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Unreasonable public bicycle dispatching area division seriously aûects the operational
eûciency of the public bicycle system. To solve this problem, this paper innovatively
proposes an improved community discovery algorithm based on multi-objective
optimization (CDoMO). The data set is preprocessed into a lease/return relationship,
thereby it calculated a similarity matrix, and the community discovery algorithm Fast
Unfolding is executed on the matrix to obtain a scheduling scheme. For the results
obtained by the algorithm, the workload indicators (scheduled distance, number of sites,
and number of scheduling bicycles) should be adjusted to maximize the overall beneûts,
and the entire process is continuously optimized by a multi-objective optimization
algorithm NSGA2. The experimental results show that compared with the clustering
algorithm and the community discovery algorithm, the method can shorten the estimated
scheduling distance by 20%-50%, and can eûectively balance the scheduling workload of
each area. The method can provide theoretical support for the public bicycle dispatching
department, and improve the eûciency of public bicycle dispatching system.
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6 Abstract

7 Unreasonable public bicycle dispatching area division seriously affects the operational efficiency of the public bicycle system. To 

8 solve this problem, this paper innovatively proposes an improved community discovery algorithm based on multi-objective 

9 optimization (CDoMO). The data set is preprocessed into a lease/return relationship, thereby it calculated a similarity matrix, and 

10 the community discovery algorithm Fast Unfolding is executed on the matrix to obtain a scheduling scheme. For the results 

11 obtained by the algorithm, the workload indicators (scheduled distance, number of sites, and number of scheduling bicycles) should 

12 be adjusted to maximize the overall benefits, and the entire process is continuously optimized by a multi-objective optimization 

13 algorithm NSGA2. The experimental results show that compared with the clustering algorithm and the community discovery 

14 algorithm, the method can shorten the estimated scheduling distance by 20%-50%, and can effectively balance the scheduling 

15 workload of each area. The method can provide theoretical support for the public bicycle dispatching department, and improve the 

16 efficiency of public bicycle dispatching system.
17 Keywords: public bicycle system; multi-objective optimization; community discovery algorithm; regional scheduling workload; elite strategy.18

19 1. Introduction

20 With the progress of urbanization, people's awareness of low carbon life and health is increasing. The public bicycle 

21 system can provide a green and healthy way to travel, and gradually become an important part of the public transport 

22 system. However, the study of the division of public bicycle dispatching area is still in the primary stage. The division 

23 of the public bicycle scheduling area has two purposes: decomposing the scheduling between large-scale sites, and 

24 reducing the computational complexity of path planning. 

25 At present, the mainstream regional division method is based on the urban administrative area, and each area is 

26 an independent scheduling area. However, the boundaries of residents9 travel are not as clear as the administrative 

27 areas. With the development of the city, the links between the areas are more closely related, so the division based on 

28 urban administrative areas is lack of scientific basis. Because the size and population density of each administrative 

29 area are different, the number of sites in each area varies greatly. The administrative area is large in size and 

30 concentrated in population. Therefore, there are more sites, public bicycle turnover is high, and dispatching workload 

31 is large; but if there are fewer sites, public bicycle turnover is low, and dispatching workload is small. Above all, lack 

32 of a scientific planning method often leads to higher scheduling capital costs. 

33 Aiming at the problems, this paper proposes an improved community discovery algorithm based on multi-

34 objective optimization. By using this innovative algorithm, the results show that the algorithm brings three major 

35 benefits: it can effectively shorten the public bicycle scheduling distance, improve the scheduling efficiency, and 

36 effectively balance the workload of regional scheduling.

37 2. Related work

38 The division of the public bicycle dispatching area involves operational research, and researchers have made 

39 significant contribution. Public bicycles and buses, as well as cargo transport vehicles are public transport, and their 

40 operations have similarities. Therefore, they can learn dispatching methods from each other. T. Tulabandhula [1] 

41 proposed a passenger monitoring system for dispatching vehicles in a public transportation network, it monitors 

42 passengers at the station, vehicle scheduling information and processed hardware equipment. G. Q. Pan [2] designed 

43 a heuristic simulated annealing hybrid search algorithm for large-scale VRP distributed problems. Firstly, based on 

44 the actual road network of GIS, the mathematical model is established. Secondly, the large-scale VRP path planning 

45 problem is studied. Forma [3] considers the spatial nature of public bicycle rentals, and the original inventory factor 

46 of bicycles. Then the paper establishes a regional maximum diameter distance constraint model. Finally, the best 

47 classification results are obtained by heuristic algorithms to minimize the overall inventory cost. Schuijbroek [4] 

48 applied the maximum algebra algorithm to the division of the public bicycle scheduling area, and the paper established 

49 the corresponding partition mathematical model. The goal of zoning is to minimize the maximum completion time 

50 based on a reasonable level of service. Kloimllner [5] decomposes the problem of public bicycles into two sub-
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51 problems: scheduling area partitioning and scheduling path planning. Then create an integer programming model to 

52 achieve as few bicycle rental points as possible.

53 In addition, other researchers chose to use clustering algorithms. H. Z. Dong [6] used the rental rules between 

54 public bicycle stations, the space of public bicycle stations, and the non-spatial attributes of public bicycle stations, as 

55 well as the self-flow characteristics, using association rules to classify sites with strong correlation into the same 

56 category. Finally, various types of site space enclosed areas serve as the scheduling area for public bicycles. J. Zhang 

57 [7] proposed a public bicycle scheduling area division scheme based on the improved K-means clustering algorithm. 

