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Abstract 27 

Response regulators function as the output components of two-component systems, which couple the 28 

sensing of environmental stimuli to adaptive responses.  Response regulators typically contain 29 

conserved receiver (REC) domains that function as phosphorylation-regulated switches to control 30 

the activities of effector domains that elicit output responses.  This modular design is extremely 31 

versatile, enabling different regulatory strategies tuned to the needs of individual signaling systems.  32 

This review summarizes functional features that underlie response regulator function.  An abundance 33 

of atomic resolution structures and complementary biochemical data have defined the mechanisms 34 

for response regulator enzymatic activities, revealed trends in regulatory strategies utilized by 35 

response regulators of different subfamilies and provided insights into interactions of response 36 

regulators with their cognate histidine kinases.  Among the hundreds of thousands of response 37 

regulators identified, variations abound.  This article provides a framework for understanding 38 

structural features that enable function of canonical response regulators and a basis for 39 

distinguishing non-canonical configurations. 40 

  41 
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1. INTRODUCTION 42 

Two-component systems (TCSs) are the predominant multi-step signaling pathways in bacteria. Two 43 

conserved proteins, a histidine protein kinase (HK) and response regulator (RR), constitute the core 44 

system (Figure 1a). Autophosphorylation of the HK at a conserved His provides a high-energy 45 

phosphoryl group that is transferred to a conserved Asp in the RR, resulting in RR activation (99). 46 

Stimuli, sensed either directly or indirectly by the HK, regulate opposing 47 

autophosphorylation/phosphotransfer and RR phosphatase activities of the HK, thus determining the 48 

level of phosphorylation of the RR and the output response. A large variety of input domains in HKs 49 

and output domains in RRs allows the coupling of an almost limitless array of chemical or physical 50 

stimuli to diverse output responses. The conserved proteins and the systems themselves are 51 

extremely versatile. An enormous range of variations in protein activities, domain architectures and 52 

system configurations allows adaptation of TCSs to the needs of specific signaling systems. 53 

TCSs are found in bacteria, archaea (41) and eukaryotes such as slime molds, yeast, and 54 

plants (2). While great diversity exists among all TCSs it should be noted that some specific trends 55 

in system configurations are found in different organisms. The Pfam database (35) lists >342,000 56 

entries of proteins containing the conserved receiver (REC, named Response_reg in Pfam) domain 57 

that characterizes RRs and >650 structures of such proteins in the Protein Data Bank (PDB) (18). In 58 

addition to their presence in RRs, REC domains are also found in hybrid HKs that function within 59 

phospho-relay systems involving multiple phosphotransfer steps, accounting for ~10% of REC 60 

domain-containing proteins. The scope of this review will focus on bacterial RRs that mediate output 61 

of TCSs. Among these RRs, variations abound. The plasticity of the REC domain and the versatility 62 

of TCS architecture has driven the evolution of RRs that are uniquely adapted and fine-tuned for 63 

function in specific pathways. Out of necessity, this review will focus on canonical RRs with full 64 
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understanding, but lack of specific acknowledgement of individual cases, that for every feature noted, 65 

exceptions exist. 66 

This review provides an overview of the structure of RRs and features that provide conserved 67 

enzymatic activities in REC domains. Beyond the core domain structures and common enzymatic 68 

mechanisms, RRs display great variation in domain arrangements that provide a variety of 69 

mechanistically distinct regulatory mechanisms. However, as structures have accumulated, trends in 70 

regulatory strategies used by different subfamilies of RRs have begun to emerge and these will be 71 

explored in this review. 72 

 73 

2. RESPONSE REGULATOR ARCHITECTURE 74 

REC Domains 75 

RRs are defined by the presence of a conserved REC domain. The REC domain fold is composed of 76 

five α helices surrounding a central five-stranded parallel β-sheet with a 21345 topology (Figure 1b). 77 

Sequence identity between REC domains is usually 20-30%, showing great variations (Figure 1c). 78 

The central hydrophobic β-strands, β1, β3, β4 and β5, are more conserved than the peripheral 79 

helices and loops. The most conserved residues include the site of phosphorylation, an Asp at the C-80 

terminus of β3, and several other residues in the β-α loops, which constitute the active site. The 81 

highly conserved phosphorylation site and the variable peripheral sequences allow RRs to couple 82 

phosphorylation to diverse effector functions. 83 

Effector Domains 84 

RRs typically function as the output components of signaling pathways. Regulatory REC domains 85 

can be linked either covalently or non-covalently to a great diversity of effectors and thus control 86 

numerous diverse responses. Figure 2 summarizes the distribution of the major RR effector domains 87 
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identified in the Pfam database. Approximately one fourth of RRs (23%) consist solely of a REC 88 

domain. These single-domain RRs (SDRRs) regulate intermolecular effectors such as the chemotaxis 89 

system regulator CheY, which binds to the flagellar motor component FliM controlling flagellar 90 

rotation. CheY-like proteins found in chemotaxis-like or chemosensory systems mediate responses 91 

other than chemotaxis, for example biofilm formation regulated by Cle proteins (77). Other 92 

functions for SDRRs include acting as intermediates in phosphorelays (e.g. the general stress 93 

response proteins SdrG and MrrA, and the sporulation protein Spo0F) (45, 63), as phosphate sinks to 94 

control phosphate flux within phosphorelays (e.g. Rhizobium meliloti CheY1) (97), as allosteric 95 

regulators of HKs (e.g. Caulobacter crescentus DivK) (24, 117) or as protease adapters (e.g. C. 96 

crescentus CpdR) (56). 97 

The largest class of RRs (64.5%) is composed of RRs containing a DNA-binding domain 98 

(DBD) with subfamilies defined by different DBD folds. The OmpR subfamily (29% of RRs) 99 

contains a winged-helix effector domain (68), the NarL subfamily (19%) a four-helix DNA-binding 100 

HTH domain (73), the NtrC subfamily (7%) a Fis-type HTH domain fused to an AAA+ ATPase 101 

domain and the LytTR (5.5%) a predominantly β fold (94). The abundance of RRs in this class 102 

likely reflects the importance of transcriptional regulation as a response to environmental change. A 103 

small class of RRs (1%) harbors an RNA-binding domain belonging to the ANTAR subfamily of 104 

anti-termination factors such as AmiR (79). 105 

RRs with enzymatic domains account for ~8% of RRs. A major group within this class (3% 106 

of RRs) is the regulators of cyclic di-GMP including cyclases (GGDEF) and phosphodiesterases 107 

(EAL, HD-GYP) (92). A second major group (2%) is the chemotaxis methylesterase CheB proteins 108 

(31). A variety of different enzymatic domains have been identified in other RRs (3%) such as the 109 

PP2C phosphatase domain of RsbY and the hybrid kinase domain of FrzE (30, 54). RRs with protein 110 
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binding domains account for ~1% of RRs.  Examples in this class include CheV, with a CheW-like 111 

domain that connects chemoreceptors to the chemotaxis histidine kinase CheA; RssB, which 112 

regulates turnover of the stress response sigma factor RpoS; and PhyR, a regulator of the general 113 

stress response that contains an extracytoplasmic function (ECF) sigma factor-like domain (1, 11, 114 

66). While RRs often contain a simple REC-effector domain architecture they can have complex 115 

domain organizations with additional signaling domains including PAS, GAF, HisKa, HATPase, etc. 116 

The large variety of RRs identified to date emphasizes the versatility of the REC domain with no 117 

apparent limits on the types of effector domains that can be controlled by this phosphorylation-118 

activated switch. 119 

 120 

3. ENZYMATIC ACTIVITIES OF RRs 121 

Conserved Phosphorylation Site 122 

One of the defining characteristics of the REC domain is its highly conserved phosphorylation site. 123 

Due to the lability of the high-energy acyl phosphate, structural characterization of the active site 124 

often relies on beryllofluoride (BeF3
-) that noncovalently binds to the phosphorylation site Asp and 125 

serves as a mimic of the phosphoryl group (119). Different BeF3
--bound RR structures reveal a 126 

conserved active site with a network of hydrogen bonds (Figure 3a). The carboxylate side chains of 127 

the acidic residue duo (DD) at the β1-α1 loop participate in coordinating a Mg2+ required for 128 

catalysis. Sidechains of two additional residues, a Thr/Ser (T) at the β4-α4 loop and a Lys (K) at the 129 

β5-α5 loop, together with backbone atoms of non-conserved active site residues, coordinate 130 

phosphate oxygens in the phosphorylated REC domain. 131 

RR phosphorylation level, the ultimate determining factor of TCS output for canonical RRs, 132 

is regulated by multiple enzyme activities, including phosphotransfer from HKs, dephosphorylation 133 
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by auxiliary phosphatases or bifunctional HKs that also possess RR phosphatase activity, 134 

autophosphorylation by small-molecule phosphodonors such as phosphoramidate and acetyl 135 

phosphate (AcP) (67, 115), and autodephosphorylation activities. Similar phosphorylation sites with 136 

almost identical positioning of active site residues have been observed in numerous RR or RR 137 

complex structures (21, 81, 86, 107). A pentavalent phosphorus intermediate is believed to be a 138 

common transition state for different activities of the REC domain (Figure 3b). Both 139 

phosphorylation and dephosphorylation reactions can proceed through either an associative or a 140 

dissociative mechanism depending on how tight or extended the transition state is. A phosphodonor 141 

or water molecule needs to be in line with the acyl phosphate bond that is to be formed or broken. 142 

