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Background. Physical activity (PA) is increasingly being recognized as a major factor related to the

development or prevention of many diseases, as an intervention to cure or delay disease and for patient

assessment in diagnostics, as a clinical outcome measure or clinical trial endpoint. Thus, wearable

sensors and signal algorithms to monitor PA in the free-living environment (real-world) are becoming

popular in medicine and clinical research. This is especially true for walking speed, a parameter of PA

behaviour with increasing evidence to serve as a patient outcome and clinical trial endpoint in many

diseases. The development and validation of sensor signal algorithms for PA classification, in particular

walking, and deriving specific PA parameters, such as real world walking speed depends on the

availability of large reference data sets with ground truth values. In this study a novel, reliable, scalable

(high throughput), user-friendly device and method to generate such ground truth data for real world

walking speed, other physical activity types and further gait-related parameters in a real-world

environment is described and validated.

Methods. A surveyor’s wheel was instrumented with a rotating 3D accelerometer (actibelt). A signal

processing algorithm is described to derive distance and speed values. In addition, a high-resolution

camera was attached via an active gimbal to video record context and detail. Validation was performed

in the following main parts: 1) walking distance measurement is compared to the wheel’s built-in

mechanical counter, 2) walking speed measurement is analysed on a treadmill at various speed settings,

3) speed measurement accuracy is analysed by an independent certified calibration laboratory -

accreditation by DAkkS applying standardised test procedures.

Results: The mean relative error for distance measurements between our method and the built-in

counter was 0.12%. Comparison of the speed values algorithmically extracted from accelerometry data

and true treadmill speed revealed a mean adjusted absolute error of 0.01 m/s (relative error: 0.71 %).

The calibration laboratory found a mean relative error between values algorithmically extracted from

accelerometry data and laboratory gold standard of 0.36% (0.17-0.64 min/max), which is below the

resolution of the laboratory. An official certificate was issued.

Discussion. Error values were a magnitude smaller than the any clinically important difference for

walking speed.

Conclusion. Besides the high accuracy, the presented method can be deployed in a real world setting

and allows to be integrated into the digital data flow.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27558v1 | CC BY 4.0 Open Access | rec: 28 Feb 2019, publ: 28 Feb 2019



1 Method to collect ground truth data for walking speed in real-

2 world environments: Description and Validation

3 Gerhard Aigner2, Bernd Grimm1, Christian Lederer¹,2, Martin Daumer¹,2,3

4

5 ¹ SLCMSR e.V. - The Human Motion Institute, Munich, Germany

6 2 Electrical and Information Engineering, Technical University Munich , Germany

7 ³ Trium Analysis Online GmbH, Munich, Germany

8

9 Corresponding Author:

10 Martin Daumer

11 SLCMSR e.V. - The Human Motion Institute, Hohenlindener Strasse. 1, 81677 Munich, Germany

12 daumer@slcmsr.org

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27558v1 | CC BY 4.0 Open Access | rec: 28 Feb 2019, publ: 28 Feb 2019



13 Abstract

14 Background. Physical activity (PA) is increasingly being recognized as a major factor related to 

15 the development or prevention of many diseases, as an intervention to cure or delay disease and 

16 for patient assessment in diagnostics, as a clinical outcome measure or clinical trial endpoint. 

17 Thus, wearable sensors and signal algorithms to monitor PA in the free-living environment (real-

18 world) are becoming popular in medicine and clinical research. This is especially true for 

19 walking speed, a parameter of PA behaviour with increasing evidence to serve as a patient 

20 outcome and clinical trial endpoint in many diseases. The development and validation of sensor 

21 signal algorithms for PA classification, in particular walking, and deriving specific PA 

22 parameters, such as real world walking speed depends on the availability of large reference data 

23 sets with ground truth values. In this study a novel, reliable, scalable (high throughput), user-

24 friendly device and method to generate such ground truth data for real world walking speed, 

25 other physical activity types and further gait-related parameters in a real-world environment is 

26 described and validated.

27

28 Methods. A surveyor’s wheel was instrumented with a rotating 3D accelerometer (actibelt). A 

29 signal processing algorithm is described to derive distance and speed values. In addition, a high-

30 resolution camera was attached via an active gimbal to video record context and detail. 

