj.com/articles/8335), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Robbins JR, Babey L, Embling CB. 2020. Citizen science in the marine
environment: estimating common dolphin densities in the north-east
Atlantic. PeerJ 8:e8335 https://doi.org/10.7717/peerj.8335

https://doi.org/10.7717/peerj.8335
https://doi.org/10.7717/peerj.8335


Citizen science in the marine environment: A case-study

estimating common dolphin densities in the north-east

Atlantic

James R Robbins Corresp.,   1, 2  ,  Lucy Babey  1  ,  Clare B Embling  2 

1 ORCA, Portsmouth, United Kingdom

2 School of Biological and Marine Sciences, University of Plymouth, Plymouth, United Kingdom

Corresponding Author: James R Robbins

Email address: james.robbins@orcaweb.org.uk

Background.  Citizen science is increasingly popular and has the potential to collect extensive datasets

at lower costs than traditional surveys. Ferries have been used to collect data on cetacean populations

for decades, providing long-term time series allowing for monitoring of cetacean populations. One

cetacean species of concern is the common dolphin, which have been found stranded around the north-

east Atlantic in recent years, with high numbers on French coasts being attributed to fisheries bycatch.

We estimate common dolphin densities in north-east Atlantic and investigate the power of citizen science

data to identify changes in marine mammal densities and areas of importance.

Materials & Methods. Data were collected by citizen scientists on ferries between April and October in

2006 - 2017. Common dolphin sightings data from two ferry routes in the Bay of Biscay (n= 569), Celtic

Sea (n= 260), and English Channel (n= 75) were used to estimate detection probabilities with detection

functions. Density Surface Models estimated density across ferry routes, accounting for the influence of

environmental (chlorophyll a, sea surface temperature, depth, and slope), spatial (latitude and longitude)

and temporal terms (year and Julian day).

Results. Overall detection probability was highest in the English Channel (0.384) and Bay of Biscay

(0.348), and lowest in the Celtic Sea (0.158). Common dolphins were estimated to occur in higher

densities in the Celtic Sea (0.400 per km) and the Bay of Biscay (0.319 per km), with low densities in the

English Channel (0.025 per km). Densities in the Celtic Sea have been relatively stable on the ferry route

since 2006 with a slight decrease in 2017. Densities peaked in the Bay of Biscay in 2013 with lower

numbers since. The general trend in the English Channel is for increasing densities of common dolphins

over time since 2009.

Discussion. This study highlights the effectiveness of citizen science data to investigate the distribution

and density of cetaceans. The densities and temporal changes shown by this study are representative of

those from wider-ranging robust estimates. We highlight the ability of citizen science to collect data over

extensive periods of time which complements traditional surveys. Such long-term data are important to

identify changes within a population; however, citizen science data may, in some situations, present

challenges. We provide recommendations to ensure high-quality data which can be used to inform

management and conservation of cetacean populations.
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13 Abstract 

14 Background. Citizen science is increasingly popular and has the potential to collect extensive 

15 datasets at lower costs than traditional surveys. Ferries have been used to collect data on cetacean 

16 populations for decades, providing long-term time series allowing for monitoring of cetacean 

17 populations. One cetacean species of concern is the common dolphin, which have been found 

18 stranded around the north-east Atlantic in recent years, with high numbers on French coasts 

19 being attributed to fisheries bycatch. We estimate common dolphin densities in north-east 

20 Atlantic and investigate the power of citizen science data to identify changes in marine mammal 

21 densities and areas of importance. 

22 Materials & Methods. Data were collected by citizen scientists on ferries between April and 

23 October in 2006 - 2017. Common dolphin sightings data from two ferry routes in the Bay of 

24 Biscay (n= 569), Celtic Sea (n= 260), and English Channel (n= 75) were used to estimate 

25 detection probabilities with detection functions. Density Surface Models estimated density across 

26 ferry routes, accounting for the influence of environmental (chlorophyll a, sea surface 

27 temperature, depth, and slope), spatial (latitude and longitude) and temporal terms (year and 

28 Julian day). 

29 Results. Overall detection probability was highest in the English Channel (0.384) and Bay of 

30 Biscay (0.348), and lowest in the Celtic Sea (0.158). Common dolphins were estimated to occur 

31 in higher densities in the Celtic Sea (0.400 per km) and the Bay of Biscay (0.319 per km), with 

32 low densities in the English Channel (0.025 per km). Densities in the Celtic Sea have been 

33 relatively stable on the ferry route since 2006 with a slight decrease in 2017.  Densities peaked in 
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34 the Bay of Biscay in 2013 with lower numbers since. The general trend in the English Channel is 

35 for increasing densities of common dolphins over time since 2009. 