58 In the data analysis, the algorithm effectively estimates the k central sites at the initial central site. After the K-means 

59 clustering algorithm is divided, the edge sites are clustered and adjusted again according to the scheduling 

60 requirements. C. Wang [8] integrates the spatial relationship between the sites, and the lease relationship of the bicycle, 

61 establishes the similarity matrix of the site, and proposes the parameters of the regional coupling, quantifies the degree 

62 of connection between the regions, and finally uses the clustering algorithm to obtain the corresponding result. W. C. 

63 Yu [9] established a dynamic regional scheduling model, for large-scale public bicycle scheduling problems, and 

64 proposed a multi-stage re-optimized dynamic clustering algorithm, integrates optimal division, task balance between 

65 regions and regions. Within the balance of demand, three factors are progressively clustered, and in the process of 

66 solving, the abnormal sites are continuously split to gradually improve the clustering results. J. M. Liu [10] has studied 

67 the public bicycle dispatching area, found that there are often abnormal sites in the division, and he proposed a K-

68 Center algorithm, adaptively limits the capacity of the rental site. Austwick M. Z. [11] analyzed the spatial attributes 

69 and community structure of public bicycles, and the paper used the community discovery algorithm to analyze the 

70 community structure of public bicycles in Washington, London and Boston, and verified the existence of community 

71 structure in the public bicycle network.

72 The main method of scheduling area division is model method [12] and clustering algorithm [13]. The model 

73 method requires abstract research, and there are many constraints and it is not easy to solve. Clustering algorithm is 

74 very difficult to determine the number of clusters, and it is difficult to evaluate. Moreover, the scheduling workload 

75 has no evaluation criteria, and it does not consider whether the workload is balanced. Therefore, this paper proposes a 

76 new method to solve the problem.

77 3. Scheduling area division model design

78 This part establishes the division model of public bicycle scheduling area, including the description of the model, and 

79 the assumptions of some conditions, and some interpretations of the parameters. Finally, this chapter will propose a 

80 lease/return point demand forecasting model, the data obtained from this model can help this paper verify whether 

81 CDoMO's estimated total dispatch distance is the shortest.

82 3.1. Problem description

83 At present, the clustering algorithm is mainly used to solve the problem of scheduling area division. The data set 

84 abbreviated to DS is preprocessed using a data preprocessing program. Turn a data set into a lease/return relationship 

85 abbreviated to LRR between sites. Then, through the similarity calculation between the sites, the similarity matrix 

86 abbreviated to SM is generated [14]. Conversion from DS to SM, as shown in Equation (3.1), where represents ýÿÿ 
87 the similarity between site i and site j, represents the number of bicycles rented from the site i and  returned to the ýÿÿ 
88 site j, represents the number of bicycles rented from the site j and  returned to the site i. ýÿÿ 

89 ÿÿ  
ýÿ ³ÿýý =  

[
ý11 ý12ý21 ý22

ï ý1ÿó ý2ÿî îýÿ1 ýÿ2 ó îï ýÿÿ]
[
ý11 ý12ý12 ý22

ï ý1ÿó ý2ÿî îýÿ1 ýÿ2 ó îï ýÿÿ]
  

ýÿ³ ÿý =  [
ý11 ý12ý21 ý22

ï ý1ÿó ý2ÿî îýÿ1 ýÿ2 ó îï ýÿÿ]                              (3.1)

90 The conversion process represented by and is as follows equation (3.2), equation (3.3), M represents the ýÿ ýÿ 

91 time range, which is based on the number of days:
92 ýÿ:ýÿýýÿÿýýÿÿý ýÿýýÿÿÿ                                                                          (3.2)
93 ýÿ:ýÿÿ =

ýÿÿ + ýÿÿý                                                                              (3.3)
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94 ÿý =  [
ý11 ý12ý21 ý22

ï ý1ÿó ý2ÿî îýÿ1 ýÿ2 ó îï ýÿÿ]ÿý³ÿý = {ý1,ý2,ï,ýÿ}                                   (3.4)

95 Finally, the clustering algorithm abbreviated to CA is used for dividing, stands for dividing into n independent  ýÿ 

96 scheduling areas is shown in equation (3.4). If the division result abbreviated to DR conforms to the lease/return law 

97 abbreviated to LRL, the user can actively complete a part of the scheduling work to reduce the scheduling workload. 

98 However, in the actual scheduling area division, in order to obtain the highest comprehensive benefits, the regional 

99 division should not only conform to the law, but also achieve the balance of scheduling workload as much as possible 

100 [15]. The regional scheduling workload is mainly determined by the distance within the area and the number of stations 

101 in the area. Z1 and Z2 should be as small as possible if the regional workload is balanced. This balance problem can be 

102 transformed into multi-objective optimization problem. The objective function  is shown in equation (3.5):ÿ
103 ý = {ý1,ý2,ï,ýÿ} 

ýÿÿ³  min ÿ = [ý1,ý2]ÿ
                                                             (3.5) 

104  Variance of the dispatch distance  variance of the number of sitesýÿ:  ýÿ:

105

106 MOO: Multi-objective optimization

107 Calculation of  in the following equation (3.6), n represents the number of areas,  represents the estimated ýÿ ÿÿ
108 dispatch distance of area i, and  represents the average of the estimated dispatch distances:ÿ
109 ý1 =

1ÿ 2 1

ÿ3ÿ = 1

(ÿÿ 2 ÿ)2
                                                                                    (3.6)