31 Validation was performed in the following main parts:  1) walking distance measurement is 

32 compared to the wheel’s built-in mechanical counter, 2) walking speed measurement is analysed 

33 on a treadmill at various speed settings, 3) speed measurement accuracy is analysed by an 

34 independent certified calibration laboratory - accreditation by DAkkS applying standardised test 

35 procedures.

36

37 Results: The mean relative error for distance measurements between our method and the built-in 

38 counter was 0.12%. Comparison of the speed values algorithmically extracted from 

39 accelerometry data and true treadmill speed revealed a mean adjusted absolute error of 0.01 m/s 

40 (relative error:  0.71 %). The calibration laboratory found a mean relative error between values 

41 algorithmically extracted from accelerometry data and laboratory gold standard of 0.36% (0.17-

42 0.64 min/max), which is below the resolution of the laboratory. An official certificate was issued.

43

44 Discussion. Error values were a magnitude smaller than the any clinically important difference 

45 for walking speed.

46

47 Conclusion. Besides the high accuracy, the presented method can be deployed in a real world 

48 setting and allows to be integrated into the digital data flow.

49
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50

51 Introduction

52 Physical activity (PA) is increasingly being recognized as a major factor related to the 

53 development or prevention of many diseases (Warburton, Nicol & Bredin, 2006; Reiner et al. 

54 2014), as an intervention to cure or delay disease and for patient assessment in diagnostics, as a 

55 clinical outcome measure or clinical trial endpoint (Byrom & Rowe, 2016; Zijlstra et al. 2017). 

56 Thus, wearable sensors and signal algorithms to monitor physical activity in the free-living 

57 environment (real-world) are becoming popular in medicine and clinical research (Robson & 

58 Janssen, 2015; Grimm & Bolink 2016). 

59

60 The development and validation of sensor signal algorithms for PA classification (e.g. walking) 

61 or deriving specific PA parameters (e.g. walking speed) at clinical grade quality depends on the 

62 availability of large reference data sets with ground truth values for the activities and parameters 

63 to be derived. This is especially true when the machine learning methods are employed in 

64 algorithm development requiring large and patient-specific datasets for algorithm training and 

65 validation. Thus, reliable, scalable (high throughput), practical and itself valid methods to 

66 generate such datasets at reasonable effort and cost are required but no gold-standard methods 

67 have yet been established (Awais, Mellone & Chiari, 2015).

68

69 This is especially true for walking speed, a parameter of physical activity behaviour increasingly 

70 gaining recognition as a powerful dimension of patient outcome in many disease areas (Hardy et 

71 al., 2007; Abellan van Kan, 2009; Grcic et al., 2011; Studenski et al., 2011; Schimpl et al., 2011; 

72 Bohannon & Glenney, 2014; Hass et al., 2014) and as endpoint candidate in clinical trials. The 

73 generation of ground truth data for algorithm development to derive walking speed a real-world 

74 setting (Schimpl, Lederer & Daumer, 2011) is particularly challenging. Video-observation and 

75 manual annotation as common for the classification of basic physical activities such as sitting, 

76 standing, walking and transfers are not able to produce a true value for walking speed. Thus, a 

77 new method needs to be developed and validated to generate ground truth data for walking 

78 speed.

79

80 The definition of walking speed in the real world is not yet standardised and may affect the 

81 design of a suitable method to generate ground truth measurements. In a laboratory setting 

82 walking continuously and straight on an even surface for a measured distance, the definition of 

83 walking speed seems straightforward. Walking in the real-world however usually involves a 

84 curved trajectory and may take place on inclined or uneven surfaces. Possible definitions of 

85 walking speed may e.g. account for a straight-line distance between the beginning and end of a 

86 walking episode, or the distance described e.g. by the polygon created by the lines connecting 
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87 individual steps or by the curved projection of the body centre-of-mass on to the ground. Instead 

88 of following a body-centre-of-mass trajectory which is influenced by shifting mass of the upper 

89 body alone and when stationary, we define real-world walking speed based on the distance 

90 described by the trajectory of the geometric centre between the left and right hip joint centre. 

91 Reference to this point of skeletal anatomy seems most related to the walking motion, 

92 reproducible to identify and by being geometric, most practical to follow by any tracking 

93 method.

94

95 It is the aim of this study to describe and validate a novel, reliable, user-friendly and affordable 

96 device and method to generate ground truth data for real world walking speed as defined above, 

97 other physical activity types and gait-related parameters in a real-world environment using a 

98 surveyor’s wheel instrumented with a 3D accelerometer and carrying a video-camera.