36 Discussion. This study highlights the effectiveness of citizen science data to investigate the 

37 distribution and density of cetaceans. The densities and temporal changes shown by this study 

38 are representative of those from wider-ranging robust estimates. We highlight the ability of 

39 citizen science to collect data over extensive periods of time which complements traditional 

40 surveys. Such long-term data are important to identify changes within a population; however, 

41 citizen science data may, in some situations, present challenges. We provide recommendations to 

42 ensure high-quality data which can be used to inform management and conservation of cetacean 

43 populations. 

44 Introduction

45 Citizen science has been growing in popularity in recent years, and projects often have hundreds, 

46 or thousands of active volunteers collecting data across wide geographical areas and long time 

47 periods (Hyder et al., 2015). Long-term monitoring such as this can provide an early warning 

48 system of change in the marine environment. Citizen science has been used to study a variety of 

49 taxa, for example, birds (e.g. Sullivan et al., 2009), intertidal organisms (e.g. Vermeiren et al., 

50 2016), or record a broad range of animals across taxa and ecosystems (e.g. Postles & Bartlett, 

51 2018). Several citizen science projects collect data on marine mammals, with many of these 

52 using shore-based data collection methodologies (Tonachella et al., 2012; Embling et al., 2015). 

53 Vessel-based methods are often restricted to ad-hoc data collection of animal presence; however, 

54 some studies have successfully used platforms of opportunity (vessels that undertake non-

55 scientific voyages along predetermined routes such as ferries or cruise ships) to undertake citizen 

56 science surveys at sea (e.g. Williams, Hedley & Hammond, 2006; Kiszka et al., 2007). The use 

57 of such platforms is considerably cheaper than chartering a ship and paying running costs, 

58 although surveyors have limited or no control over the journey that the vessel undertakes. Such 

59 surveys can be used to investigate animal distribution and abundance.

60 An understanding of animal distribution and range is critical for potential anthropogenic impacts 

61 to be understood, for appropriate conservation management, and spatial planning. Standardised 

62 methods can allow for citizen science data to be used in abundance estimates (e.g. Davies et al., 

63 2013), which is key for monitoring species trends in space and time.  However, even with 

64 standardised methods, it is often challenging for citizen science data to be reliable and accurate 

65 enough (Crall et al., 2011) to provide good estimates of abundance due to the difficulties of 

66 detecting animals, especially at sea (Buckland et al., 2001). For example, marine mammals 

67 spend only a fraction of their time at the surface of the water where they are available to be 

68 recorded by vessel-based surveyors (Mate et al., 1995). Animals are also usually less likely to be 

69 recorded at increasing distances from the observer, with probability likely to decrease in 

70 worsening conditions (Buckland et al., 2001; Buckland et al., 2015), such as higher sea states 

71 and swell, reduced visibility, or less experienced surveyors. These uncertain detection 
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72 probabilities can be estimated and accounted for with distance sampling analysis (Buckland et 

73 al., 2001). 

74 The citizen science charity, ORCA, have been using platforms of opportunity to collect data on 

75 cetacean occurrence since 1995, with considerable survey effort being undertaken on-board 

76 ferries around the UK and North-Eastern Atlantic. Data are collected following line-transect 

77 distance sampling techniques, which can be used in design-based and model-based surveys to 

78 estimate the abundance and distribution of cetaceans. Design-based surveys follow randomly-

79 placed systematic transects to provide a representative coverage of the survey area (Thomas et 

80 al., 2010). These surveys can be expensive and time-consuming as they use dedicated ships or 

81 aircraft to survey large areas (Hammond et al. 2001, 2013, 2017). As a result, they are often 

82 carried out infrequently and provide a snapshot of abundance over a short temporal scale. For 

83 example, Small Cetaceans in European Atlantic waters and the North Sea (SCANS) surveys are 

84 conducted every 10 years but cover expansive areas (Hammond et al., 2001, 2017). 

85 Alternatively, distance sampling surveys can be undertaken with non-random coverage (8model-

86 based9) from platforms of opportunity. Due to the non-random nature of the transects, results 

87 cannot be extrapolated beyond the surveyed area, unlike design-based surveys. Platforms of 

88 opportunity often operate year-round however, and data can be collected on a much larger 

89 temporal-scales, usually at reduced cost. Results from this type of monitoring are important to 

90 understand the impacts of anthropogenic activities on animals, and to assess conservation status 

91 and management requirements.

92 This study focuses on short-beaked common dolphins (Delphinus delphis, Linnaeus; hereafter 

93 referred to as common dolphins), in the English Channel, Bay of Biscay, and Celtic Sea. 