110 Calculation of  in the following equation (3.7), n represents the number of areas,  represents the number of ýÿ ýÿ
111 internal sites in area i, and  represents the average number of internal sites:ý
112 ý2 =

1ÿ 2 1

ÿ3ÿ = 1

(ýÿ 2 ý)2
                                                                                  (3.7)

113 ý.ý.
114 S = [(ÿÿ 2 ÿ) * (ÿÿ 2 ÿ)] * ÿ                                                                              (3.8) 

115 Equation (3.8) indicates that each site must be divided into an area. and represent the partition set. P ÿÿ ÿÿ 
116 represents the parking lot sites collection:

117 [[ÿÿ 2 ÿ] + [ÿÿ 2 ÿ]] = ' (ÿ b ÿ)                                                                        (3.9)
118 Equation (3.9) indicates that a site can only be divided into an area:
119 ÿÿ + ÿ b ',ÿÿ + ÿ b '                                                                                     (3.10)

120 Equation (3.10) indicates that each scheduling area contains at least one dispatch center. There are two 

121 optimization goals for this issue:

122 ÷ Minimize the variance between the estimated dispatch distance between each area;

123 ÷ Minimize the variance between the numbers of sites in each area.

124 3.2. Model assumptions and parameter description

125 The scheduling area dividing process is complicated, and the abstract model involves many parameters. In order to 

126 make the model as close as possible to the actual division, before the model is established, some assumptions about 

127 the scheduling area dividing process are assumed:

128 ÷ The scheduling distance of each area can be estimated theoretically, the estimated scheduling distance is 

129 approximately equal to the actual scheduling distance;

130 ÷ Dispatching vehicles are not limited by driving time and mileage;

131 ÷ Only one dispatching vehicle in each area is responsible for bicycle dispatch;

132 ÷ Model of the dispatching vehicle is consistent with all parameters;

133 ÷ The dispatching vehicle departs from the dispatching center, completes the dispatching task, and then 

134 returns to the original dispatching center, regardless of vehicle failure, and other unexpected factors.

135 Based on the problem description and model assumptions, the parameters and variables of the model in Table 3.1 

136 are defined.

137 3.3. Leasing demand forecasting model 

138 After the scheduling area is divided, in order to calculate the estimated total distance of the scheduling, it is necessary 

139 to ensure that the demand for the lease/return site is known, so it is necessary to predict the scheduling demand for the 
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140 lease/return site in the future. This section will be divided into 24-time periods in hours per day named t, ý *
141 . A Meteorology Similarity Weighted K-Nearest-Neighbour (MSWK) method is introduced to predict the {0,1,ï,23}

142 number of least and returned bicycle at the site.

143 3.4.1. Leasing number forecast model

144 MSWK is an improved method for predicting lease/return bicycle quantity based on KNN algorithm. Analysed the 

145 amount of leasing in a similar time period to predict future leasing. Weather, temperature, humidity, winds speed, and 

146 visibility are measured in 5 indicators. 

147 In the measurement of the similarity of weather, the weather is split into 5 levels and assigned corresponding 

148 values. The exact values are shown in Table 3.2.

149 The quantified weather conditions at p and q for two days t is denoted by  and , respectively, and the ÿÿýý ÿÿÿý
150 weather similarities for t in p and q are defined as follows equation (3.11):

151 ÿ1 =
12ÿÿ1

ÿ 2 (ÿÿýý 2 ÿÿÿý)2

ÿ2
1

                                                                                  (3.11)

152 The temperatures of the p and q two days t periods are denoted by  and . The temperature similarities of ýÿýý ýÿÿý
153 the t time periods in p and q are defined as follows equation (3.12):

154 ÿ2 =
12ÿÿ2

ÿ 2 (ýÿýý 2 ýÿÿý)2

ÿ2
2

                                                                                  (3.12)

155 The three dimensions of humidity, wind speed, and visibility are represented by a 3-D Gaussian kernel function, 

156 and  represents the humidity, wind speed, and visibility of the t time period in p, respectively. The ÿÿýýÿÿÿýýÿýÿýý
157 humidity, wind speed, and visibility similarity of p and q periods in t are defined as follows equation (3.13):

158 ÿ3 =
12ÿÿÿ 2 (

(ÿÿýý 2 ÿÿÿý)2

ÿ2
3

+

(ÿÿýý 2 ÿÿÿý)2

ÿ2
4

+

(ýÿýý 2 ýÿÿý)2

ÿ2
5

)
                                              (3.13)

159 In order to simplify the calculation, the temperature, humidity, wind speed, and visibility are normalized and all 

160  are set to 1, thereby simplifying the calculation; finally, by weighting the above three similarity indexes, ÿ1,ÿ2,ÿ3,ÿ4,ÿ5

161 p and q can be obtained. The overall similarity indicator at time t as follows equation (3.14):

162 ý(ÿýý
,ÿÿý;ÿ) = ÿý(ÿýý

,ÿÿý) 33ÿ = 1

ÿÿÿÿ                                                               (3.14)

163 Where  is a judgment function, when both p and q are working days or all non-working days, ÿý(ÿýý
,ÿÿý) ÿý

164 , otherwise .If you want to predict the amount of rent in the t time period in q, select the (ÿýý
,ÿÿý) = 1 ÿý(ÿýý

,ÿÿý) = 0

165 most similar K days and use the MSWK algorithm to calculate the predicted value. The specific equation (3.15) is as 

166 follows:

167 ýÿ ; ýý(ÿÿý;ÿ) =

ÿ3ý = 1

ý(ÿýý
,ÿÿý;ÿ)ýÿ ; ýý(ÿýý)

ÿ3ý = 1

ý(ÿýý
,ÿÿý;ÿ)

                                                     (3.15)

168 3.4.2. returning number forecast model

169 After a user rents a bicycle, they often return the bicycle to an adjacent site within a certain period of time [16]. 