99
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100 Materials & Methods

101 Method to measure walking speed:

102 The method to generate ground truth data for walking speed in a real-world environment 

103 comprises two devices, a wheel and a spoke-mounted accelerometer, together with a signal 

104 processing algorithm to derive distance and speed data. In addition, a camera is attached to 

105 video-record context and detail known to aid and expand algorithm development possibilities. 

106

107 a) Wheel

108 With (walking) speed being the derivative of (walking) distance, the use of an established 

109 distance measurement tool such as a surveyor’s wheel as e.g. applied in civil engineering made 

110 the appropriate basis for a device to collect walking speed from a human ambulating in the 

111 natural environment. Such a surveyor’s wheel, also called click wheel, odometer or perambulator 

112 mechanically counts partial (equidistant segments) and full revolutions (common wheel 

113 circumference= 1m) to derive the distance the wheel has travelled. The successful use of such a 

114 mechanical wheel for measuring walking distance and speed for reference and algorithm 

115 development has already been described before (Schimpl, Lederer & Daumer, 2011) albeit here 

116 in combination with a bicycle computer to electronically register the distance. 

117

118 In this study, the surveyor’s wheel model used was the calibratable geoFennel M 10 (Baunatal, 

119 Germany) comprising a built-in mechanical precision counter with a tolerance <0.02%. When 

120 distance (and speed) are to be collected from a walking human in a real-world environment, an 

121 observer is instructed follows the free roaming subject with the surveyor’s wheel from slightly 

122 behind and lateral (ca. 1m)) allowing free and natural ambulation of the test subject while closely 

123 following the route in in direction and speed. 

124

125 b) Acceleromter

126 In order to digitally record wheel travel distance and speed, a 3D accelerometer, in particular the 

127 recording box of the actibelt RCT2 (trium, Munich, Germany), a belt-buckle integrated activity 

128 monitor was mounted onto the wheel’s spoke near the hub (50mm distance to rotational axis) in 

129 a position so that two axes were aligned with the wheel plane (Figure 1, here in final design with 

130 hub-mounted actibelt). The actibelt recording box (Figure 2) measures ca. 50x40x10mm and 

131 records accelerations in three axes at 100Hz sample frequency with data storage (4GB) and 

132 battery capacity enabling for up to 8 weeks of continuous recording.

133

134 This approach towards recording distance was chosen over using the wheel’s built-in mechanical 

135 counter or the electronic bicycle computer because of the cumbersome data readout, 

136 documentation and necessary laborious and error prone data transcription and transformation for 
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137 both the built-in counter or bike computer. For an accelerometer and the actibelt in particular, the 

138 same sensor device is used to monitor patient activity (Soaz et al. 2011, Motl et al. 2012, 

139 Stellmann et al. 2015) and to generate the ground truth values for distance and speed. Thus, data 

140 collection from the walking subject and the turning wheel are conveniently synchronized and of 

141 identical format for efficient handling. Such usability aspects are important to allow the 

142 generation of consistently documented large amounts of synchronized data required for activity 

143 classification and gait parameter algorithm development and validation, especially when 

144 machine learning methods are employed demanding large training data sets. 

145

146 c) Algorithm:

147 The algorithm to derive distance and speed values from the spoke-mounted accelerometer signal 

148 uses the sinusoidal waveform produced by the two accelerometer axes aligned with the plane of 

149 the rotating wheel and thus measuring the momentary static gravity component. Each full 

150 rotation of the wheel generates one period of a sinusoidal in both axes with a 90-degree phase-

151 shift between them. Thus, automated peak-detection of the maxima and minima in both curves 

152 using the “findpeaks” function of the “pracma” package (v1.9.9) in R (version 3.3.2) distinctly 

153 marks 4 subsequent quarter rotations. These translate into 4 equidistant units of wheel travel, in 

154 the case of a wheel with a 1m circumference as used in this study, marking distances in multiples 

155 of 25cm. Speed is then calculated by dividing distance by the know time between two peaks or 

156 the peaks marking the start and end of a walking bout episode. Prior to acceleration peak 

157 detection, the signal is filtered (Chebyshev, Type 1) to exclude frequencies (e.g. bumps from 