94 Previous studies suggest that common dolphins are most abundant in the Bay of Biscay, with 

95 fewer recorded in the Celtic Sea and English Channel (MacLeod, Brereton & Martin, 2009; 

96 Hammond et al., 2017). There is concern about common dolphins in these waters due to an 

97 increasing number stranding on European Atlantic beaches in recent years, with many likely to 

98 be a result of fisheries bycatch in the Bay of Biscay and Celtic Sea (Crosby et al., 2016; Peltier et 

99 al., 2016; Peltier et al., 2017).  Common dolphins are one of the most frequently bycaught 

100 species in north-east Atlantic fisheries (De Boer et al., 2008; Peltier et al., 2016), particularly 

101 reported in pelagic fisheries targeting sea bass or albacore tuna in the English Channel and Bay 

102 of Biscay (Rogan & Mackey, 2007; Spitz et al., 2013). Analysis derived from stranding records 

103 and accounting for drift dynamics estimated between 2250 and 5750 animals are bycaught per 

104 year in the north-east Atlantic (Peltier et al., 2016). Given the infrequency of design-based 

105 surveys in this these areas of numerous strandings and high bycatch rate, citizen science is an 

106 ideal method to collect longer term data on the distribution and densities of common dolphins in 

107 this vulnerable area. 

108 This study analyses citizen science data to estimate common dolphin densities in the English 

109 Channel, Bay of Biscay and Celtic Sea, accounting for imperfect detection. Results derived from 

110 these citizen science data are compared to published results from robust design-based distance 
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111 sampling surveys undertaken by professional scientists. Temporal variation in common dolphin 

112 densities is discussed in relation to mass mortality events and bycatch within the study area. The 

113 strengths and limitations of citizen science data are discussed, and recommendations given for 

114 accurate and robust citizen science monitoring data. 

115 Materials & Methods

116 Survey area

117 Our study regions include the Bay of Biscay, a heterogeneous area incorporating relatively 

118 shallow coastal areas, the continental shelf edge, and deep-water canyons (Certain et al., 2008); a 

119 relatively shallow area of the Celtic Sea between Cornwall and the Isles of Scilly; and the 

120 English Channel, a busy shipping region (McClellan et al., 2014), with relatively shallow waters. 

121 Surveys cover ferry routes of Brittany Ferries9 Pont-Aven (21.6 m bridge height) which leaves 

122 Portsmouth, travels through the English Channel and across the Bay of Biscay to Santander, and 

123 then returns to Plymouth (Figure 1). No survey effort was undertaken on the southern edge of the 

124 continental shelf due to the ferry crossing this area at night. The Isles of Scilly Travel9s 

125 Scillonian III (10 m bridge height) crosses from Penzance to St Mary9s on the Scilly Isles in the 

126 Celtic Sea (Figure 1). 

127 Data collection

128 Data were collected by trained citizen scientists between 2006 - 2017, with survey effort 

129 concentrated between April - October, and no surveys conducted between November - February. 

130 Only data collected during April - October were used in the analysis due to a similar number of 

131 surveys throughout this period. Frequency of surveys varied across the study period but averaged 

132 once per month on the Plymouth - Santander - Portsmouth route and twice a month on the 

133 Penzance - Isles of Scilly route. Trained surveyors were deployed on ferries by ORCA 

134 (www.orcaweb.org.uk) and collected data from the forward-facing bridge of vessels according to 

135 standard distance sampling methodologies (Buckland et al., 2001, 2015). Survey teams 

136 comprised of four surveyors on the Pont-Aven (at least three of which were experienced), 

137 allowing for 30-minute rest breaks to avoid observer fatigue, and three on the Scillonian III (at 

138 least two of which were experienced) due to shorter survey lengths. Two observers scanned the 

139 forward 180 degrees (100 degrees each, with a 10-degree crossover at the bow). The data 

140 recorder collected effort data, including environmental conditions (glare, sea state, swell, 

141 precipitation, and visibility) at a minimum of 30-minute intervals, and sighting event details on 

142 cetacean species. Group sizes were estimated, and angles from the ships9 bow to animals were 

143 recorded using an angle board. Radial distances were calculated from reticle binoculars where 

144 possible, or alternatively estimated by eye. 

145 Data analysis & detection function modelling
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146 Observer experience was calculated as a proxy of the number of sightings they had over the total 

147 distance in km travelled while on effort during surveys. Observer eye height (height of reticle 

148 from the sea), was determined to be the height of the platform in addition to the height of the 

149 average UK adult (1.68 m). Distances calculated from reticle readings were used to calculate 

150 perpendicular distance where available; however, distances estimated by eye were also included 

151 only if closer than 250 m, due to distance estimation being difficult at sea, especially at greater 

152 distances (Gordon, 2001). Perpendicular distances from the trackline were over-inflated at 0 m 

153 (i.e. on the trackline) due to a prevalence of angles being rounded to 0 degrees. As a result, exact 

154 perpendicular distances were converted into 8bins9, e.g. all sightings between 0 and 268 m are in 

155 the first 8bin9, with 8cutpoints9 at 0 and 268 m. 