170 Therefore, there is a need for prediction data of the number of bicycles based on neighbouring sites, which is used to 

171 predict the number of bicycles returned to the site. Bicycles rented from site i during time t may be returned to site j 

172 adjacent to i during time t or t+1. For the forecast of the number of return bicycles within the lease time t period, it is 
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173 necessary to first estimate the number of bicycles rented from the site i and at the site j within the time period t. The 

174 specific equation (3.16) is as follows:

175 ÿÿÿý
= ýÿ ; ýý(ý)

ÿÿÿ ; ÿýÿ ; ýý                                                                                (3.16)

176 Among them, is the predicted value of bicycle rental quantity from site i in time period t,  is ýÿ ; ýý(ý) ÿÿÿ ; ÿ
177 historical record of bicycle rental from site i and is still at site j.  is historical total bicycle rental record from ýÿ ; ýý
178 site i. Through the analysis of historical data, it is found that the user's riding time law can be fitted by the 2-Gaussian 

179 function. Therefore, the riding time between rental sites i and j can be estimated by equation (3.17):ÿÿÿ(ý) 

180 ÿÿÿ(ý) = ý1(ý;ÿ1,ÿ1) + ý2(ý;ÿ2,ÿ2)                                                          (3.17)

181 Assume that the user's return time is evenly distributed, and the user's behaviour of returning the leased bicycle is 

182 completed within the t time period or t+1-time period. During the time periods t and t+1, the user  rents a bicycle ý1

183 from the site i at the moment, and the probability of returning the ticket at the site j at is as follows equation (3.18), ý2 

184 equation (3.19):

185 ÿÿÿý
=

1|ý|+|ý|
0
+|ý| 2 ý

1
'

0

ýý1
'ýý2ÿÿÿ(ý2)                                                          (3.18)

186 ÿÿÿý + 1
=

1|ý|+|ý|
0
+ + >

|ý| 2 ý
1

'
ýý1

'ýý2ÿÿÿ(ý2)                                                         (3.19)

187 Finally, considering the traffic patterns and the corresponding probabilities of the adjacent sites, the formula for 

188 predicting the number of return bicycles within the sites is obtained as follows equation (3.20):

189 ýÿ ; ýý(ý) = 3ÿ b ÿÿÿÿýÿÿÿý
+ ÿÿÿý 2 1ÿÿÿý + 1

                                                       (3.20)

190 So far, the demand  of the site i at the time t in the future will be calculated by combining the demand for rental &ý
191 and return of the rental site i at the time t in the future. The specific formula is as follows equation (3.21):
192 &ý = ýÿ ; ýý(ý) 2 ýÿ ; ýý(ý)                                                                (3.21)

193 If  is less than zero, it means that the site i will not be able to meet the user's bicycle rental demand at the time &ý
194 t in the future, and it is necessary to dispatch the bicycle through dispatch [17]. If  is greater than the number of &ý
195 parking spots at the leased site, it means that the site i at the time t in the future cannot satisfy the user's demand for 

196 returning the car. It is necessary to reduce the number of bicycles by scheduling.

197 4. Community discovery algorithm based on multi-objective optimization

198  Community discovery algorithm based on multi-objective optimization, which combines quantitative indicators 

199 of regional scheduling workloads, community discovery algorithms [18], and multi-objective optimization algorithms 

200 [19]. Firstly, the Fast Unfolding community discovery algorithm [20] is performed based on the similarity matrix of 

201 the site. Secondly, the workload adjusts the results of the community discovery algorithm. Throughout the process, 

202 the results are continuously optimized through a multi-objective optimization algorithm.

203 4.1. CDoMO scheduling workload analysis  

204 Scheduling workload is an indicator to measure the workload of a dispatch line. The scheduling itself involves many 

205 fields, so there is no uniform standard [21]. The generalized scheduling workload is mainly determined by the 

206 scheduling distance, the delivery volume and the number of service outlets. The three parameters are weighted and 

207 integrated, and the workload of the dispatching line can be quantified. Suppose  is the generalized scheduling ÿ
208 workload,   is the driving distance(km),  is the number of outlets(pieces), is the delivery amount(pieces), and ÿ ý ÿ ÿÿ,

209  is the driving distance weight, the delivery amount weight, and the service outlet quantity weight as follows ÿÿ,ÿÿ
210 equation (4.1):
211
212 ÿ = ÿ1 ; ÿ + ÿ2 ; ý + ÿ3 ; ÿ                                                                                (4.1)
213 This paper combines generalized scheduling workload with public bicycles, and then obtains a quantitative formula 

214 for regional scheduling workload, is the scheduling workload of area i , and  is the scheduling distance of area ÿÿ ÿÿ
215 , which is calculated by the maximum generation star algorithm.  is the number of stations in area , is the ÿ ýÿ ÿ ÿÿ 
216 number of stations in area , and is the corresponding weight coefficient as follows equation (4.2):ÿ ÿÿ,ÿÿ,ÿÿ 

217 ÿÿ = ÿ1 ; ÿÿ + ÿ2 ; ýÿ + ÿ3 ; ÿÿ                                                                          (4.2)

218 Since the regional scheduling is based on all stations in the entire area, and in the scheduling area division stage, 