The phosphotransferase or phosphatase helps position these molecules to further enhance the 143 

reaction rates. In all cases, the majority of residues involved in coordinating the phosphorus 144 

intermediate are from the REC domain. Thus, most RRs are catalytically competent of 145 

autophosphorylation and autodephosphorylation in the absence of any enzymatic protein partner and 146 

in vitro analyses of these reactions often provide insights into RR regulatory mechanisms.  147 

Autodephosphorylation and Autophosphorylation 148 

Despite the highly conserved active site geometry, RRs show large variations in rates of 149 

autophosphorylation and autodephosphorylation (87, 101, 102). For example, autodephosphorylation 150 

rate constants of the REC domain range over six orders of magnitude, giving phosphorylation half-151 

lives of seconds to hours and even days (101). Such great diversity is partly attributed to several 152 

variable residues surrounding the active site, such as positions D+2 (two residues C-terminal to the 153 

conserved D), T+1 and T+2 (one and two residues C-terminal to T) (Figure 3b and 3c). Backbone 154 

atoms of D+2 and T+1 directly form hydrogen bonds with the phosphoryl group while the charge, 155 

size and hydrophobicity of sidechains at these three positions may affect the energy barrier of the 156 
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transition state, facilitate the positioning or block the in-line path of the phosphodonor or attacking 157 

water (53, 80, 102, 121).  In more than half of RR sequences, a limited number of amino acid 158 

combinations are preferred at these positions and the distribution of preferred amino acids correlates 159 

with RR effector subfamilies (53, 80). REC enzyme activities are therefore suggested to co-evolve 160 

with effector domain regulation and these residues represent functional sites for modulating the 161 

stability of RR phosphorylation to match the timescale of individual TCS output responses. 162 

Phosphorylation by small molecules, particularly AcP, has long been suggested to be 163 

physiologically relevant in some RRs to couple TCS output to global conditions (115). RR 164 

phosphorylation, often in the absence of the cognate HK, can be influenced by cellular AcP levels 165 

that are sensitive to the metabolic state of cell. Because the phosphorylation rate by AcP is usually 166 

much slower than the rate of phosphotransfer by the cognate HK and often offset by the phosphatase 167 

activity of bifunctional HKs or other auxiliary phosphatases (43, 57), the contribution of 168 

phosphorylation by AcP to TCS output is typically minimal in wild-type cells. However, given the 169 

great diversity of TCSs, AcP can play a significant role in some systems, specifically those with a 170 

fast RR autophosphorylation rate and/or a slow phosphatase rate (59, 85).  171 

HK-mediated Activities 172 

RR phosphatase activities mediated by HKs or auxiliary phosphatases are believed to function 173 

through positioning a water molecule and stimulating the intrinsic RR autophosphatase activity (17). 174 

Structure of CheY3 complexed with the phosphatase CheX (86) reveals an amide side chain 175 

inserting into the RR active site and forming a hydrogen bond with the attacking water molecule 176 

(Figure 3c). Similar positioning of the amide from a Gln or Asn residue has been observed in 177 

different phosphatases with distinct structures, such as CheX (86), CheZ (123) and RapH (81), as 178 

well as the phosphatase state of DesK, a bifunctional HK from the second largest HK subfamily, 179 
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HisKA_3 (107). The Gln-containing sequence motif, DXXXQ, is located immediately after the 180 

phospho-accepting His residue in HKs from the HisKA_3 subfamily. The His residue does not 181 

appear to be required for RR dephosphorylation despite its close proximity to the phosphatase-182 

essential Gln (52) . For the largest HK subfamily, HisKA, the His residue may play a role in RR 183 

dephosphorylation (62, 125) but the exact phosphatase mechanism is less clear. An EXXN/T motif 184 

similar to CheX-like phosphatases has been identified and the conserved Asn/Thr residue is 185 

suggested to be the catalytic residue (52). However, among the available structures of RR complexes 186 

with HKs of the HisKA subfamily, the side chain of the Asn/Thr residue is not at a similar position 187 

as the Asn/Gln in other phosphatases and is distant from the active site Asp. A dual engagement 188 

model has been suggested involving both His and Asn/Thr residues positioning the catalytic water 189 

molecule (62). Roles of the two residues may differ for individual HisKA proteins depending on 190 

structural details and structures unequivocally capturing the phosphatase state are needed to 191 

elucidate the mechanism.  192 

Loss of RR phosphorylation can result from autodephosphorylation, dephosphorylation by 193 

the HK and back-transfer to the cognate HK (34, 98), i.e. the reverse reaction of phosphotransfer. 194 

The back-transferred histidyl phosphoryl group can be further transferred to ADP (46, 100) or to 195 

other RRs that function as phosphate sinks to modulate phosphorylation levels (3, 98, 103). Back-196 

transfer is suggested to accompany an associative transfer mechanism that has a tight RR 197 

phosphorylation transition state and appears to be evolved for bi-directional transfer common in 198 

CheA or other HPt-containing phosphorelay proteins (107, 122). Unidirectional phosphotransfer 199 

with little back-transfer, observed in several canonical HKs, is linked to a dissociative mechanism 200 

and the asymmetry of the Mg2+ position in an extended transition state (107). The dissociative 201 

mechanism can be distinguished by a long distance between the conserved Asp and His residues in 202 
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an HK-RR complex structure. It remains to be investigated whether there is any domain preference 203 

or sequence signature that distinguishes the two mechanisms and determines the relative rates of 204 

forward- and back-transfer. Residues affecting the transition state stability, such as non-conserved 205 

residues at D+2, T+1 and T+2 positions, also modulate the HK-catalyzed phosphotransfer rate (53, 206 

107). Due to multiple phosphorylation and dephosphorylation reactions present simultaneously, 207 

quantitation of individual activities is often complicated by interference from other activities. 208 

Furthermore, RR activities measured in vitro with truncated cytoplasmic fragments of 209 

transmembrane HKs require careful examination and may differ greatly from their full-length 210 

counterparts in the cellular environment (43). 211 

 212 

4. REGULATORY MECHANISMS IN RR SUBFAMILIES 213 

As a phosphorylation-activated switch between inactive and active conformations, the REC domain 214 

mediates effector functions through intramolecular and/or intermolecular interactions. Structures of 215 

individual REC and effector domains usually undergo subtle changes upon phosphorylation, but the 216 

overall structures may vary greatly because of different domain arrangements. A typical RR 217 

regulatory mechanism is exemplified by Staphylococcus aureus VraR (Figure 4a), one of a few RRs 218 

with full-length protein structures available in both phosphorylated (or BeF3
--bound) and 219 

unphosphorylated states (60). The monomeric unphosphorylated VraR adopts a closed conformation 220 

with extensive contacts between the REC and DBD effector domains, holding the DNA-recognition 221 

helix at a position unfavorable for dimerization on DNA. Phosphorylation results in an extended 222 

conformation with a flexible linker between the two domains and an altered REC surface that 223 

promotes RR dimerization for DNA binding.  224 
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Negative regulation in the inactive state and positive regulation in the active state, as shown 225 

for VraR, are two common mechanisms mediated by the REC domain (Figure 4b). For positive 226 

regulation, the REC domain facilitates the effector domain function, as shown for many DBD-227 

containing RRs in which dimerization of the phosphorylated REC domains is thought to promote 228 

DNA binding and transcription regulation. Effector domains of some RRs, such as NtrC1 (58) and 229 

CheB (31), are catalytically competent when alone, but are inhibited by the REC domain in the 230 

inactive state. The two mechanisms are not exclusive and many RRs use both. Regulatory details for 231 

individual RRs show great variations that may have been evolved to adapt each protein to its unique 232 

structure and function. For example, in inactive states, interactions between REC and effector 233 

domains can differ dramatically (Figure 4b), even within the same subfamily of RRs (42). 234 

Functional sites, such as the DNA-recognition helix for DBDs and the active site for enzymatic 235 

effector domains, can be buried within the REC-effector interface or exposed but held at unfavorable 236 

positions by tight interactions. Extended conformations with few interdomain contacts have also 237 

been observed for a few RRs that are believed to employ a positive regulatory mechanism. 238 

Inactive and Active Conformational States 239 

The REC interaction surface that mediates effector domain function is usually distant from the 240 

phosphorylation site. A dynamic allosteric mechanism allows conformational changes at the 241 

phosphorylation site to propagate to the distal interaction surface. The REC domain samples 242 

different allosteric conformations and exists in equilibrium between inactive and active 243 

conformations, with phosphorylation shifting the equilibrium. A “Y-T coupling” allosteric 244 

mechanism was initially described for CheY (25, 124) and several other RRs (14, 47). 245 