156 Distance sampling analysis was carried out in R (R Core Team, 2017) to calculate the probability 

157 of detecting animals at distance y from the trackline (Buckland et al., 2001). Detection functions 

158 were calculated (distance package; Miller, 2017), including conditions recorded by observers to 

159 test their influence on detection (platform height, vessel speed, group size, sea state, visibility, 

160 and observer experience). It was assumed that common dolphins were always observed on the 

161 trackline, g(0) =1, or close enough to have little impact on the results, based on quick dive times, 

162 and often clear surface behaviours (Hammond et al., 2001; Canadas & Hammond, 2008; Becker 

163 et al., 2010). 

164 Detection functions were originally fitted for a single dataset with all routes combined; however, 

165 region was found to alter detectability, likely due to varying platform heights. As a result, 

166 regions (as defined by OSPAR sea regions: English Channel, Celtic Sea, and Bay of Biscay & 

167 Iberian Coast) were stratified, and detection functions and density surface models were fitted for 

168 each region separately. A range of detection function models were calculated including hazard 

169 rate, and half normal forms, and including up to three covariates that may influence detection 

170 probability: group size; region (when the entire dataset was modelled as a whole); sea state; 

171 precipitation, visibility, vessel speed; platform height; and observer experience. The effect of 

172 truncation distances and cut points on the detection functions was also investigated. Subsets of 

173 detection functions were selected that were deemed to have an adequate fit, based on chi squared 

174 goodness of fit tests. The best model for each region was selected based on minimising the 

175 Akaike Information Criterion (AIC) score. The final models were used to calculate the effective 

176 strip width (ESW).

177 Density estimation

178 GAMs allow for non-normal response data, such as count/abundance of a species, to be related 

179 to the predictor variables using non-parametric smooths and were used to model abundance with 

180 DSMs, whilst accounting for imperfect detection (Miller et al., 2017). Environmental covariates 

181 which have influenced common dolphin occurrence in previous studies were included (Table 1): 

182 latitude, longitude (Canadas et al., 2005), depth (Canadas & Hammond, 2008), sea surface 

183 temperature (SST; Moura, Sillero & Rodrigues, 2012), distance to coast (Canadas & Hammond, 
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184 2008), slope (Canadas, Sagarminaga, & Garcia-Tiscar, 2002), and chlorophyll concentration 

185 (chla; Moura, Sillero & Rodrigues, 2012). Transects were segmented into approximately 5 km 

186 lengths using Marine Geospatial Ecology Tools (Roberts et al., 2010) for ArcMap 10.5 (ESRI, 

187 2017), and covariate values were assigned by segment centroids with ncdf4 and raster packages 

188 (Pierce, 2017; and Hijmans, 2017, respectively). Segments were used as a prediction grid in 

189 spatial models, with each cell length equal to approximately 5 km, and width equal to the 

190 truncation distance of the appropriate regions9 detection function. 

191 One-way thin plate regression smooths and two-way tensor smooths were used to model 

192 abundance with the spatial covariates, with a one-way smooth of environmental covariates, using 

193 mgcv (Wood, 2006). Models were compared between those based on a negative binomial 

194 distribution and a Tweedie distribution which adequately handles zero-inflated spatial models 

195 (Miller et al., 2013). The number of allowed knots (k) in the smooth was varied up to k=15 to 

196 investigate the best model fit, whilst EDF were considered in order to avoid overfitting models. 

197 The best model was selected based on minimising the AIC score, including only those variables 

198 that were significant to p < 0.05 according to step-wise model selection. Residuals were checked 

199 for normality, auto-correlation and homoscedasticity. Abundance was estimated with a Horvitz-

200 Thompson-like estimator which accounts for detection probabilities arising from count data 

201 (Miller et al., 2018). Abundance estimates and survey effort, calculated in Europe albers equal 

202 conic area projection, were used to calculate density per km. For each estimate, the coefficient of 

203 variance (CV) and 95% confidence intervals (95% CI) were calculated by variance propagation, 

204 including uncertainty arising from the detection function, and GAMs (Miller et al., 2013). 

205 Density estimates for the Celtic Sea were compared to those from models that only included the 

206 outward leg from Penzance to St Mary9s, but not the return) to investigate whether returning 

207 across the same area in quick succession influenced results, and to check model performance. 