158 surface, general noise) outside what a human would produce walking at speeds ranging between 

159 0.35 m/s to 1.75 m/s. In a self-written post-processing script, the algorithm only documented a 

160 distance and speed value for a walking bout when a minimum number of subsequent quarter 

161 rotations of the wheel were recorded and the individual subsequent values showed a certain 

162 coherence as expected for human walking characterized by smooth and not abrupt accelerations 

163 or decelerations. This feature is used to avoid the output of false distance and speed values from 

164 confounding acceleration peaks stemming from e.g. hitting the wheel or moving it slightly back 

165 and forth at a moment of stand-still with the accelerometer axes accidentally aligned with 

166 gravity. In this set-up validated here, any possible wheel travel distance from rest until recording 

167 the first acceleration peak count of a walking bout is missed (<25cm) as well as any possible 

168 wheel travel distance at the end of a walking bout after the final peak and before wheel stop. This 

169 systematic source of error was neglected as it is also inherent with the mechanical counter (or a 

170 wheel magnet driven bike computer) and because for the walking distances studied, even the 

171 theoretical maximum error would be relatively small (<1%). In addition, the wheel starting 

172 position can be chosen to minimize this effect, Furthermore, if required e.g. to reduce relative 
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173 error for very short walking distances, missed distances before the first and after the last 

174 acceleration peak could be algorithmically estimated from the sinusoidal curves.  

175

176 d) Camera

177 In order to document additional context, detail and ground truth data beyond distance and speed, 

178 a smartphone (Huawei, Mate 9, Shenzhen, China) with a high-resolution video-camera  and an 

179 active gimbal for image stabilisation was mounted onto the surveyor’s wheel. The camera was 

180 augmented with a frog eye lens and the field of view focused onto the lower legs and feet of the 

181 subject being followed (Figure 3). This way, each step is visually recorded in detail 

182 simultaneously with the wheel speed and the subject-worn actibelt accelerations. For time 

183 synchronization between both actibelts and the camera, both sensing units (recording boxes) are 

184 coupled and vigorously tapped in front of the running camera before being fit back the test 

185 subject’s belt and surveyor’s wheel. 

186

187 Video-recordings were made using the OpenCamera App which allows high-definition videos 

188 (1080p) to be captured at 120fps and stored in mp4 format. The video-recording is later manually 

189 annotated by a human observer to mark detailed gait events such as individual steps, heel strike 

190 and toe-off to generate ground truth for developing and validating algorithms for real-world 

191 activity parameters such as step counts, stance or swing time. The feet-focused camera position 

192 guarantees the anonymity of the recordings required for collecting data also in public spaces 

193 which are well suited for generating real-world data. The camera also records context such as 

194 properties of the surface walked on, perturbations from the real-world environment or the 

195 subject’s footwear which can be useful information for deeper understanding during algorithm 

196 validation. Another reason to integrate a camera for video-recording the steps of walking is that 

197 computerized image analysis methods under development to detect gait phases and annotate 

198 them promises to automate and accelerate the generation of ground truth data for real-world gait 

199 monitoring algorithms. This is useful to generate large datasets required especially for machine 

200 learning approaches which are popular now. 

201

202 e) Real-World parkour 

203 Finally, besides the device and algorithm described in this study, the full method to generate 

204 ground truth for real-world walking speed also requires a) information about the real-world 

205 environments recommended for application and b) instructions for the measured subject and the 

206 observer (Figure 4). While the system presented in this study is explicitly designed to be used 

207 outside the lab in any natural setting, the efficient generation of ground truth datasets for 

208 algorithm development benefits from defining and then finding or creating an environment in the 

209 real-world and some instructions to the measured subject on where and how to walk. This way it 
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210 is possible to combine and assess many typical types and conditions of human walking in a small 

211 space and short time frame reducing the burden to test subject and observer. The set-up of such 

212 an environment in the real-world and the instructions to the test subject is called Parkour and its 

213 detailed description and validation requires a separate study.

214

215

216 Validation:

217 The validation of this method was performed in four parts, 1) validating the distance 

218 measurement derived from the wheel-mounted accelerometer versus the built-in mechanical 

219 counter, 2) validating the speed measurement derived from wheel-mounted accelerometer versus 

220 speeds set on a treadmill, 3) an external validation by a certified calibration service, 4) 

221 investigating the influence of centrifugal forces and off-centre position of the wheel mounted 

222 accelerometer on signal quality and thus distance and speed measurement. For part 2) the 

223 systematic error for speed settings on the treadmill was established first using the mechanical 

224 counter built-into the wheel. The Ethics Committee of the Ludwig-Maximilians-University 

225 München) granted ethical approval to carry out this study (Ref: 627-16) and written consent was 

226 collected from subjects involved.