Rearrangement of the conserved T at the phosphorylation site (Figure 3a) is believed to correlate 246 

with the rotameric conformation of a conserved Tyr/Phe (Y) residue in the β5 strand. In the active 247 
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state, the aromatic side chain is oriented toward the interior of the REC domain, distinct from the 248 

outward position in the inactive state (Figure 5a), resulting in alteration of the α4-β5-α5 face, a 249 

surface widely used by many RRs for interdomain interactions. Because of the readily recognizable 250 

position of the two residues, they are often used to classify structures as inactive or active, with the 251 

caveat that the conformational change involves a broad surface of the REC domain and Y-T 252 

coupling is not the only allosteric mechanism (20, 109). 253 

X-ray crystallography has been central to understanding RR regulatory mechanisms although 254 

conformations trapped in crystals represent only static snapshots of RR conformational dynamics 255 

and can be influenced by experimental conditions, crystal lattice contacts and high protein 256 

concentrations used in crystallization. A particular interaction interface or 257 

dimerization/oligomerization mode observed in crystal structures, such as domain-swapped dimers 258 

observed in several RRs (17, 26, 55), may not be physiologically relevant and requires 259 

complementary experiments for validation. Nevertheless, an increasing number of RR structure 260 

snapshots start to reveal different states of conformational trajectories and trends of prevalent 261 

regulatory strategies in RR subfamilies. 262 

DBD-containing RRs, the largest class of RRs, have the greatest number of X-ray structures 263 

available, making it possible to analyze the allosteric conformational features within individual RR 264 

subfamilies (Table 1). All structures crystalized with phosphorylated or BeF3
--bound RRs display 265 

inward orientations of the side chain at the conserved Y position while conformations of 266 

unphosphorylated RRs are diverse. For unphosphorylated RRs in the OmpR and NtrC subfamilies, 267 

both outward and inward orientations of Y residues have been observed, with the inward orientation 268 

more readily observed for the REC domain alone than for multi-domain proteins (Table 1). This is 269 

consistent with NMR studies suggesting that unphosphorylated RRs exist in equilibrium between 270 
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inactive and active conformations (110) while interactions with the effector domain shift the 271 

equilibrium to the inactive state (27). The inward orientation of Y is predominant for most NarL 272 

subfamily members irrespective of phosphorylation status, thus is unlikely indicative of the active 273 

state, but rather a result of packing the α4-β5-α5 face with an accessory β6 strand, a structural 274 

feature found in many RRs of the NarL subfamily (20, 60, 83, 106). Therefore, the Y-T coupling 275 

mechanism is not universal in all RRs. Even for NtrC in which orientation switching has been 276 

observed, interconversion of the aromatic side chain has been suggested not to be involved in 277 

allosteric regulation because its rate of conversion is faster than the rate of active/inactive state 278 

conversion (109). RRs appear to be highly plastic for allosteric regulation with diverse mechanisms 279 

matching their sequence and structural features. 280 

The Y and T residues are two of many residues that may participate in allosteric regulation. 281 

As discussed earlier, the phosphorylation site involves an intricate hydrogen-bond network with 282 

several residues from the β1-α1, β3-α3, β4-α4 and β5-α5 loops. It has been recognized that 283 

interactions, such as salt bridges and van der Waals contacts, of residues at D+1, T+1, T+2, K and 284 

other positions can impact loop conformations and propagate the conformational changes to different 285 

areas of the REC domain (5, 14, 20, 44, 70, 106). Conformations with only subsets of active site 286 

residues at proper hydrogen-bonding positions have been discovered for many RRs (37, 95, 106) and 287 

are often referred to as meta-active states. A single RR can have multiple meta-active states with 288 

different combinations of loop conformations, as shown for NtrX (37). Unphosphorylated RRs can 289 

exist in equilibrium between the active state and multiple inactive or meta-active conformations and 290 

there are multiple pathways for transition to the active state (37, 44, 89). NMR relaxation data also 291 

support a model of segmental motions of multiple allosteric residues for activation of CheY, instead 292 

of a strict two-state switching model (70).  293 
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Just as phosphorylation shifts the equilibrium for effector domain regulation, the reverse 294 

scenario, with output domains affecting phosphorylation, has also been observed (8, 37). It has been 295 

suggested that adoption of an active conformation precedes phosphorylation (44, 53). 296 

Phosphorylation can be accelerated by any effect that increases the population of active 297 

conformation, such as relieving inhibition from the output domain by truncation, DNA binding in 298 

DBD-containing RRs, dimerization at high protein concentrations and HK-RR interaction (8, 9, 27, 299 

28, 37, 66). Surface changes caused by these different interactions can propagate through the 300 

connecting βα loops to the phosphorylation site and other regions of the REC domain, increasing the 301 

active state population. One extraordinary example is DesR in which the HK-RR interaction can 302 

stabilize the active state of DesR and promote dimerization (66). Besides the phosphorylation-303 

activated switch, interaction with the HK also functions as an allosteric switch to increase the 304 

population of active conformation for transcription activation. The same principle may be the basis 305 

for many phosphorylation-independent regulatory mechanisms. 306 

Dimerization Modes and Corresponding Conformational Changes 307 

Phosphorylation-promoted conformational changes are routinely identified by comparing X-ray or 308 

NMR structures obtained for unphosphorylated and BeF3
--bound RRs. As shown in Figure 5a, for 309 

the stand-alone RR CheY, significant differences in positions of backbone atoms occur at the β4-α4, 310 

β5-α5 loops and part of the α4-β5-α5 surface where CheY binds the FliM effector protein to regulate 311 

flagellar rotation. It is unsurprising that structural elements of the REC domain undergoing the 312 

largest rearrangements upon phosphorylation often correlate with protein-protein interaction surfaces, 313 

particularly, the dimer interface for DBD-containing RRs. Certain dimerization modes are popular 314 

for specific RR subfamilies with corresponding conformational changes. 315 
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A dimerization mode using the complete α4-β5-α5 surface is predominant in the OmpR 316 

subfamily (Figure 5b). Dimer interaction involves salt bridges between pairs of highly conserved 317 

charged residues within the α4-β5-α5 region (104, 105). For the DrrB protein shown in Figure 5b, 318 

conformational changes span the entire dimer surface. A Tyr residue is prevalent at the Y position 319 

(111) and switching of Tyr orientations has been observed. In several RRs (40, 78, 91), the hydroxyl 320 

group of Tyr is in close proximity to a polar residue from the DBD (Figure 5b right), suggesting a 321 

potential role in effector inhibition. This is unlikely to be a common mechanism given the wide 322 

diversity of domain arrangements within the subfamily (8). RRs from the OmpR subfamily often 323 

recognize tandem DNA sites and two DBDs bind DNA in a head-to-tail manner (15, 48, 64, 76). The 324 

translational symmetry of DBDs coupled with the rotational symmetry of the REC domain predicts a 325 

flexible linker or different REC-DBD interfaces for individual RR monomers within the RR-DNA 326 

complex. Such asymmetry of REC-DBD interfaces has been observed for KdpE and PmrA (65, 76). 327 

However, NMR studies suggest that the REC-DBD interaction observed for PmrA in the crystal 328 

structure is transient in solution (65). Additionally, alternative dimers involving α1-α5 (6, 71) or 329 

other surfaces (13) have also been discovered for unphosphorylated RRs but the physiological 330 

relevance of these dimers awaits further studies. 331 

The NtrC subfamily of RRs displays two major modes of dimerization, with each involving 332 

different subsets of the α4-β5-α5 face (Figure 5c). The α4-β5 dimer interface is often seen in 333 

phosphorylated RRs (Table 1) or unphosphorylated RRs with meta-active conformations (32, 37, 334 

84). Another β5-α5 dimer is associated with inactive conformations (36, 84), as indicated by the 335 

outward orientation of the Phe residue at the Y position. Dimer interaction centers around the β5-α5 336 

face, sometimes with a slightly tilted α5 helix in contact with both β5 and α4. Formation of the 337 

inactive β5-α5 dimer is believed to inhibit the AAA,+ ATPase output domain from oligomerization 338 
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and transcription initiation (10, 84). For the LytTR subfamily, structural information is limited and a 339 

dimer also involving the α4-β5 subset of the α4-β5-α5 face has been observed for ComE (16). 340 

Diverse dimerization modes have also been observed in the NarL subfamily. An α4-β5 dimer 341 

interface and the phosphorylation-dependent orientation of the Phe residue have been reported for 342 

the REC domain of FixJ (14). However, most RRs from the NarL subfamily show an α1-α5 dimer 343 

interface (Table 1) distinct from the widely used α4-β5-α5 surface (7, 20, 29, 60, 82, 106). The 344 

dimer interface mainly involves the α1 helix, the β1-α1 and β5-α5 loops (Figure 5d). 345 

Correspondingly, significant structural rearrangements spanning to the α1 helix have been observed 346 

when apo- and BeF3
--bound structures are compared. As discussed earlier, many RRs of the NarL 347 

subfamily display a constitutive inward orientation of the residue at the Y position, thus this residue 348 

is unlikely to be involved in allosteric regulation. Instead, different switching mechanisms involving 349 

the T residue and other residues at α1, the β1-α1, β4-α4 and β5-α5 loops have been proposed for 350 

different RRs, such as VraR, DesR and RcsB (20, 60, 106). In addition to the α1-α5 dimer interface, 351 

the α4-β5-α5 surface is also remodeled to alter the positioning of the accessory β6 and α6 that are 352 

directly linked to the effector domain. Another dimer mode involving β6 and α6 is common (Figure 353 

5d, right) and several RRs, such as VraR (60), DesR (106), Spr1814 (82) and LiaR (29), show both 354 