208 Results

209 There were 969 sightings of 11,993 common dolphins during the 68,206 km of effort undertaken 

210 by citizen scientists between March and October 2006 - 2017. The amount of effort and sightings 

211 fluctuated considerably between years, with a generally increasing trend in the amount of effort 

212 over time (Table 2). The majority of sightings were in the Bay of Biscay (Figure 2), with 611 

213 sightings, of 8,287 animals (group size range = 1-1000, median = 8). There were 273 sightings of 

214 2,516 animals in the Celtic Sea (group size range =1-150, median = 6), and 85 sightings of 1,190 

215 animals in the English Channel (group size range = 1-200, median = 6). 

216 Probability of detection & density estimates

217 English Channel

218 A total of 24,262 km of effort was undertaken in the English Channel, with at least 2,000 km in 

219 most years, with reduced effort (less than 2,000 km) in 2006-2008, and 2016 (Table 2). The best 

220 detection function was a half-normal, including 75 sightings within the truncation distance of 
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221 1,250 m (Table 3). Vessel speed, sea state, and group size were retained in the model as they 

222 affected detection probabilities, with higher vessel speeds, higher sea state, and lower group sizes 

223 resulting in reduced probability of detection. This resulted in a probability of detection of 0.384 

224 within the truncation distance (Figure 3). The best density surface model included a 2-way 

225 smooth of longitude and latitude (p<0.05) and year (p<0.05), explaining a relatively low 13.2% 

226 of deviance but passed model checks for fit, normality, auto-correlation and homoscedasticity. 

227 Density was estimated to be 0.025 common dolphins per km (0.016 - 0.04 95% CI), with a 

228 coefficient of variation (CV) of 0.229.

229 Higher densities were predicted to occur ~20 km north of the Finistere region of Brittany (Figure 

230 4A). Variation between years is uncertain due to wide confidence intervals; however, it appears 

231 that densities decreased from 2006 to 2009 and have been increasing since (Figure 5).

232 Celtic Sea

233 A total of 15,915 km was travelled whilst searching for cetaceans in the Celtic Sea, with reduced 

234 effort in 2006 - 2009 (Table 2). The best hazard-rate detection function included 260 sightings 

235 within the truncation distance of 1000 m (Table 3). Group size and sea state were retained, with 

236 larger group sizes, and lower sea states resulting in improved detection probabilities. The overall 

237 detection probability was relatively low compared to other regions at 0.158 (Figure 2); however 

238 SCANS-III calculated a similar probability of detection for common and striped dolphins 

239 combined of 0.13, also assuming g(0)=1. 

240 The best density surface model included a 2-way smooth of latitude and longitude (p<0.01), and 

241 1-way smooths of chlorophyll (p < 0.01), year (p < 0.01) and Julian day (p <0.01) explaining 

242 23.2% of deviance. There was an estimated density of 0.40 common dolphins per km (CI: 0.305 

243 - 0.524), with a coefficient of variation of 0.139. The highest densities were predicted to occur in 

244 the middle of the route, ~20 km east of the Isles of Scilly (Figure 4B). Densities have been fairly 

245 stable over time, with a decrease in 2017 (Figure 6b). Densities decreased towards winter, with 

246 stable numbers throughout summer (Figure 6a). The influence of chlorophyll concentrations was 

247 significant, with a slight decrease in density associated with higher concentrations, however 

248 confidence intervals are wide, resulting in a high degree of uncertainty (Supporting Figure 6). 

249 Densities were similar between models that included both the onward and return journey (0.4 

250 dolphins per km), and models that only included a single leg (0.39 per km), suggesting suitable 

251 performance and limited influence of repeated journeys within quick succession. 

252 Bay of Biscay

253 A total of 28,029 km of effort was undertaken in the Bay of Biscay from 2006 - 2017, with 

254 reduced effort in 2006 and 2016 (Table 2). The best model was a hazard-rate key function, with 

255 569 sightings included within the truncation distance of 1,250 m (Table 3). Speed, sea state, and 

256 group size were retained in the detection function as they affected detection probability, with 
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257 higher speeds, higher sea states, and smaller group sizes reducing detection probabilities. The 

258 probability of detection was 0.348 within the truncation distance (Figure 2). 

259 Depth (p < 0.001), distance to coast (p < 0.001), Julian day (p <0.001), and year (p < 0.001) were 

260 all retained in the DSM. The model explained a relatively low percentage of the deviance 

261 (13.3%) but passed model checks with a total CV of 0.072. There was an estimated density of 

262 0.319 common dolphins per km (0.277 - 0.367 95% CI). The highest densities were predicted to 

263 be towards the northern end of the surveyed region, close to the continental shelf edge with 

264 lower densities towards the Santander coast (Figure 4C). The effects of depth and distance to 

265 coast are less clear due to wide confidence intervals; however, density increases with increasing 

266 distance from the coast (Supplementary Figure 4), and up to 2000 m depth, then decreases at 

267 greater depths (Supplementary Figure 5). Similar to the Celtic Sea, numbers decrease towards 

268 winter (Figure 7a). Densities increased between 2006 and 2013 and have decreased since (Figure 

269 7b). 