219 the waiting scheduling sites and scheduling quantities of each area are unknown, so in this paper, the impact of on ÿÿ  
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220 the scheduling workload is ignored, that is, let . So, the equation (4.3) can be simplified to: ÿÿ = 0

221 ÿÿ = ÿ1 ; ÿÿ + ÿ2 ; ýÿ                                                                                    (4.3)

222 In the quantitative formula of scheduling workload, the weight coefficient cannot be determined manually, but 

223 when the scheduling workload balance is satisfied, the estimated scheduling distance variance in each area, and the 

224 variance of the number of stations in each area should be as small as possible, so the scheduling balance the problem 

225 can be turned into a multi-objective optimization problem. The objective function is . NSGA2 is the min ÿ = [ý1,ý2]ÿ
226 most popular multi-objective genetic algorithm. NSGA2 first genetically manipulates the population P to obtain the 

227 population Q; then the populations are combined and then combined with non-inferior sorting and crowding distance 

228 sorting, and then a new population is established. Repeat the above process, until the termination condition is met. 

229 The detailed process is as follows:

230 (1) Randomly generate the initial population P0, then sort the populations non-inferiorly, and assign a non-

231 dominant value to each individual; then perform the operations of selection, crossover, and mutation on the 

232 initial population P0 to obtain a new population Q0, set to  =0.ÿ
233 (2) Combine the populations of the father and offspring, then form a new population , and then sort ýÿ = ÿÿ * ýÿ
234 the population  non-inferiorly to obtain the non-inferior layer F1, F2, .ýÿ ï
235 (3) Perform replication, crossover, and mutation operators on population to form population .ÿÿ + 1  ýÿ + 1

236 (4) If the termination condition holds, then it ends; otherwise,  =i+1, go to step (2).ÿ
237 The main process diagram of NSGA2 is shown in Figure 4.1:

238 This paper uses the NSGA2 multi-objective optimization algorithm to resolve the scheduling area partition model 

239 [22]. The length of the chromosome in NSGA2 is 2 [23], which corresponds to the value of the weight parameter in 

240 the area scheduling workload. Each individual corresponds to a scheduling workload formula, based on schedule the 

241 workload adjustment community found the results of the division. Figure 4.2 shows the restricted flow of NSGA2 

242 algorithm.

243 4.2. CDoMO algorithm design   

244 Community discovery algorithm built on multi-objective integrates quantitative indicators of regional scheduling 

245 workloads, community discovery algorithms and multi-objective optimization algorithms. Firstly, the Fast Unfolding 

246 community discovery algorithm is implemented based on the similarity matrix of the least sites; secondly, the workload 

247 index is used to adjust the results of the community discovery algorithm. The entire process continuously optimizes 

248 the results from a multi-objective optimization algorithm.

249  Table 4.1 displays the detailed algorithm calculation.

250 5. Experiment and analysis 

251 The rest of the paper is part of the experiment and analysis. The experimental section was divided into two groups, 

252 which were experiments using New York public bicycle data and Chicago public bicycle data. In the analysis section, 

253 the two groups of experiments use K-means clustering algorithm, and Fast Unfolding community discovery algorithm 

254 as comparisons, it compares the three aspects of the number of rental sites, the variance of the number of scheduled 

255 bicycles, and the estimated total distance of scheduling. The comparative data show that the algorithm is effective 

256 against both sets of experiments.

257

258 5.1. New York public bicycle 

259 5.1.1. Data set introduction

260 New York Public Bicycle [24] is a people-benefit project launched by the New York City Government. Figure 5.3 

261 displays the spatial distribution of rental sites. Blue represents Manhattan, with 250 rental sites; Green represents 

262 Brooklyn, with 77 sites. Each Citi Bicycle rental site has GPS location information, so it is not difficult to locate the 

263 rental site. The system records the user's data onto each cycle. The package contains the location and time data onto 

264 the start and the end of the site, the entire riding process, the bicycle ID, and the user's gender and birth date. This 

265 experiment will use the May 2016 rent-return dataset of New York public bicycles to conduct an experiment, a total 

266 of 96, and 1986 rent-return data. The dataset contains 16 fields, and the 9 fields related to this experiment are shown 

267 in the following Table 5.1.

268 This paper uses the pre-processing program to process the leased data, it turned into the lease-return relationship 

269 between the least sites [25]. It also generates a similarity matrix based on the rent-return relationship. The similarity 

270 calculation formula for the least sites is as follows equation (4.4):

271 ýÿÿ =
ýÿÿ + ýÿÿý                                                                                          ( 4.4)

272 Among them,  represents the similarity between site i and site j;  represents the number of times to rent a ýÿÿ ýÿÿ
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273 bicycle from site i and site j to return the bicycle;  represents the number of times of renting a bicycle from site i ýÿÿ
274 and returning it at site j; M represents the time range in days. In this experiment, the data set was a total of 31 days in 

275 May 2016, so M=31.The corresponding abstract network can be generated through the lease-return relationship as 

276 Figure 5.4 shows. As shown in Table 5.1, due to the dense population, dense sites, and prosperous business, the sites 

277 in Manhattan are more closely linked, and Brooklyn is a river is separated from Manhattan, so the connection between 

278 the two regional sites is sparse except for the leases along the river. 