α1-α5 and β6-α6 dimer modes within a single crystal. It has been suggested that the β6-α6 dimer 355 

may help RRs to form higher order oligomers on DNA to bind arrays of DNA-binding sites (106). 356 

DNA-bound structures of RcsB again indicate an asymmetric dimer with different rotation symmetry 357 

axes for the REC and DBDs (38).  Different relative positions of the REC and DBDs are frequently 358 

observed for different full length RRs. Asymmetry is believed to result from either different REC-359 

DBD interactions (20, 38) or a flexible linker that enables different disposition or even domain-swap 360 

of individual domains trapped in crystals (29, 60). 361 
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  362 

5. RESPONSE REGULATOR – HISTIDINE KINASE INTERACTIONS 363 

HK Conformational States 364 

HKs have a modular architecture with a large variety of sensory domains (extracellular, 365 

transmembrane or cytoplasmic) linked to a conserved catalytic domain by one or more signal 366 

transducing domains (12, 69) (Figure 1a). The cytoplasmic enzymatic core of HKs consists of a 367 

dimerization histidine phosphotransfer (DHp) domain and a catalytic ATP-binding (CA) domain. 368 

The DHp domain contains the conserved phosphorylatable His residue and mediates dimerization of 369 

the HK to form a 4-helix bundle that is essential for its activity (Figure 6). The DHp dimer is 370 

flanked by the two α/β catalytic CA domains containing the kinase active sites that catalyze 371 

phosphoryl transfer from ATP to the His residues. Autophosphorylation of the HK provides a high-372 

energy phorphoryl group for subsequent phosphotransfer to the RR. Most HKs also mediate 373 

dephosphorylation of their cognate RRs in order to modulate the output response. 374 

 Large conformational changes in HKs occur during transitions between kinase, 375 

phosphoryltranfer and phosphatase states. In the HisKA_3 subfamily of HKs (e.g. DesK of Bacillus 376 

subtilis), the switch between states involves a large rotation of the DHp domains, a mechanism that 377 

is less pronounced in the HisKA subfamily. Specific regulatory mechanisms have been described for 378 

individual HKs, including the stabilization of the phosphatase state by ligand binding (e.g. c-di-GMP 379 

binding on CckA) and the inhibition of the phosphatase state by a pH-dependent conformational 380 

switch (33, 62). In contrast to the different conformations of HKs, structures of HK-REC domain 381 

complexes determined to date indicate that REC domains bound to either phosphotransfer or 382 

phosphatase states of HKs have similar conformations, with the REC domain displaying a meta-383 

active conformation, as defined in the previous section. 384 
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Partner Recognition and Specificity  385 

Specificity of HK-RR pairs is crucial for the integrity of signaling pathways, given the large number 386 

of different TCSs that typically exist in a single cell. Specificity within a pair is mediated by 387 

recognition residues that participate in HK-RR binding. These residues are located in helix α1 of the 388 

REC domain and in the two α helices of the HK DHp domain that contribute to the binding interface. 389 

Signaling pathways have been successfully rewired by substituting as few as three co-evolved 390 

specificity residues (88, 96). Additional strategies are employed to further ensure specificity of the 391 

pairs. For example, the phosphatase activity of HKs eliminates non-specific phosphorylation by non-392 

cognate kinases or small molecule phosphodonors such as AcP. The low-abundance of HKs relative 393 

to RRs also minimizes cross-phosphorylation between non-cognate pairs (57). 394 

 In an HK-RR complex, the REC domain inserts its α1 helix and β5-α5 loop between the two 395 

helices of the DHp domain, primarily contacting the DHp α1 helix that contains the 396 

phosphorylatable His residue. This conserved mode of binding buries the active site of the REC 397 

domain at the HK-RR interface (Figure 6). Thus, conserved residues of both the HK and RR form a 398 

substantial subset of the interface residues, with specificity being determined by a relatively small 399 

set of variable residues. In addition to these specificity residues in α1 of the REC domain and the 400 

two helices of the DHp domain, additional variable contacts can involve the β2-α2, β3-α3 and β4-401 

α4 loops of the REC domain interacting with the CA domain, the C-terminal region of the DHp and 402 

the DHp-CA linker of the other protomer of the dimer (Figure 6) (21, 72, 74, 88, 107, 108, 114, 118, 403 

122). Other contacts can occur between the REC domain and additional domains within the HK, 404 

increasing the specificity and/or stability of the pair (e.g. contacts between the PAS domain of ThkA 405 

and the RR TrrA) (118). These elements suggest that beyond the conserved REC-DHp interface that 406 

buries the active site, the binding interface can vary greatly in different HK-RR pairs. 407 
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 A model based on structures of HK FixL and full-length RR FixJ suggests that the RR 408 

effector domain is free to move and does not participate in binding to the HK (116). However, a lack 409 

of structures of full-length RRs bound to HKs leaves open the question as to how effector domains 410 

might be positioned relative to REC domains and domains of the HK. Given the great diversity in 411 

REC-effector domain arrangements in different inactive RRs, it is possible that diversity exists in the 412 

ways effector domains interact in different HK-RR complexes. It is easy to envision how an effector 413 

domain could participate in the stability of the complex and/or the efficiency of catalysis. Indeed, the 414 

meta-active conformation of the REC domain observed in HK-REC domain complexes might be a 415 

consequence of isolated REC domains being unhindered by REC-effector interactions that could bias 416 

conformational states. 417 

Phosphotransfer State 418 

Structural and biochemical studies of DesK-DesR complexes suggest that one HK dimer binds to 419 

one RR molecule in an asymmetric conformation. The DesK-DesR structure and a docking model of 420 

CpxA-CpxR in a putative phosphotransfer state show asymmetry within the HK dimer, with the CA 421 

domain of one monomer bound to the DHp domain of the other monomer, leaving the second CA 422 

domain untethered with enough space for RR binding to the DHp. Structural data from the DesK-423 

DesR complex and from CpxA-CpxR model suggest that this highly dynamic state is coupled with 424 

autokinase activity, involves back-and-forth movements of the DHp and CA domains, and is 425 

modulated by REC domain binding (72, 107). 426 

Phosphatase State 427 

In contrast to the asymmetrical domain arrangements associated with phosphotransfer, HK-RR 428 

complexes in putative dephosphorylation states have symmetrical arrangements of the HK DHp and 429 

CA domains. The REC domains are also arranged symmetrically, each interacting with a DHp 430 
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domain with a 2:2 HK:RR stoichiometry (62, 107). The HK in its phosphatase state is more rigid 431 

than in the phosphotransfer state, with the N-terminal coiled-coil of the DHp domains being highly 432 

stable. 433 

 Despite the large number of structures recently determined, the mechanistic details of the 434 

enzymatic reactions involving HKs and RRs are not fully understood. Discrimination between the 435 

phosphotransfer and phosphatase states that have been trapped in crystal structures still remains 436 

challenging. The situation is further complicated by distinct phosphatase mechanisms used by HKs 437 

of different subtypes. A major limitation of current studies is the use of truncated proteins, most 438 

notably the cytoplasmic domains of transmembrane HKs lacking sensor and transmembrane regions 439 

that in intact proteins control the signaling states of HKs, and REC domains of RRs in the absence of 440 

effector domains that are known to influence their conformational equilibria. While conserved 441 

features of HK-RR interactions are beginning to be elucidated, variations on the theme are 442 

anticipated. Similar to many other aspects of TCS structure and function, it is likely that the great 443 

variety of domain architectures in TCS proteins enable different modes of HK-RR interactions and 444 

regulatory mechanisms that are adapted to individual HK-RR pairs. 445 

 446 

6. NON-CANONICAL MODES OF RR REGULATION 447 

The canonical mechanism for regulation of RR activity involves phosphorylation at a conserved Asp 448 

in the REC domain, stabilizing an active conformation that enables effector domain function. 449 

Regulation of RR activity, in addition to or in place of Asp phosphorylation, potentially can be 450 

achieved in many different ways including post-translational modifications at other sites that bias the 451 

conformational equilibrium of the REC domain or directly alter effector domain function, 452 

interactions that lower the energetic barrier for transition to an active conformation, ligand binding 453 
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to the RR, and regulation of expression to control RR levels and thus dimerization or 454 

oligomerization. Indeed, each of these strategies has been observed and a few examples are 455 

described below. 456 

Reversible protein acetylation is known to regulate metabolic enzymes and transcription in 457 

bacteria (49) and was documented in CheY more than 20 years ago (90). Enzyme catalyzed 458 

acetylation of CheY at K91 and K106 increases in response to acetate and promotes clockwise 459 

flagellar rotation, with acetylation at K91 proposed to alter conformational dynamics of the β4α4 460 

loop (39). Autoacetylation with AcCoA as acetyl donor at other sites in CheY is thought to link 461 

chemotaxis to the metabolic state of the cell (120).  Another well-characterized example of 462 

acetylation occurs in E. coli transcription factor RcsB. Acetylation of K154, a residue in the helix-463 

turn-helix motif that interacts with a phosphate in the DNA backbone, disrupts DNA binding, down-464 

regulates expression of the acid stress response genes, and compromises survival in acidic conditions 465 