270 Discussion

271 Common dolphin densities & trends

272 The highest densities of common dolphins were found in the small area surveyed in the Celtic 

273 Sea between Penzance and the Isles of Scilly, with an estimate of 0.4 per km (0.305 - 0.524 95% 

274 CI). This is similar to the overall density estimated for the wider area of the Celtic Sea surveyed 

275 by SCANS-III in 2016 of 0.374 (0.09 - 0.680 95% CI) (Hammond et al., 2017). The mean group 

276 size is also similar between the two studies (9.68 in our study, and 10 in SCANS-III). The Bay of 

277 Biscay was estimated to have similarly high densities of common dolphins (0.319, with 0.277 - 

278 0.367 95% CI), but this is lower than that estimated by SCANS-III (0.784, with 0.445 - 1.26 95% 

279 CI). This is likely to be due to the limited extent of the Bay of Biscay covered by the ferry route 

280 in comparison to the SCANS surveys which covered more of the off-shore waters and 

281 continental shelf edge - areas frequented by common dolphins and other cetacean species due to 

282 higher productivity along the shelf-edge (Hammond et al., 2009). 

283 Common dolphins are infrequent visitors to the English Channel, as demonstrated by the low 

284 density estimated in this study (0.036 animals per km with 0.024 - 0.05 95% CI), and lack of 

285 common dolphins recorded during the SCANS-III survey (Hammond et al., 2017). The role and 

286 importance of regular citizen science data collection is demonstrated particularly clearly here, 

287 allowing for the detection and monitoring of species in low-density areas which infrequent but 

288 extensive surveys may miss. This could be especially useful for endangered species, where low-

289 densities may require important conservation action that could be critical to their continued 

290 presence. Platforms of opportunity facilitate regular monitoring that is unlikely to be practical 

291 with traditional means and can be used to survey data-deficient areas if infrastructure and 

292 logistics allow.  
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293 Densities of common dolphins on the Celtic Sea route have been relatively stable since 2006, 

294 however density decreased in 2017. This was also the year with the highest number of stranded 

295 common dolphins on the Cornish coast in the past 15 years. The decline in density in 2017 could 

296 be a result of the mass mortality of common dolphins before the start of the survey season or 

297 show a movement away from the survey area which may also be linked to the mass mortality 

298 event. But given the limited extent of the survey, it may just indicate a slight shift in distribution 

299 within the Celtic Sea rather than a large scale change in distribution. If the decline continues, it 

300 may suggest that further studies are needed to widen the data collection further into the Celtic 

301 Sea to explore these changes in density in more detail (e.g. extending survey effort to the 

302 Roscoff-Cork ferry route).  

303 In the Bay of Biscay, higher densities were predicted in waters up to 2500 m deep, with lower 

304 densities closer to the Santander coast, which agree with previous studies (Kiszka et al., 2007; 

305 Hammond et al., 2009). Densities increased between 2006 and 2016, which is also supported by 

306 results from SCANS-II and SCANS-III (Hammond et al., 2017). However, our results show a 

307 decline from 2013 onwards which is similarly reported in Authier et al. (2018).  These 

308 decreasing or increasing trends as demonstrated by our data and supported by other studies, 

309 shows the importance of long-term and frequent monitoring that can be provided by citizen 

310 science data, as infrequent surveys are not able to identify finer-scale temporal changes in 

311 density and distribution. 

312 Wide-scale infrequent surveys, such as the SCANS surveys (Hammond et al., 2001; 2017) can 

313 provide robust estimates of abundance which are essential for estimating the impacts of bycatch. 

314 These surveys also provide a complete snapshot of the distribution of the entire population at the 

315 time of survey (depending on the extent of the survey). However finer-scale spatial or temporal 

316 changes require additional monitoring. Without ongoing monitoring, which can be provided by 

317 citizen scientists or local dedicated projects, changes in distribution or abundance may remain 

318 unnoticed for an extensive period. Ongoing monitoring has the potential to highlight changes and 

319 act as an early warning system, especially for a species such as common dolphins that are 

320 vulnerable to bycatch. Up-to-date information on distribution and trends is critical for 

321 appropriate and timely management of anthropogenic activities to ensure the conservation of 

322 vulnerable species. 