279 5.1.2. Experimental result 

280 In the experiment, we first used the Gephi visualization network analysis platform to analyse the community structure 

281 in the data [26]. The Gephi platform uses the integrated Fast Unfolding algorithm, it divides the public bicycle 

282 abstraction network according to the rules of public bicycle rental. The Fast Unfolding algorithm mainly includes two 

283 phases. The first phase is known as Modularity Optimization. The main part is to divide each node into the community, 

284 its neighbourhood nodes are located, so that the value of the module degree becomes larger; the second phase is called 

285 community. Aggregation is mainly to aggregate the communities divided in the first step into one site, that is, to 

286 rebuild the network based on the community structure generated in the previous step. Repeat the above process, until 

287 the structure of the network no longer changes as Figure 5.1 shows.

288 After the Fast Unfolding algorithm for the New York public bicycle rental site in this paperÿthe result are shown 

289 in Figure 5.2 shows the internal community structure of the abstract network of New York's public bicycles, where 

290 the dots represent sites, where the sites of different communities are represented by different colours, and the lines 

291 represent the relationships between the sites; Obviously, six communities have more close contact with leases within 

292 the same community, and the links between different societies are relatively sparse. The results of the Fast Unfolding 

293 community discovery algorithm are mapped to map on New York, as shown in Figure 5.5 Manhattan is a densely 

294 populated administrative district, and the vast majority of public bicycles in the area ride on the inside, so the 

295 Manhattan District is divided into five areas according to the law of rent. Brooklyn is structured in a district. Although 

296 the division results are relatively reasonable, there are still many abnormal sites. These abnormal sites are far away 

297 from their respective areas; the number of sites of each area is uniform.

298 CDoMO is based on community discovery algorithm, considering the regional scheduling workload factors. The 

299 regional scheduling workload is determined by estimated dispatch distance and the number of regional least sites. If 

300 the community finds out that there are abnormal sites, it will cause regional forecasting scheduling distance become 

301 larger, so that the variance between the scheduling distances will become larger. If there is a major difference in the 

302 number of sites between areas, the variance between the numbers of sites will increase. The goal of CDoMO is to 

303 optimize the variance of the distance between the regional scheduling, and optimize the variance of the number of 

304 sites. In the optimization process, the division results can be adjusted to make it more reasonable. The division process 

305 does not take into consideration the deficiencies in the workload balance in each scheduling area. After the community 

306 discovery algorithm based on multi-objective optimization solves the division model of the public bicycle scheduling 

307 area, the experimental results shown in Figure 5.6 are obtained. By comparison between Figure 5.4, the result shows 

308 that the sites along the Williamsburg Bridge and the riverside along Manhattan is divided into the same dispatch area, 

309 which is more n line with the rules of public bicycle rental and resolving the anomaly [27]. The difference between 

310 the number of sites and regional sites is too large [28].

311 In order to maintain the consistency of the experiment, the value of k in the classical clustering algorithm K-

312 means algorithm is set to 6 [29], and then the clustering is based on the same data set; the space area enclosed by the 

313 sites in each class as the scheduling area In order to achieve regional division, the results of the regional division based 

314 on the clustering algorithm are shown in Figure 5.7, it can be found that when the clustering number k=6, the 

315 clustering algorithm achieves a poor regional division. The number of sites in the class represented by the red is very 

316 large, while the number of classes represented by purple and beige is very small, and the number of sites to vary 

317 greatly from the types. In addition, the boundaries of each scheduling area are unclear and overlapped [30].

318 5.1.3. Algorithm performance comparison results 

319 Built on the overall experimental results of the above three methods, it is found that the multi-objective optimization-

320 based community discovery algorithm proposed to this paper can make the division of the areas consistent with the 

321 rules and make the regional scheduling workload as balanced as possible. In addition to the analysis of the overall 

322 distribution of provincial division space, the paper also compares and analyses the three dimensions of the regional 

323 rental site variance, the regional dispatch distance variance, and the estimated total dispatch distance. Figure 5.8 

324 compares the variance between the numbers of sites. The data show that the variance between the CDoMO compared 

325 to the K-means algorithm is reduced by 63.31%, and the variance of the Fast Unfolding algorithm is reduced by 

326 32.32%. Figure 5.9 compares the variance of the number of bicycles dispatched in the area. The data show that the 

327 variance of the CDoMO algorithm compared to the K-means algorithm is reduced by 88.06%, and the variance of the 

328 Fast Unfolding algorithm is reduced by 38.14%. Figure 5.10 compares the estimated total scheduled distances. The 
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329 data show that the variance of the CDoMO algorithm is 55.17% compared with the K-means algorithm and 27.54% 

330 compared to the Fast Unfolding algorithm. When scheduling and partitioning based on multi-objective optimization 

331 algorithm, the estimated scheduling distance can be shortened, and the estimated scheduling distance is positively 

332 related to the actual scheduling distance, so the actual scheduling distance will also be shortened; in addition, the 

333 scheduling work of each area will also be made. Relatively balanced. Figure 5.11 is a comparative display of 

334 experimental results.

335 5.2. Chicago Public Bicycle  

336 5.2.1. Data set introduction

337 First of all, the data set cited in this paper is Chicago public bicycle data [31]. The starting site is 2015-1-1, and the 

338 deadline is 2015-6-30. There are two quarters and six months of data, a total of 759,789 data records. This paper did 

339 some data pre-processing: Trips that did not include a start or end date were removed from the original table. Then, in 

340 order to ensure that the information of the data set more abundant, this paper decided to use the data set, distance 

341 information of each pair of source address and destination address. Finally, we utilize certain data pre-processing 

342 methods to remove weather and other data because it can be considered as an ideal condition. The dataset contains 12 

343 fields, and the 10 fields related to this experiment are presented in the following Table 5.2.