(22, 51). It should be noted that the stoichiometry of acetylation has not been determined, thus 466 

physiological effects observed with mutations that mimic fully unmodified or acetylated states might 467 

overestimate regulation that occurs in wild-type cells. A proteomics study in E. coli documented 468 

acetylation of seven RRs: ArcA, CheY, CpxR, EvgA, NarL, OmpR and RcsB (22). The E. coli 469 

genome encodes 26 putative Gcn5 N-acetyltransferases (GNATs) and a single known deacetylase 470 

(CobB) (49). While the best-characterized acetyltransferase, PatZ, is proposed to mediate a global 471 

strategy linking regulation to metabolic state, the large number of acetyltransferases raises the 472 

possibility of substrate specificity that might enable system-specific signaling mechanisms. 473 

Signal-induced, HK-dependent, phosphorylation-independent monomer to dimer activation 474 

has been observed for several RR transcription factors.  In the extensively studied B. subtilis system, 475 

binding of DesR to DesK promotes an active conformation of DesR. At sufficiently high RR 476 
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concentrations and with a slow active to inactive state transition, dimerization can occur upon 477 

release of the RR from the HK with subsequent stabilization of the dimer upon DNA binding (106). 478 

Similar phosphorylation-independent activation of OmpR by HK EnvZ has been observed in acidic 479 

conditions (23). Cyanobacterial transcription factor NblR contains a conserved Asp, but lacks other 480 

residues necessary for phosphorylation. HK NblS is required for phosphorylation-independent 481 

activation of NblR. However, no NblS-NblR interactions have been detected and the activating 482 

monomer to dimer transition is postulated to be promoted by another protein partner (93). 483 

Multiple strategies have been identified for regulation of orphan RRs that lack a conserved 484 

Asp and/or other conserved residues necessary for phosphorylation. In streptomycetes, two atypical 485 

RR transcription factors that lack residues necessary for phosphorylation, JadR1 and RedZ, are 486 

regulated by the end products of the antibiotic biosynthetic pathways they control. The antibiotic 487 

JdB binds directly to the JadR1 REC domain, disrupting DNA binding (112). A different strategy is 488 

used by Helicobacter pylori HP1043, which exists as a constitutively active dimer in vitro with a 489 

crystal structure similar to that of other activated OmpR subfamily members (50). Levels of HP1043 490 

are regulated both transcriptionally and post-transcriptionally leading to speculation that control of 491 

expression of this constitutively active RR may be the sole mechanism for regulating HP1403 492 

activity (75). 493 

Combinations of these mechanisms create even more strategies. Streptomyces coelicolor 494 

GlnR, which regulates genes for nitrogen assimilation, is an orphan OmpR subfamily RR that lacks 495 

residues for Asp phosphorylation and forms a constitutive α4-β5-α5 dimer (61). GlnR is 496 

phosphorylated at 6 Ser/Thr sites in the DNA-binding domain under N-rich conditions, disrupting 497 

DNA binding.  GlnR is also acetylated at multiple Lys residues in the DNA-binding domain, with 498 

acetylation enhancing DNA binding (4). 499 
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 500 

7. CONCLUDING REMARKS 501 

When the structure of an RR REC domain was first reported thirty years ago, a central question was 502 

how this single conserved domain could regulate responses as diverse as flagellar rotation, 503 

transcription, and enzyme activity. The answer that emerged defined a mechanism that was both 504 

simple and versatile. The small α/β REC domain exists in equilibrium between two primary 505 

conformations with phosphorylation stabilizing an active conformation. This phosphorylation-506 

regulated switch enables regulatory strategies via any type of activating or inhibitory 507 

macromolecular interactions that discriminate between the two states. Hundreds of structures of RRs 508 

have provided descriptions of the conformations of REC domains in inactive and active states, 509 

interactions with effector domains, DNA, HKs and auxiliary proteins. These structures provide a 510 

foundation for identifying conserved features as well as specific variations in individual RRs. 511 

Beyond the universally conserved enzymatic mechanisms facilitated by configurations at the active 512 

site, other features such as Y-T coupling, regions of conformational perturbations, domain 513 

arrangements and modes of DNA binding show distinct trends among RRs within specific 514 

subfamilies. 515 

Numerous variations on most every feature of RRs have been observed and undoubtedly, 516 

many more remain to be discovered. The plasticity of the REC domain and versatility of RR design 517 

allow an almost unlimited array of adaptations to fit the needs of individual signaling systems. 518 

Defining details of how specific structural features impact function is important for interpreting the 519 

nuances of RR behavior within specific TCSs as well as for pursuit of applied projects such as 520 

development of antimicrobial therapeutics or the engineering of synthetic biosensing pathways. 521 
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Our current understanding of RR structure is largely informed by compiling information 522 

derived from many partial structural descriptions of different RRs. Very few structures are available 523 

for full-length multi-domain RRs in both inactive and active states. The crystal structures that do 524 

exist are constrained by the limitations of the methodology, specifically the capture of single discrete 525 

states that do not reflect conformational distributions and the potential promotion of inter- and/or 526 

intra-molecular interactions that are influenced by the high concentrations of proteins used in 527 

crystallization and/or stabilization of conformations necessary for crystallization and lattice 528 

interactions. While NMR studies have provided information about dynamics and conformational 529 

distributions in solution, size limitations have mostly precluded studies of full-length RRs, dimers, 530 

oligomers and complexes of RRs with HKs or other macromolecular partners. Thus, while structures 531 

unambiguously define allowable states, it is important to keep in mind the conformationally dynamic 532 

nature of RRs and the potential influence of associated domains and macromolecular partners when 533 

interpreting structures determined by methodologies with technical limitations. The emergence of 534 

new structural methods such as high-resolution cryo-electron microscopy promise to provide 535 

solutions to some of these challenges. 536 
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 TERMS AND DEFINITIONS 869 
 870 
AcP acetyl phosphate 871 

BeF3
- beryllofluoride 872 

CA catalytic/ATP-binding (domain) 873 

DBD DNA-binding domain 874 

DHp dimerization/histidine phosphotransfer (domain) 875 

ECF extracytoplasmic function  876 

HK histidine kinase 877 

HPt histidine-containing phosphotransfer (domain) 878 

PDB Protein Data Bank 879 

REC receiver (domain of response regulator protein) 880 

RR response regulator protein 881 

SDRR single-domain response regulator 882 

TCS two-component system 883 
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FIGURE CAPTIONS 885 

Figure 1. Common features of RRs. (a) Schematic diagram of the prototypical TCS pathway. (b) 886 

The conserved (βα)5 fold of REC domains. Phosphorylation site residues and the phosphoryl group 887 

mimic, beryllofluoride (BeF3
-), are shown in sticks. (c) Sequence conservation of RECs. The 888 

profiled hidden Markov model (HMM) for the REC protein family (Pfam PF00072) is shown as 889 

sequence logos (113) with the secondary structure elements illustrated. Heights of individual stacked 890 

letters at each position correspond to information contents, reflecting the probability of observing the 891 

particular amino acids at each position. Phosphorylation site residues (stars), named after the most 892 

conserved amino acids (DD, D, T and K), are among the most conserved residues in REC domains. 893 

 894 

Figure 2. Classification of RRs by their effector domains. The percentile distribution is indicated for 895 

RR effector functional classes and RR subfamilies. RR subfamilies are defined by effector domain 896 

folds identified in Pfam. Representative proteins are traditionally used to name the OmpR, NarL and 897 

NtrC subfamilies with effector domains named Trans_reg_C, GerE and Sigma54_activa in Pfam. 898 

Representative structures of each subfamily are shown with REC domains colored in grey and 899 

effector domains in colors (PDB ids: KdpE, 4KNY; RcsB, 5W43; LuxO, 5EP0; AgrA, 3BS1; AmiR, 900 

1QO0; WspR, 3BRE; CheB, 1A2O).  901 

 902 

Figure 3. Phosphorylation site of the REC domain. The phosphoryl group is positioned by a network 903 

of hydrogen bonds (dashed lines) with side chains of the highly conserved residues (orange) as well 904 

as backbone atoms of non-conserved residues (light pink). Non-conserved active site residues are 905 

labeled by their relative sequence positions to the nearest conserved residues, such as T+1, indicating 906 
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one residue C-terminal to the conserved Thr/Ser residue. (a) Phosphorylation site of the archetype 907 

RR CheY in the active conformation (PDB id: 1FQW) with residues that are differently positioned 908 

in the inactive conformation (2CHE) shown in cyan. (b) The putative trigonal bipyramidal transition 909 

state for both phosphorylation and dephosphorylation. X represents the leaving group of the 910 

phosphodonor for phosphorylation or the attacking water for dephosphorylation. (c) Surface view of 911 

the active site in the phosphatase-REC complex (3HZH).   912 

 913 

Figure 4. RR regulatory strategies. (a) Distinct inactive and active RR conformations exemplified 914 

by full-length RR VraR (PDB ids: 4GVP, 4IF4). BeF3
- is shown in red spheres. (b) Schematic 915 

diagrams of RR regulatory mechanisms. Functional sites of effector domains, such as enzyme sites 916 

or DNA recognition regions, are shown as pink dots. These sites can be buried or exposed in a wide 917 

variety of inactive RR conformations and their activity depends on different interactions between the 918 

REC and effector domains. Phosphorylation of the RR can relieve REC domain inhibition, promote 919 

effector function or both. Representative RRs that utilize these strategies are indicated. 920 