323 Benefits of citizen science data

324 Citizen science programmes have the potential to collect large quantities of data over a long 

325 period of time, and/or a wide area. The collection of long-term time series such as in this study is 

326 often not feasible for designed surveys which can be expensive, especially when chartering ships 

327 and paying running costs. Using platforms of opportunity such as ferries and cruise ships can 

328 make long-term surveys more affordable. Non-random survey designs, such as those imposed 

329 when surveying from ferries, limit inferences that can be made due to limited survey area; 

330 however, they are repeatedly sampled providing extensive information on changes across that 
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331 area. Temporal changes in density do need be considered conservatively, especially in fixed 

332 areas covered by platforms of opportunity, as small-scale movements away from or into the 

333 survey area could influence these estimates considerably. However, these datasets can be 

334 important to inform wider-ranging survey design and form an early warning system about 

335 changes in the marine environment. Spatial and temporal trends identified by citizen science 

336 projects such as this study can also be used by professional surveyors to determine suitable 

337 survey areas and times to survey their target species.

338 Conservation management benefits from up-to-date information to best conserve species. Many 

339 designed surveys are conducted infrequently, and citizen science data may allow regular 

340 evaluation of populations to inform policy makers and legislators. This is particularly relevant to 

341 species which don9t often warrant targeted surveys but face inter-annual variability of threats. 

342 One such example is the expected inter-annual changes in habitat use of common dolphins, and 

343 therefore variable overlap with fisheries that may lead to fluctuating bycatch rates. Whilst it is 

344 unlikely citizen science surveys will rival designed surveys for robust data collection, the two 

345 methodologies complement each other, with citizen science data filling in the gaps between 

346 design-based surveys.

347 Recommendations for high quality citizen science data

348 Citizen science can be a powerful monitoring tool; however, some datasets may possess certain 

349 challenges. To maximise the usability and power of citizen science datasets, simple measures can 

350 be taken. The following recommendations for high quality citizen science data are based on the 

351 authors9 experience working with citizen science data and are provided to hopefully improve the 

352 quality of similar data. 

353 It is important to identify incomplete data or errors early in the data life-cycle. Early 

354 identification facilitates timely communication with the data collectors to correct the data where 

355 possible or provide further training to improve future data. To maintain quality, data should be 

356 checked for accuracy as it is collected in the field, with further exploration for broader patterns 

357 soon after the survey. If surveys are conducted as a team, an experienced individual should be 

358 responsible for checking that data are logical (e.g. angles are between 0 3 359), and accurate (e.g. 

359 distances and angles are not rounded). A short cross-over period between recorders can be 

360 factored into the protocol, e.g. when the survey team cycles through roles, the old recorder can 

361 discuss the current environmental conditions with the new observer to ensure consistency 

362 between recorders and continue training if required. When data are collected by lone citizen 

363 scientists without in-situ discussion and checking of the data by others, further data validation 

364 rules may be required after collection. If the project allows, photographs of a subset of animals 

365 could be taken to confirm identification skills, or alternatively a digital quiz could be created to 

366 test survey skills and reinforce training.  
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367 Discussion should be nurtured, and the views of less experienced individuals should be 

368 welcomed. This allows their surveying techniques to be evaluated for accuracy; conversely 

369 inexperienced individuals are more likely to have recently undertaken structured training 

370 courses. If experienced recorders miss on-going training, then there is a chance they could 

371 develop bad habits that vary from the intended protocol. It is important for citizen scientists to 

372 have a support network with ongoing training and avenues for queries to be addressed. 

373 Continued support could be in the form of face-to-face training days with active citizen 

374 scientists, mid-season reminders of successes and best practise, or annual training events. 

375 In some cases, citizen science data can lack complete spatial coverage of the study area; 

376 however, there are often similar projects researching the same species. Coverage can be 

377 improved by combining similar datasets, for example the Joint Cetacean Protocol (Paxton et al., 

378 2016) and the European Cetacean Monitoring Coalition (previously ARC; Brereton et al., 2001) 

379 join data from many smaller-scale groups. Once data are converted into a shared format, an 

380 extensive dataset can be analysed with greater spatial coverage. Collaborations such as these can 

381 be powerful and enhance monitoring to drive conservation of key species.

382 Conclusions

383 We have demonstrated that citizen science data collected from platforms of opportunity have an 

384 important role to play in the continued monitoring of cetaceans. Many of the results are similar 

385 to those derived from wide-scale and robust, but infrequent surveys. Therefore, citizen science 

386 can complement traditional scientific monitoring by continuing monitoring between these 

387 surveys. If used appropriately, citizen science data can be used to identify changes in distribution 

388 or density which have conservation implications such as changing distributions that may cause 

389 an overlap with anthropogenic stressors.  
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Figure 1

The ferry routes travelled between Plymouth - Santander - Portsmouth through the

English Channel and Bay of Biscay, and from Penzance - St Mary9s in the Celtic Sea.