227

228 Validation protocol 1: Distance

229 Three walking bouts of various length and with breaks of variable duration before, in-between 

230 and after were performed by one subject walking at self-selected speed with the wheel set-up 

231 described above. The three distance measurements derived from the built-in mechanical counter 

232 were compared to the distance values derived from the accelerometer and algorithm described 

233 above and the mean absolute and relative error were calculated. 

234

235 Validation protocol 2: Walking Speed

236 A direct comparison between the walking speed derived from the wheel-mounted accelerometer 

237 and algorithm and a reference value for speed was performed using a treadmill (Kettler, Boston 

238 XL, Germany). It was set to various speed readings with the wheel mounted to the treadmill 

239 excluding any potential error of an observer guiding the wheel. Treadmill speeds were run for 

240 30s duration per setting with speeds rising from 0.5 m/s to 1.75 m/s in increments of 0.25 m/s. 

241

242 As a consumer device, the treadmill satisfies different requirements and thus was expected to be 

243 less accurate than a dedicated measurement tool. To enable its usage as a reference device the 

244 systematic error of the treadmill was estimated beforehand as follows: The treadmill was 

245 operated at two set speeds, 6 km/h and 3 km/h respectively for a time period of 300s each as 

246 measured by a stopwatch. The distance as calculated from the set speed and time (“expected 
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247 distance”) was than compared to the distance as measured by the treadmill mounted wheel and 

248 its mechanical counter to derive the errors. The mean relative error was then used to correct 

249 speed values from the treadmill for the comparison with the accelerometer derived speed.

250

251 Validation protocol 3: External validation

252 The measurement wheel with the hub-mounted actibelt accelerometer was provided to a 

253 calibration laboratory (SBS Kalibrierungsservice GmbH, Unterweilerbach, Germany) accredited 

254 by the national accreditation body for the Federal Republic of Germany (DAkkS) for official 

255 certification. The certificate issued under the number D-K-18447-01-00 can be found in the 

256 supplementary material.

257

258 For calibration of the measurement method described here, the calibration laboratory followed 

259 the standardised test procedures for measurement instruments measuring revolutions and 

260 frequencies (DAkkS, 6.4.05 and 6.4.06). According to these normed procedures, the actibelt was 

261 mounted onto a speed-regulated electric screwdriver and the true values for revolutions [1/min] 

262 and frequency [1/s] were measured employing a waveform generator (Model 33250A, Agilent 

263 Technologies, Santa Clara, Ca, USA) and a Laser tachometer (DT-207 B, Nidec-Shimpo 

264 Instruments, Glendale Heights, IL, USA). Nine settings for speed (rotational frequencies) were 

265 measured covering a range equivalent to walking speeds ranging from 0.78m/s to 1.94m/s which 

266 represents a broad interval of human real-world walking speeds. For each setting, 5 

267 measurements were performed to derive a mean value and the relative difference between the 

268 true (calibration reference) and measured (actibelt and algorithm) value was calculated.

269

270 Validation protocol 4: Influence of sensor position

271 Two positions for the wheel-mounted accelerometer were compared to study the influence of 

272 centrifugal forces during rotation on the sensor signal used for the speed calculation algorithm. 

273 Based The experiment was meant to identify possible walking speed thresholds up to which 

274 values can be considered reliable and when signal drift would critically affect them. For this, the 

275 treadmill mounted wheel recorded raw accelerations from two sensor positions, the spoke-

276 mounted actibelt and from an actibelt attached close to the rotational axis (hub). Treadmill 

277 speeds were increased step-wise (0.25km/h) from standstill to 10 km/h. The speed where the 

278 sinusoidal maxima significantly exceeded the 1g static gravity was considered a threshold. 

279
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280 Results

281 Validation protocol 1: Distance

282 The raw acceleration trace from spoke-mounted accelerometer recorded during distance 

283 measurement validation clearly reflected the experimental set-up with three walking bouts of 

284 different length interrupted by two breaks (Figure 1). The accelerometer signals from the axes 

285 aligned with the wheel plane followed a sinusoidal waveform during rotation (Figure 1). 