344 5.2.2. Experimental result 

345 Results of the Fast Unfolding community discovery algorithm can be mapped to Chicago map as the picture shows 

346 [32]. In contrast, the division results are more uniform and reasonable, but there are too many abnormal sites in the 

347 middle. These abnormal sites are a long way from where they should have existed. The number of rental sites in a 

348 divided area is not particularly uniform, as showed in Figure 5.12.

349 Based on CDoMO, in the optimization process, the division results are dynamically adjusted in time. Therefore, 

350 in this case, the division result is more reasonable, and the problem of scheduling balance, this algorithm obviously 

351 adds more consideration. It not only addresses the problem of abnormal sites, but also solves the problem of 

352 differences in the number of regional sites at the same time. As showed in Figure 5.13. In order to make the experiment 

353 consistent, we set the value of k in the K-means algorithm as 5, and then we clustered the uniform data set. The results 

354 of the clustering are presented in the figure. This paper believes that the results obtained by the clustering algorithm 

355 are very poor, because the red sites represent a particularly large number of sites. The yellow site represents a 

356 particularly small number of rental sites. This shows that the various types of leases, the number of differences is too 

357 large, in addition, this algorithm also led to the border is not clear, and there is some inevitable overlap. In the actual 

358 scheduling work, this situation is not allowed, as showed in Figure 5.14.

359 5.2.3. Algorithm performance comparison results 

360 This paper will describe the quantified experimental results of the three methods, it compares the differences between 

361 them. It is easy to see that the algorithm proposed in this paper is optimal, compared to the other two algorithms. 

362 Figure 5.15 compares the difference between the numbers of sites. Compared to the K-means clustering algorithm 

363 and the Fast Unfolding community discovery algorithm, the variance of the CDoMO algorithm is reduced by 66.98% 

364 and 22.57%. Figure 5.16 in this paper compares the number of scheduled bicycles, it finds that the CDoMO algorithm 

365 set out in the present paper is an optimal algorithm. Similarly, opposed to the K-means clustering algorithm and the 

366 Fast Unfolding community finding algorithm, the variance is reduced by 83.77% and 48.72% shown in Figure 5.17. 

367 Figure 5.18 in this paper compares the estimated total distance of scheduling with the other two algorithms, and the 

368 conclusion shows that the distance is decreased by 50.82% and 22.08%. 

369 Then we can conclude that the CDoMO algorithm proposed in this paper: It effectively reduces the number of 

370 sites; it effectively reduced the variance in the number of bicycles dispatched; it effectively reduced the estimated total 

371 distance for scheduling.

372 6. Conclusion  

373 In order to solve the problem of regional division of public bicycles, this paper proposes CDoMO. The algorithm fully 

374 considers the special law of public bicycle lease/return, and in order to balance the scheduling workload between 

375 areas, the regional scheduling workload index is proposed. This problem is identified as a multi-objective optimization 

376 problem with two objective functions: minimize the variance between the estimated dispatch distances between each 

377 area; minimize the variance between the numbers of sites in each area. The regional scheduling workload can adjust 

378 the results of the community discovery algorithm in real time and dynamically. In the end, the results obtained can 

379 meet the special rules of public bicycle lease/return, and balance the workload between the areas. The experimental 

380 results show that the CDoMO can effectively shorten the scheduling distance of public bicycle system, effectively 

381 improve the scheduling efficiency, and make the workload of each scheduling area relatively balanced. The next step 

382 is to have a more appropriate solution if you limit the travel time and mileage of the scheduling vehicle.

383 Data Availability Statement

384 The [New York public bicycle data] data used to support the findings of this study have been deposited in the [Citi 
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385 Bike Trip Histories] repository ([https://www.citibikenyc.com]).

386 The [Chicago public bicycle data] data used to support the findings of this study have been deposited in the 

387 [Divvy Data] repository ([https://www.divvybikes.com]).

388
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Figure 1
the main process of NSGA2 algorithm

the main process of NSGA2 algorithm

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27562v1 | CC BY 4.0 Open Access | rec: 3 Mar 2019, publ: 3 Mar 2019



Figure 2
speciûc_ûow_of_NSGA2_algorithm

speciûc_ûow_of_NSGA2_algorithm
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Figure 3
Fast_unfolding_community_discovery_algorithms

Fast_unfolding_community_discovery_algorithms
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Figure 4
Internal_community_Structure_of_the_abstract_network

Internal_community_Structure_of_the_abstract_network
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Figure 5
Spatial distribution

Spatial distribution
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Figure 6
Corresponding abstract network

Corresponding abstract network

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27562v1 | CC BY 4.0 Open Access | rec: 3 Mar 2019, publ: 3 Mar 2019



PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27562v1 | CC BY 4.0 Open Access | rec: 3 Mar 2019, publ: 3 Mar 2019



Figure 7
Results of the fast unfolding community discovery algorithm

Results of the fast unfolding community discovery algorithm
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Figure 8
Results of the multi objective optimization algorithm

Results of the multi objective optimization algorithm
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Figure 9
Results of the clustering algorithm

Results of the clustering algorithm
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Figure 10
Variance_of_the_number_of_rental_sites

Variance_of_the_number_of_rental_sites
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Figure 11
Regional_dispatching_bicycle_variance

Regional_dispatching_bicycle_variance
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Figure 12
Estimated total dispatch distance

Estimated total dispatch distance
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Figure 13
Comparison_of_regional_division_experiment_results