Black lines indicate the line of ferry travel when surveyors are actively searching for dolphins.

Bathymetry is indicated with light blue to dark blue in order of increasing depth. (Bathymetry

vector courtesy of Natural Earth:  www.naturalearthdata.com ).
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Figure 2

Common dolphin sightings across the study area.

Black lines crossing water depict region boundaries for the English Channel, Celtic Sea, and

Bay of Biscay. Open circles show locations of common dolphin groups. Grid cell colour

represents common dolphin groups per km of effort. Bathymetry is shown, with sightings in

shallow water (light blue), through to waters up to 4000 m deep (dark blue). Bathymetry

vector courtesy of Natural Earth:  www.naturalearthdata.com .
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Figure 3

Detection functions showing the detection probability of common dolphins at

perpendicular distances (m)

A) English Channel, B) Celtic Sea, C) Bay of Biscay
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Figure 4

Density of common dolphins (per km) across the study area.
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Figure 5

Plots of the GAM smooth fit of abundance between years in the English Channel.

Solid line represents the best fit, with the grey shaded area representing the 95% confidence

intervals. Vertical lines on the x-axis are the observed data values.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27569v1 | CC BY 4.0 Open Access | rec: 7 Mar 2019, publ: 7 Mar 2019



Figure 6

Plot of the GAM smooth fit of abundance between A) Julian days, and B) Years in the

Celtic Sea.

The solid line represents the best fit, with the grey shaded area representing the 95%

confidence intervals which are wide between 2006 3 2008 and early spring and late autumn

when effort is low. Vertical lines on the x-axis are the observed data values.
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Figure 7

Plot of the GAM smooth fit of abundance across A) Julian days and B) Years in the Bay of

Biscay.

The solid line represents the best fit, with the grey shaded area representing the 95%

confidence intervals. Vertical lines on the x-axis are the observed data values.
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Table 1(on next page)

Summary of the key environmental covariates used in the DSM, their source and

resolution.

SST and chlorophyll data are monthly composites for the appropriate year.
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Covariate Source Approximate 

Resolution

Depth at mean tide 

height

EMODNET Bathymetry Consortium, 2016 463 m2

Sea surface temperature MODIS Aqua level 3; NASA, 2017 4 km2

Chlorophyll MODIS Aqua level 3, OCI algorithm; NASA, 

2017

4 km2

Distance to coast Calculated with Albers equal European 

projection in ArcMap (ESRI, 2017)

Slope Calculated from min & max depth values 

(EMODNET Bathymetry Consortium, 2016)

463 m2

1

2
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Table 2(on next page)

Number of sightings and effort to the nearest km for each survey region and year.
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Survey 

region

Data 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total

Effort 640 1183 1529 2507 2404 2661 2390 2091 2726 2261 1705 2167 24262

Sightings 1 2 5 0 1 4 6 9 11 3 9 34 85

English 

Channe

l

Sightings 

per km

0.0015 0.0016 0.0032 0 0.0004 0.0015 0.002

5

0.004

3

0.0040 0.0013 0.0052 0.0156 0.0035

Effort 274 196 138 783 2005 1603 1507 1671 1959 2011 1768 1997 15915

Sightings 0 1 3 5 4 18 14 49 14 74 79 12 273

Celtic 

Sea

Sightings 

per km

0 0.0051 0.0217 0.0063 0.0019 0.0112 0.009

2

0.029

3

0.0071 0.0367 0.0446 0.0060 0.0171

Effort 1200 2173 2808 2766 2276 2797 2618 2212 2424 2391 1721 2643 28029

Sightings 25 39 40 2 6 49 65 75 78 110 53 69 611

Bay of 

Biscay

Sightings 

per km

0.0208 0.0179 0.0142 0.0007 0.0026 0.0175 0.024

8

0.033

9

0.0321 0.0460 0.0307 0.0261 0.0217

1

2
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Table 3(on next page)

Final detection function models for the English Channel, Celtic Sea, and Bay of Biscay.
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Region Model Truncation 

distance (# 

sightings)

p (SE) ESW 

(SE)

% 

CV

Variables

English 

Channel

Half-

normal

1250 m (75) 0.384 

(0.04)

480 

(50.62)

10.6 Vessel speed + 

sea state + group 

size

Celtic 

Seas

Hazard-

rate

1000 m 

(260)

0.158 

(0.019)

158 (19) 12.2 Sea state + group 

size

Bay of 

Biscay

Hazard-

rate

1250 m 

(569)

0.348 

(0.02)

435 (2.5) 5.9 Vessel speed, sea 

state + group size

1

2
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