 921 

Figure 5. Phosphorylation-induced conformational changes in the REC domain. RR structures with 922 

or without BeF3
- were aligned using the conserved strands β1, β3, β4, and β5 to compute the average 923 

backbone RMSD per residue (a, right). RMSD values above the median + 2x MAD (median 924 

absolute deviation) are considered as significant conformational changes and the corresponding 925 

residues are colored blue. Non-REC structural elements are colored cyan. BeF3
- is shown as red 926 

spheres and residues involved in the potential Y-T coupling are shown as green or gray sticks. 927 

Representative protein structures shown for the (a) Stand-alone, (b) OmpR, (c) NtrC and (d) NarL 928 
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RR subfamilies are CheY (1F4V), DrrB (3NNS, 1P2F), NtrC1 (1ZY2, 1NY5) and VraR (4IF4). Y/T 929 

residues from the inactive CheY structure (2CHE) are differently positioned from the active 930 

structure. For the OmpR, NtrC and NarL subfamilies, two proteins from each subfamily were used 931 

for RMSD analyses and both showed similar regions of conformational changes. Substantial changes 932 

in α1 are also observed in one protein from the NtrC subfamily (pink). 933 

 934 

Figure 6. Structure of the HK-RR complex. Ribbon (a) and surface (b) views of the HK856-RR468 935 

complex (PDB id, 3DGE). Residues that determine the HK-RR interaction specificity (19, 96) are 936 

highlighted in light orange and cyan in the HK and RR, respectively. HK-RR contacts also involve 937 

other surface regions (grey), including both active sites of the HK (red) and the RR (pink). 938 
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Abstract 28 

Response regulators function as the output components of two-component systems, which couple 29 

the sensing of environmental stimuli to adaptive responses.  Response regulators typically 30 

contain conserved receiver (REC) domains that function as phosphorylation-regulated switches 31 

to control the activities of effector domains that elicit output responses.  This modular design is 32 

extremely versatile, enabling different regulatory strategies tuned to the needs of individual 33 

signaling systems.  This review summarizes functional features that underlie response regulator 34 

function.  An abundance of atomic resolution structures and complementary biochemical data 35 

have defined the mechanisms for response regulator enzymatic activities, revealed trends in 36 

regulatory strategies utilized by response regulators of different subfamilies and provided 37 

insights into interactions of response regulators with their cognate histidine kinases.  Among the 38 

hundreds of thousands of response regulators identified, variations abound.  This article provides 39 

a framework for understanding structural features that enable function of canonical response 40 

regulators and a basis for distinguishing non-canonical configurations. 41 

  42 
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1. INTRODUCTION 43 

Two-component systems (TCSs) are the predominant multi-step signaling pathways in bacteria. 44 

Two conserved proteins, a histidine protein kinase (HK) and response regulator (RR), constitute 45 

the core system (Figure 1a). Autophosphorylation of the HK at a conserved His provides a high-46 

energy phosphoryl group that is transferred to a conserved Asp in the RR, resulting in RR 47 

activation (99). Stimuli, sensed either directly or indirectly by the HK, regulate opposing 48 

autophosphorylation/phosphotransfer and RR phosphatase activities of the HK, thus determining 49 

the level of phosphorylation of the RR and the output response. A large variety of input domains 50 

in HKs and output domains in RRs allows the coupling of an almost limitless array of chemical 51 

or physical stimuli to diverse output responses. The conserved proteins and the systems 52 

themselves are extremely versatile. An enormous range of variations in protein activities, domain 53 

architectures and system configurations allows adaptation of TCSs to the needs of specific 54 

signaling systems. 55 

TCSs are found in bacteria, archaea (41) and eukaryotes such as slime molds, yeast, and 56 

plants (2). While great diversity exists among all TCSs it should be noted that some specific 57 

trends in system configurations are found in different organisms. The Pfam database (35) lists 58 

>342,000 entries of proteins containing the conserved receiver (REC, named Response_reg in 59 

Pfam) domain that characterizes RRs and >650 structures of such proteins in the Protein Data 60 

Bank (PDB) (18). In addition to their presence in RRs, REC domains are also found in hybrid 61 

HKs that function within phospho-relay systems involving multiple phosphotransfer steps, 62 

accounting for ~10% of REC domain-containing proteins. The scope of this review will focus on 63 

bacterial RRs that mediate output of TCSs. Among these RRs, variations abound. The plasticity 64 

of the REC domain and the versatility of TCS architecture has driven the evolution of RRs that 65 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27554v2 | CC BY 4.0 Open Access | rec: 21 Mar 2019, publ: 21 Mar 2019



 5 

are uniquely adapted and fine-tuned for function in specific pathways. Out of necessity, this 66 

review will focus on canonical RRs with full understanding, but lack of specific 67 

acknowledgement of individual cases, that for every feature noted, exceptions exist. 68 

This review provides an overview of the structure of RRs and features that provide 69 

conserved enzymatic activities in REC domains. Beyond the core domain structures and 70 

common enzymatic mechanisms, RRs display great variation in domain arrangements that 71 

provide a variety of mechanistically distinct regulatory mechanisms. However, as structures have 72 

accumulated, trends in regulatory strategies used by different subfamilies of RRs have begun to 73 

emerge and these will be explored in this review. 74 

 75 

2. RESPONSE REGULATOR ARCHITECTURE 76 

REC Domains 77 

RRs are defined by the presence of a conserved REC domain. The REC domain fold is 78 

composed of five α helices surrounding a central five-stranded parallel β-sheet with a 21345 79 

topology (Figure 1b). Sequence identity between REC domains is usually 20-30%, showing 80 

great variations (Figure 1c). The central hydrophobic β-strands, β1, β3, β4 and β5, are more 81 

conserved than the peripheral helices and loops. The most conserved residues include the site of 82 

phosphorylation, an Asp at the C-terminus of β3, and several other residues in the β-α loops, 83 

which constitute the active site. The highly conserved phosphorylation site and the variable 84 

peripheral sequences allow RRs to couple phosphorylation to diverse effector functions. 85 

Effector Domains 86 

RRs typically function as the output components of signaling pathways. Regulatory REC 87 

domains can be linked either covalently or non-covalently to a great diversity of effectors and 88 
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thus control numerous diverse responses. Figure 2 summarizes the distribution of the major RR 89 

effector domains identified in the Pfam database. Approximately one fourth of RRs (23%) 90 

consist solely of a REC domain. These single-domain RRs (SDRRs) regulate intermolecular 91 

effectors such as the chemotaxis system regulator CheY, which binds to the flagellar motor 92 

component FliM controlling flagellar rotation. CheY-like proteins found in chemotaxis-like or 93 

chemosensory systems mediate responses other than chemotaxis, for example biofilm formation 94 

regulated by Cle proteins (77). Other functions for SDRRs include acting as intermediates in 95 

phosphorelays (e.g. the general stress response proteins SdrG and MrrA, and the sporulation 96 

protein Spo0F) (45, 63), as phosphate sinks to control phosphate flux within phosphorelays (e.g. 97 

Rhizobium meliloti CheY1) (97), as allosteric regulators of HKs (e.g. Caulobacter crescentus 98 

DivK) (24, 117) or as protease adapters (e.g. C. crescentus CpdR) (56). 99 

The largest class of RRs (64.5%) is composed of RRs containing a DNA-binding domain 100 

(DBD) with subfamilies defined by different DBD folds. The OmpR subfamily (29% of RRs) 101 

contains a winged-helix effector domain (68), the NarL subfamily (19%) a four-helix DNA-102 

binding HTH domain (73), the NtrC subfamily (7%) a Fis-type HTH domain fused to an AAA+ 103 

ATPase domain and the LytTR (5.5%) a predominantly β fold (94). The abundance of RRs in 104 

this class likely reflects the importance of transcriptional regulation as a response to 105 

environmental change. A small class of RRs (1%) harbors an RNA-binding domain belonging to 106 

the ANTAR subfamily of anti-termination factors such as AmiR (79). 107 

RRs with enzymatic domains account for ~8% of RRs. A major group within this class (3% 108 

of RRs) is the regulators of cyclic di-GMP including cyclases (GGDEF) and phosphodiesterases 109 

(EAL, HD-GYP) (92). A second major group (2%) is the chemotaxis methylesterase CheB 110 

proteins (31). A variety of different enzymatic domains have been identified in other RRs (3%) 111 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27554v2 | CC BY 4.0 Open Access | rec: 21 Mar 2019, publ: 21 Mar 2019



 7 

such as the PP2C phosphatase domain of RsbY and the hybrid kinase domain of FrzE (30, 54). 112 

RRs with protein binding domains account for ~1% of RRs.  Examples in this class include 113 

CheV, with a CheW-like domain that connects chemoreceptors to the chemotaxis histidine 114 

kinase CheA; RssB, which regulates turnover of the stress response sigma factor RpoS; and 115 