Comparison_of_regional_division_experiment_results
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Figure 14
Results of the fast unfolding community discovery algorithm

Results of the fast unfolding community discovery algorithm
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Figure 15
Results of the multi-objective optimization algorithm

Results of the multi-objective optimization algorithm
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Figure 16
Results of the clustering algorithm

Results of the clustering algorithm
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Figure 17
Variance of the number of rental sites

Variance of the number of rental sites
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Figure 18
Regional dispatching bicycle variance

Regional dispatching bicycle variance
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Figure 19
Estimated total dispatch distance

Estimated total dispatch distance
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Figure 20
Comparison of regional division experiment results

Comparison of regional division experiment results
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Table 1(on next page)

parameters and variables of the model

Based on the problem description and model assumptions, the parameters and variables of
the model in Table 3.1 are deûned.
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1 Table 3.1. Model-related parameters/variables description table

2

Parameters/variables Parameter/variable meaning

n The number of areas

,i j Area number

iD The estimated scheduling distance of the area iÿÿ The estimated scheduling distance of the area j

D Regional estimated dispatch distance average

iN The number of sites in area i ýÿ The number of sites in area j

N Average number of sites within the area

S Collection of sites

iS Site division set for area iÿÿ Site division set for area j

P parking lot site collection

3
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Table 2(on next page)

exact values

In the measurement of the similarity of weather, the weather is split into 5 levels and
assigned corresponding values. The exact values are shown in Table 3.2.
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1 Table 3.2ÿQuantification of Weather Conditions

weather value

heavy snow, heavy rain 1

snow, light snow, moderate rain, light rain 0.75

foggy 0.5

sunny and cloudy 0.25

2
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Table 3(on next page)

detailed algorithm calculation

Table 4.1 displays the detailed algorithm calculation.
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1 Table 4.1. Detailed explanation of algorithm flow

Algorithm: Community discovery algorithm based on multi-objective optimization

Input: Site similarity matrix X, population number popsize, maximum number of iterations 

MaxGen.

Output: Optimal regional division results  and workload index parameters .ÿ1
7

,  ÿ2
7

1. Initialize the historical optimal solution  and its workload index parameterÿ 7
 ÿ1

7
,ÿ2

7
.

2. Perform a pass phrase of the Fast Unfolding community discovery algorithm, and 

obtain the results of the preliminary zoning division as R.

3. Calculate the estimated distance of each area in R, number of regional sites .ÿÿ  ýÿ
4. Individual genes in the population as weight coefficients .Finally, the scheduling ÿ1,ÿ2

workload of each area is calculated by the formula . The ÿÿ = ÿ1 ; ÿÿ + ÿ2 ; ýÿ
variance of the regional workload is denoted as V.

5. For each rental site i, try to put i into other communities and calculate the incremental 

 of the adjustment workload, the entire process records the maximum  and &ý &ýÿÿý
the corresponding community k. If  < 0, site node i does not adjust; if  > &ýÿÿý &ýÿÿý
0, node i is adjusted to community k. Traverse all the site until all the site are adjusted 

and the result is recorded as . ý 7
6. Define the variance function  of the regional site, and define the regional dispatch ÿ1

distance variance function , they are two objective functions to perform fast non-ÿ2

dominated sorting on the results, the records of the optimal solution in the 

contemporary population as , and its corresponding scheduling workload parameters ÿ'

are denoted as  If  after comparison, letting .ÿ1
'
,ÿ2

'
. ÿ'

> ÿ 7 ÿ1
7

= ÿ1
'
,ÿ2

7
= ÿ2

'

7. Determine whether the number of program iterations exceeds the maximum number 

of iterations MaxGen. If it exceeds, the optimal regional division results, and workload 

index parameters  are output; otherwise, a new population is generated ÿ1
7

,ÿ2
7

through elite strategy selection, which can ensure that certain elite individuals will not 

be discarded during the evolution process, thereby improving the accuracy of the 

optimization results, and expanding the sampling space. And gene crossover and 

mutation processes and the execution continue from 1.

2
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Table 4(on next page)

dataset contains 16 ûelds, and the 9 ûelds

The dataset contains 16 ûelds, and the 9 ûelds related to this experiment are shown in the
following Table 5.1.
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1

2 Table 5.1. The meaning of the field

No. Fields meaning

1 start time Starting time

2 stop time End Time

3 start_station_id Bicycle rental site ID

4 start_station_name Name of bicycle rental site

4 start_station_longitude Longitude of rental bicycle rental site

5 start_station_latitude Latitude of rental bicycle rental

6 end_station_id Return bicycle rental ID

7 end_station_name The name of the bicycle rental site

8 end_station_longitude The longitude of the bicycle rental site

9 end_station_latitude The longitude of the bicycle rental site

3

4
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Table 5(on next page)

dataset contains 12 ûelds, and the 10 ûelds

The dataset contains 12 ûelds, and the 10 ûelds related to this experiment are presented in
the following Table 5.2.
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1 Table 5.2. The meaning of the field

No. Fields meaning

1 start time day and time trip started, in CST

2 stop time day and time trip ended, in CST

3 from_station_id ID of station where trip originated

4 from_station_name name of station where trip originated

5 from_station_longitude Longitude of rental bicycle rental site

6 from_station_latitude Latitude of rental bicycle rental

7 to_station_id ID of station where trip terminated

8 to_station_name name of station where trip terminated

9 to_station_longitude The longitude of the bicycle rental site

10 to_station_latitude The longitude of the bicycle rental site

2

3
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