286 Numerical analysis of comparing the reference distance from the mechanical counter to the 

287 accelerometer and algorithm output gave a mean relative error of 0.12% (max: 0.22%, Table 1). 

288

289 Validation protocol 2: Walking Speed

290 The experiment to establish the error of the treadmill’s speed settings revealed a mean relative 

291 error for both speed settings of +3.63% (Table 2), indicating that true treadmill speed is slightly 

292 higher than the set speed. The mean relative error was used to adjust the subsequent relative error 

293 calculations when comparing treadmill speed to speed output from the accelerometer. 

294 The speed validation experiment with its stepped treadmill speed increments showed how the 

295 accelerometer and algorithm output closely followed these increments with values slightly above 

296 the set speeds (Figure 3). Numerical analysis of the 11 paired treadmill and algorithm speed 

297 values revealed a mean unadjusted absolute error of 0.03 m/s (adjusted: 0.01 m/s) and an 

298 unadjusted mean relative error of 2.89 % (adjusted: 0.71 %).

299

300 Validation protocol 3: External validation

301 Performing a standardised calibration protocol for instruments measuring revolutions and 

302 frequencies by an independent laboratory accredited by the German authority revealed a mean 

303 relative error between the true and measured value for revolutions and frequencies of 0.36% 

304 (0.17-0.64 min/max, see Table 4). These values were within the accuracy range of the calibration 

305 equipment and an official certificate was issued. 

306

307 Validation protocol 4: Influence of sensor position

308 For the spoke-mounted accelerometer outside the rotational axis it was seen that the theoretical 

309 maximum/minimum acceleration value per axis, gravity at ±1g, visibly exceeded this threshold 

310 at (walking) speeds beyond 5 km/h (Figure 3). At speeds above 10 km/h it exceeded the 

311 measurement range of the sensor (6g, Figure 3) due to the added centrifugal forces. When the 

312 actibelt was mounted at the hub near the rotational axis, no such effect was visibly throughout 

313 the entire speed range up to 10 km/h. 

314
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315 Discussion

316 The development and validation of algorithms for wearable sensor derived measures of physical 

317 activity in the real-world and for accelerometers and walking speed in particular requires large 

318 data-sets with reliable ground truth values as reference. This is especially true when machine 

319 learning techniques are employed depending on large training and validation data sets for 

320 algorithm development. Thus, reliable, user-friendly and proven (i.e. itself validated) methods 

321 with high throughput capacity are needed to generate such ground truth reference data. This 

322 study describes and validated a method to collect ground truth data for walking speed in real-

323 world environments, a gait parameter of increasingly recognized clinical relevance and until now 

324 difficult to generate ground truth for in a simple and valid manner.

325

326 The solution developed comprises a standard surveyor’s wheel with an accelerometer mounted 

327 close to the hub and an algorithm which detects the peaks of the phase-shifted sinusoidal signals 

328 from two accelerometer axes to count wheel revolutions and derive speed from it. As a 

329 recommended optional addition, a mounted (smartphone) camera can provide additional context 

330 and detail for algorithm development.

331

332 In a 4-part validation, various aspects of the method’s validity were established. It was shown 

333 that the described solution can measure distance with a mean relative error of 0.22% giving an 

334 accuracy much higher than what is currently achieved or would be expected or required for a 

335 wearable device and algorithm combination estimating walking distance (or speed) in a real-

336 world environment. Also, the direct speed output showed to be very precise against a reference 

337 (treadmill) with both absolute (0.01 m/s) and relative error (0.71%) being negligibly small for 

338 real-world practice where e.g. the clinically important differences for walking speed, e.g. 

339 ±0.1m/s (Bohannon & Glenney, 2014) are one order of magnitude higher. Independent external 

340 validation by a certified calibration agency confirmed these results and further supports the 

341 method’s application in an environment where regulatory requirements may demand such formal 

342 approval. Finally, it was also shown that the method can be affected by centrifugal forces when 

343 speeds exceed ca. 5 km/h and the accelerometer is mounted off-centre in the spokes. However, 

344 this effect can be removed when the accelerometer is mounted at the hub near the centre of 

345 rotation. Then the method works reliably at speeds up to and beyond 10 km/h. Thus, the 

346 accelerometer position near the rotational axis is recommended and now routinely implemented 

347 in our set-up. As walking speeds, especially those of patients or elderly, are usually below 2 m/s 

348 (Studenski et al., 2014) and thus well below where centrifugal forces showed signal drift for a 

349 spoke-mounted accelerometer, past or future data collected in such an environment are still 

350 reliably accurate.