PhyR, a regulator of the general stress response that contains an extracytoplasmic function (ECF) 116 

sigma factor-like domain (1, 11, 66). While RRs often contain a simple REC-effector domain 117 

architecture they can have complex domain organizations with additional signaling domains 118 

including PAS, GAF, HisKa, HATPase, etc. The large variety of RRs identified to date 119 

emphasizes the versatility of the REC domain with no apparent limits on the types of effector 120 

domains that can be controlled by this phosphorylation-activated switch. 121 

 122 

3. ENZYMATIC ACTIVITIES OF RRs 123 

Conserved Phosphorylation Site 124 

One of the defining characteristics of the REC domain is its highly conserved phosphorylation 125 

site. Due to the lability of the high-energy acyl phosphate, structural characterization of the 126 

active site often relies on beryllofluoride (BeF3
-) that noncovalently binds to the phosphorylation 127 

site Asp and serves as a mimic of the phosphoryl group (119). Different BeF3
--bound RR 128 

structures reveal a conserved active site with a network of hydrogen bonds (Figure 3a). The 129 

carboxylate side chains of the acidic residue duo (DD) at the β1-α1 loop participate in 130 

coordinating a Mg2+ required for catalysis. Sidechains of two additional residues, a Thr/Ser (T) at 131 

the β4-α4 loop and a Lys (K) at the β5-α5 loop, together with backbone atoms of non-conserved 132 

active site residues, coordinate phosphate oxygens in the phosphorylated REC domain. 133 
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RR phosphorylation level, the ultimate determining factor of TCS output for canonical 134 

RRs, is regulated by multiple enzyme activities, including phosphotransfer from HKs, 135 

dephosphorylation by auxiliary phosphatases or bifunctional HKs that also possess RR 136 

phosphatase activity, autophosphorylation by small-molecule phosphodonors such as 137 

phosphoramidate and acetyl phosphate (AcP) (67, 115), and autodephosphorylation activities. 138 

Similar phosphorylation sites with almost identical positioning of active site residues have been 139 

observed in numerous RR or RR complex structures (21, 81, 86, 107). A pentavalent phosphorus 140 

intermediate is believed to be a common transition state for different activities of the REC 141 

domain (Figure 3b). Both phosphorylation and dephosphorylation reactions can proceed through 142 

either an associative or a dissociative mechanism depending on how tight or extended the 143 

transition state is. A phosphodonor or water molecule needs to be in line with the acyl phosphate 144 

bond that is to be formed or broken. The phosphotransferase or phosphatase helps position these 145 

molecules to further enhance the reaction rates. In all cases, the majority of residues involved in 146 

coordinating the phosphorus intermediate are from the REC domain. Thus, most RRs are 147 

catalytically competent of autophosphorylation and autodephosphorylation in the absence of any 148 

enzymatic protein partner and in vitro analyses of these reactions often provide insights into RR 149 

regulatory mechanisms.  150 

Autodephosphorylation and Autophosphorylation 151 

Despite the highly conserved active site geometry, RRs show large variations in rates of 152 

autophosphorylation and autodephosphorylation (87, 101, 102). For example, 153 

autodephosphorylation rate constants of the REC domain range over six orders of magnitude, 154 

giving phosphorylation half-lives of seconds to hours and even days (101). Such great diversity 155 

is partly attributed to several variable residues surrounding the active site, such as positions D+2 156 
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(two residues C-terminal to the conserved D), T+1 and T+2 (one and two residues C-terminal to 157 

T) (Figure 3b and 3c). Backbone atoms of D+2 and T+1 directly form hydrogen bonds with the 158 

phosphoryl group while the charge, size and hydrophobicity of sidechains at these three positions 159 

may affect the energy barrier of the transition state, facilitate the positioning or block the in-line 160 

path of the phosphodonor or attacking water (53, 80, 102, 121).  In more than half of RR 161 

sequences, a limited number of amino acid combinations are preferred at these positions and the 162 

distribution of preferred amino acids correlates with RR effector subfamilies (53, 80). REC 163 

enzyme activities are therefore suggested to co-evolve with effector domain regulation and these 164 

residues represent functional sites for modulating the stability of RR phosphorylation to match 165 

the timescale of individual TCS output responses. 166 

Phosphorylation by small molecules, particularly AcP, has long been suggested to be 167 

physiologically relevant in some RRs to couple TCS output to global conditions (115). RR 168 

phosphorylation, often in the absence of the cognate HK, can be influenced by cellular AcP 169 

levels that are sensitive to the metabolic state of cell. Because the phosphorylation rate by AcP is 170 

usually much slower than the rate of phosphotransfer by the cognate HK and often offset by the 171 

phosphatase activity of bifunctional HKs or other auxiliary phosphatases (43, 57), the 172 

contribution of phosphorylation by AcP to TCS output is typically minimal in wild-type cells. 173 

However, given the great diversity of TCSs, AcP can play a significant role in some systems, 174 

specifically those with a fast RR autophosphorylation rate and/or a slow phosphatase rate (59, 175 

85).  176 

HK-mediated Activities 177 

RR phosphatase activities mediated by HKs or auxiliary phosphatases are believed to function 178 

through positioning a water molecule and stimulating the intrinsic RR autophosphatase activity 179 
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(17). Structure of CheY3 complexed with the phosphatase CheX (86) reveals an amide side 180 

chain inserting into the RR active site and forming a hydrogen bond with the attacking water 181 

molecule (Figure 3c). Similar positioning of the amide from a Gln or Asn residue has been 182 

observed in different phosphatases with distinct structures, such as CheX (86), CheZ (123) and 183 

RapH (81), as well as the phosphatase state of DesK, a bifunctional HK from the second largest 184 

HK subfamily, HisKA_3 (107). The Gln-containing sequence motif, DXXXQ, is located 185 

immediately after the phospho-accepting His residue in HKs from the HisKA_3 subfamily. The 186 

His residue does not appear to be required for RR dephosphorylation despite its close proximity 187 

to the phosphatase-essential Gln (52) . For the largest HK subfamily, HisKA, the His residue 188 

may play a role in RR dephosphorylation (62, 125) but the exact phosphatase mechanism is less 189 

clear. An EXXN/T motif similar to CheX-like phosphatases has been identified and the 190 

conserved Asn/Thr residue is suggested to be the catalytic residue (52). However, among the 191 

available structures of RR complexes with HKs of the HisKA subfamily, the side chain of the 192 

Asn/Thr residue is not at a similar position as the Asn/Gln in other phosphatases and is distant 193 

from the active site Asp. A dual engagement model has been suggested involving both His and 194 

Asn/Thr residues positioning the catalytic water molecule (62). Roles of the two residues may 195 

differ for individual HisKA proteins depending on structural details and structures unequivocally 196 

capturing the phosphatase state are needed to elucidate the mechanism.  197 

Loss of RR phosphorylation can result from autodephosphorylation, dephosphorylation 198 

by the HK and back-transfer to the cognate HK (34, 98), i.e. the reverse reaction of 199 

phosphotransfer. The back-transferred histidyl phosphoryl group can be further transferred to 200 

ADP (46, 100) or to other RRs that function as phosphate sinks to modulate phosphorylation 201 

levels (3, 98, 103). Back-transfer is suggested to accompany an associative transfer mechanism 202 
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that has a tight RR phosphorylation transition state and appears to be evolved for bi-directional 203 

transfer common in CheA or other HPt-containing phosphorelay proteins (107, 122). 204 

Unidirectional phosphotransfer with little back-transfer, observed in several canonical HKs, is 205 

linked to a dissociative mechanism and the asymmetry of the Mg2+ position in an extended 206 

transition state (107). The dissociative mechanism can be distinguished by a long distance 207 

between the conserved Asp and His residues in an HK-RR complex structure. It remains to be 208 

investigated whether there is any domain preference or sequence signature that distinguishes the 209 

two mechanisms and determines the relative rates of forward- and back-transfer. Residues 210 

affecting the transition state stability, such as non-conserved residues at D+2, T+1 and T+2 211 

positions, also modulate the HK-catalyzed phosphotransfer rate (53, 107). Due to multiple 212 

phosphorylation and dephosphorylation reactions present simultaneously, quantitation of 213 

individual activities is often complicated by interference from other activities. Furthermore, RR 214 

activities measured in vitro with truncated cytoplasmic fragments of transmembrane HKs require 215 

careful examination and may differ greatly from their full-length counterparts in the cellular 216 

environment (43). 217 

 218 

4. REGULATORY MECHANISMS IN RR SUBFAMILIES 219 

As a phosphorylation-activated switch between inactive and active conformations, the REC 220 

domain mediates effector functions through intramolecular and/or intermolecular interactions. 221 

Structures of individual REC and effector domains usually undergo subtle changes upon 222 

phosphorylation, but the overall structures may vary greatly because of different domain 223 

arrangements. A typical RR regulatory mechanism is exemplified by Staphylococcus aureus 224 

VraR (Figure 4a), one of a few RRs with full-length protein structures available in both 225 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27554v2 | CC BY 4.0 Open Access | rec: 21 Mar 2019, publ: 21 Mar 2019



 12 

phosphorylated (or BeF3
--bound) and unphosphorylated states (60). The monomeric 226 

unphosphorylated VraR adopts a closed conformation with extensive contacts between the REC 227 

and DBD effector domains, holding the DNA-recognition helix at a position unfavorable for 228 

dimerization on DNA. Phosphorylation results in an extended conformation with a flexible linker 229 

between the two domains and an altered REC surface that promotes RR dimerization for DNA 230 

binding.  231 

Negative regulation in the inactive state and positive regulation in the active state, as 232 

shown for VraR, are two common mechanisms mediated by the REC domain (Figure 4b). For 233 

positive regulation, the REC domain facilitates the effector domain function, as shown for many 234 