351
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352 The method described and the validation performed have some limitations. As stated in the 

353 introduction, already conceptually, any attempt to record true human walking speed in the real-

354 world is challenged by the precise definition of it. From various imaginable alternatives, we 

355 pragmatically defined real-world walking speed based on the distance described by the trajectory 

356 to the ground of a point from skeletal anatomy, the geometric centre between the left and right 

357 hip joint centre. This highly reproducible point can easily be generated in computer simulations 

358 of gait kinematics, can be closely estimated using video-capture of related anatomical landmarks 

359 (reflective markers) and can be aimed at and followed by a human observer. Differences between 

360 this definition and alternatives seem small but in certain conditions, definitions based on mass 

361 (e.g. upper body motion) or the polygon connecting steps (e.g. uneven, inclined surfaces) seem 

362 less appropriate and accessible for a ground truth generating method. 

363 The method described is designed to generate ground truth for walking speed. Stepping motions 

364 like side-stepping, shuffling or bouts of a very few steps like common e.g. in the home 

365 environment (e.g. household chores) would not be accessible for generating a walking speed 

366 value by this method. However, it also does not seem appropriate to label the velocity of such 

367 stepping movements as walking speed, nor has the velocity of such events yet been reported as 

368 parameter with clinical meaning. 

369

370 Besides these definitional aspects, generating ground truth for walking speed by a having a 

371 human observer follow a subject with a measurement wheel adds extra effort and some observer 

372 subjectivity. The observer’s wheel speed and the walker’s true speed will differ to some degree 

373 especially when sudden starts and stops or changes in speed or direction (corners) happen in a 

374 real-world environment causing some delays, false reactions or corrections of the observer. 

375 However, in practice, when such reference datasets are created, measurements are often 

376 performed in a real-world like gait course (“parkours”) to generate many different events of 

377 walking in a small space and short period of time. This way walking paths are more predictable, 

378 and in addition observers are well experienced. Also, the theoretical effect of influencing the 

379 behaviour and gait pattern of the person being followed is avoided or minimised by the observer 

380 following from behind and the parkours set-up providing a natural environment and real-world 

381 distraction.   

382

383 The elaborate 4-part validation protocol described involved level, smooth and non-slippery 

384 surfaces and longer walking bouts (>30 steps). Thus, from the data presented, the validity on 

385 uneven surfaces with bumps potentially causing “false” acceleration peaks, slippery surfaces 

386 potentially causing wheel slip or short bouts with many stops and turns like e.g. encountered 

387 roaming indoors at home can only be commented on. The chance for peaks from bumps being of 

388 a nature to offset the algorithm seems unlikely and if so, could be removed with a low-pass filter. 
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389 Wheel slip for a professional surveyor’s wheel may only be encountered in theory and on 

390 surfaces which would need to be so slippery (e.g. ice) that in the practice of generating patient 

391 reference data for algorithm development such situations would not be encountered unless 

392 specifically wanted. The performance of the method on shorter walking bouts should be 

393 maintained and may only degrade for very short bouts of walking (e.g. <5 or <3 steps). Such 

394 short bouts would be encountered e.g. indoors during housework and thus possibly may be better 

395 classified as roaming or shuffling instead of walking. In addition, for a “mean real-world walking 

396 speed” calculated over a day or week such very short bouts add too few steps to be relevant 

397 overall. Thus, their inclusion into a parkours for generating reference data is not typical.

398

399 Conclusions 

400 A surveyor’s wheel equipped with a hub-mounted 3D-accelerometer aligned with the wheel 

401 plane and an algorithm counting the peaks of two signal axes has proven to be a highly accurate 

402 method to generate ground truth data for walking distance and speed in a real-world 

403 environment. Besides its high accuracy, this method can be deployed in a real world setting and 

404 allows to be integrated into the digital data flow so that it may serve as a gold standard method 

405 for the development and validation of wearable sensor algorithms estimating real work walking 

406 speed. Future research will investigate the observer reliability of using this method in various 

407 real-world environments and with different subjects or patients, will describe the real-world 

408 environments and subject instructions (Parkour) most effective to generate large algorithm 

409 training and validation data sets and will develop computerized image analysis methods to 

410 automatically annotate video-recordings for additional context and detail.

411
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Table 1(on next page)

Distance measurement validation: Comparing built-in mechanical counter (reference) to

spoke-mounted accelerometer values (algorithm) for three walking bouts.
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 Distance Measurement  

 

Reference 

value [m]

Algorithm 

output 

[m]

Reference 

value [m]

Relative 

error [%]

Bout 1 34.48 34.50 0.02 0.06

Bout 2 27.81 27.75 0.06 0.22

Bout 3 36.03 36.00 0.03 0.08

1
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Table 2(on next page)

Establishing the treadmills systematic error for speed: Comparing distance calculated

by set speed and measurement duration (expected) versus distance from the wheel’s

mechanical counter (measured).
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Treadmill 

set-up 

[km/h]

Measurement 

duration [s]

Expected 

distance [m]

Measured 

distance [m]

Absolute 

error [m]

Relative 

error [%]

Test 1 3 300 250 260.05 10.05 4.02

Test 2 6 300 250 516.15 16.15 3.23

1
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Table 3(on next page)

Speed measurement validation: Comparing treadmill speed versus output from the

spoke-mounted accelerometer and speed algorithm.

The adjusted relative error takes the treadmill’s estimated mean error of +3.63 % into

account.
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Treadmill 

setting 

[m/s]

Algorithm 

output [m/s]

Absolute 

error [m/s]

Relative 

error 

[%]

Adj. 

relative 

error [%]

0.50 0.51 0.01 2.58 1.01

0.75 0.77 0.02 2.99 0.62

1.00 1.03 0.03 2.99 0.62

1.25 1.29 0.04 2.94 0.66

1.50 1.54 0.04 2.83 0.77

0.50 0.51 0.01 2.97 0.64

0.75 0.77 0.02 3.14 0.47

1.00 1.03 0.03 3.02 0.59

1.25 1.29 0.04 2.94 0.67

1
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Table 4(on next page)

Values from following a prescribed standardised test protocol for instrument calibration

comparing the true value from the reference measurement device and the actibelt

(measured value).
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True value  Measured value   

Revolutions 

[1/min] f [1/s]

Revolutions 

[1/min] f [1/s]

Abs. 

diff f  

[1/s]

Rel. Diff 

[%]

46.6 0.7767 46.3 0.7717 -0.0050 0.64

48.1 0.8017 48.0 0.8000 -0.0017 0.21

81.0 1.3500 81.2 1.3533 0.0033 0.25

81.5 1.3583 81.4 1.3567 -0.0017 0.12

82.2 1.3700 82.3 1.3717 0.0017 0.12

83.0 1.3833 83.1 1.3850 0.0017 0.12

84.5 1.4083 85.5 1.4250 0.0167 1.18

90.3 1.5050 90.7 1.5117 0.0067 0.44

116.2 1.9367 116.0 1.9333 -0.0033 0.17

   Avg. 0.0020 0.36

1
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Figure 1

Measurement device to generate ground truth data for walking speed in real-world

environments. Surveyor’s wheel with hub-mounted actibelt and smartphone video-

camera attached via an active gimbal.
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Figure 2

Detailed view of the accelerometer (open actibelt recording box) positioned at hub near

the rotational wheel axis.
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Figure 3

Detailed view of the smartphone screen during operation.

Screen shows the camera plus fish-eye lens recording the ground, feet and lower legs during

walking to add visual context and additional detail for algorithm development and validation.
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Figure 4

Measurement wheel in use by observer following walking subject.
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Figure 5

Raw acceleration from spoke-mounted actibelt accelerometer recorded during distance

measurement validation. Red, green: axes in wheel plane, blue: axis perpendicular to

wheel plane.
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Figure 6

Speed measurement validation: Output from the spoke-mounted accelerometer and

speed algorithm (black) versus the stepped treadmill settings (red).
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Figure 7

Influence of centrifugal force on raw accelerometry signal depending on wheel speed

(from 0 in steps of 0.25 m/s) and sensor position (spoke and hub).

Red and green: axes in wheel plane, blue: axis perpendicular to wheel plane.
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