DBD-containing RRs in which dimerization of the phosphorylated REC domains is thought to 235 

promote DNA binding and transcription regulation. Effector domains of some RRs, such as 236 

NtrC1 (58) and CheB (31), are catalytically competent when alone, but are inhibited by the REC 237 

domain in the inactive state. The two mechanisms are not exclusive and many RRs use both. 238 

Regulatory details for individual RRs show great variations that may have been evolved to adapt 239 

each protein to its unique structure and function. For example, in inactive states, interactions 240 

between REC and effector domains can differ dramatically (Figure 4b), even within the same 241 

subfamily of RRs (42). Functional sites, such as the DNA-recognition helix for DBDs and the 242 

active site for enzymatic effector domains, can be buried within the REC-effector interface or 243 

exposed but held at unfavorable positions by tight interactions. Extended conformations with few 244 

interdomain contacts have also been observed for a few RRs that are believed to employ a 245 

positive regulatory mechanism. 246 

Inactive and Active Conformational States 247 
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The REC interaction surface that mediates effector domain function is usually distant from the 248 

phosphorylation site. A dynamic allosteric mechanism allows conformational changes at the 249 

phosphorylation site to propagate to the distal interaction surface. The REC domain samples 250 

different allosteric conformations and exists in equilibrium between inactive and active 251 

conformations, with phosphorylation shifting the equilibrium. A “Y-T coupling” allosteric 252 

mechanism was initially described for CheY (25, 124) and several other RRs (14, 47). 253 

Rearrangement of the conserved T at the phosphorylation site (Figure 3a) is believed to correlate 254 

with the rotameric conformation of a conserved Tyr/Phe (Y) residue in the β5 strand. In the 255 

active state, the aromatic side chain is oriented toward the interior of the REC domain, distinct 256 

from the outward position in the inactive state (Figure 5a), resulting in alteration of the α4-β5-α5 257 

face, a surface widely used by many RRs for interdomain interactions. Because of the readily 258 

recognizable position of the two residues, they are often used to classify structures as inactive or 259 

active, with the caveat that the conformational change involves a broad surface of the REC 260 

domain and Y-T coupling is not the only allosteric mechanism (20, 109). 261 

X-ray crystallography has been central to understanding RR regulatory mechanisms 262 

although conformations trapped in crystals represent only static snapshots of RR conformational 263 

dynamics and can be influenced by experimental conditions, crystal lattice contacts and high 264 

protein concentrations used in crystallization. A particular interaction interface or 265 

dimerization/oligomerization mode observed in crystal structures, such as domain-swapped 266 

dimers observed in several RRs (17, 26, 55), may not be physiologically relevant and requires 267 

complementary experiments for validation. Nevertheless, an increasing number of RR structure 268 

snapshots start to reveal different states of conformational trajectories and trends of prevalent 269 

regulatory strategies in RR subfamilies. 270 
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DBD-containing RRs, the largest class of RRs, have the greatest number of X-ray 271 

structures available, making it possible to analyze the allosteric conformational features within 272 

individual RR subfamilies (Table 1). All structures crystalized with phosphorylated or BeF3
--273 

bound RRs display inward orientations of the side chain at the conserved Y position while 274 

conformations of unphosphorylated RRs are diverse. For unphosphorylated RRs in the OmpR 275 

and NtrC subfamilies, both outward and inward orientations of Y residues have been observed, 276 

with the inward orientation more readily observed for the REC domain alone than for multi-277 

domain proteins (Table 1). This is consistent with NMR studies suggesting that 278 

unphosphorylated RRs exist in equilibrium between inactive and active conformations (110) 279 

while interactions with the effector domain shift the equilibrium to the inactive state (27). The 280 

inward orientation of Y is predominant for most NarL subfamily members irrespective of 281 

phosphorylation status, thus is unlikely indicative of the active state, but rather a result of 282 

packing the α4-β5-α5 face with an accessory β6 strand, a structural feature found in many RRs of 283 

the NarL subfamily (20, 60, 83, 106). Therefore, the Y-T coupling mechanism is not universal in 284 

all RRs. Even for NtrC in which orientation switching has been observed, interconversion of the 285 

aromatic side chain has been suggested not to be involved in allosteric regulation because its rate 286 

of conversion is faster than the rate of active/inactive state conversion (109). RRs appear to be 287 

highly plastic for allosteric regulation with diverse mechanisms matching their sequence and 288 

structural features. 289 

The Y and T residues are two of many residues that may participate in allosteric 290 

regulation. As discussed earlier, the phosphorylation site involves an intricate hydrogen-bond 291 

network with several residues from the β1-α1, β3-α3, β4-α4 and β5-α5 loops. It has been 292 

recognized that interactions, such as salt bridges and van der Waals contacts, of residues at D+1, 293 
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T+1, T+2, K and other positions can impact loop conformations and propagate the 294 

conformational changes to different areas of the REC domain (5, 14, 20, 44, 70, 106). 295 

Conformations with only subsets of active site residues at proper hydrogen-bonding positions 296 

have been discovered for many RRs (37, 95, 106) and are often referred to as meta-active states. 297 

A single RR can have multiple meta-active states with different combinations of loop 298 

conformations, as shown for NtrX (37). Unphosphorylated RRs can exist in equilibrium between 299 

the active state and multiple inactive or meta-active conformations and there are multiple 300 

pathways for transition to the active state (37, 44, 89). NMR relaxation data also support a model 301 

of segmental motions of multiple allosteric residues for activation of CheY, instead of a strict 302 

two-state switching model (70).  303 

Just as phosphorylation shifts the equilibrium for effector domain regulation, the reverse 304 

scenario, with output domains affecting phosphorylation, has also been observed (8, 37). It has 305 

been suggested that adoption of an active conformation precedes phosphorylation (44, 53). 306 

Phosphorylation can be accelerated by any effect that increases the population of active 307 

conformation, such as relieving inhibition from the output domain by truncation, DNA binding 308 

in DBD-containing RRs, dimerization at high protein concentrations and HK-RR interaction (8, 309 

9, 27, 28, 37, 66). Surface changes caused by these different interactions can propagate through 310 

the connecting βα loops to the phosphorylation site and other regions of the REC domain, 311 

increasing the active state population. One extraordinary example is DesR in which the HK-RR 312 

interaction can stabilize the active state of DesR and promote dimerization (66). Besides the 313 

phosphorylation-activated switch, interaction with the HK also functions as an allosteric switch 314 

to increase the population of active conformation for transcription activation. The same principle 315 

may be the basis for many phosphorylation-independent regulatory mechanisms. 316 
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Dimerization Modes and Corresponding Conformational Changes 317 

Phosphorylation-promoted conformational changes are routinely identified by comparing X-ray 318 

or NMR structures obtained for unphosphorylated and BeF3
--bound RRs. As shown in Figure 5a, 319 

for the stand-alone RR CheY, significant differences in positions of backbone atoms occur at the 320 

β4-α4, β5-α5 loops and part of the α4-β5-α5 surface where CheY binds the FliM effector protein 321 

to regulate flagellar rotation. It is unsurprising that structural elements of the REC domain 322 

undergoing the largest rearrangements upon phosphorylation often correlate with protein-protein 323 

interaction surfaces, particularly, the dimer interface for DBD-containing RRs. Certain 324 

dimerization modes are popular for specific RR subfamilies with corresponding conformational 325 

changes. 326 

A dimerization mode using the complete α4-β5-α5 surface is predominant in the OmpR 327 

subfamily (Figure 5b). Dimer interaction involves salt bridges between pairs of highly 328 

conserved charged residues within the α4-β5-α5 region (104, 105). For the DrrB protein shown 329 

in Figure 5b, conformational changes span the entire dimer surface. A Tyr residue is prevalent at 330 

the Y position (111) and switching of Tyr orientations has been observed. In several RRs (40, 78, 331 

91), the hydroxyl group of Tyr is in close proximity to a polar residue from the DBD (Figure 5b 332 

right), suggesting a potential role in effector inhibition. This is unlikely to be a common 333 

mechanism given the wide diversity of domain arrangements within the subfamily (8). RRs from 334 

the OmpR subfamily often recognize tandem DNA sites and two DBDs bind DNA in a head-to-335 

tail manner (15, 48, 64, 76). The translational symmetry of DBDs coupled with the rotational 336 

symmetry of the REC domain predicts a flexible linker or different REC-DBD interfaces for 337 

individual RR monomers within the RR-DNA complex. Such asymmetry of REC-DBD 338 

interfaces has been observed for KdpE and PmrA (65, 76). However, NMR studies suggest that 339 
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the REC-DBD interaction observed for PmrA in the crystal structure is transient in solution (65). 340 

Additionally, alternative dimers involving α1-α5 (6, 71) or other surfaces (13) have also been 341 

discovered for unphosphorylated RRs but the physiological relevance of these dimers awaits 342 

further studies. 343 

The NtrC subfamily of RRs displays two major modes of dimerization, with each 344 

involving different subsets of the α4-β5-α5 face (Figure 5c). The α4-β5 dimer interface is often 345 

seen in phosphorylated RRs (Table 1) or unphosphorylated RRs with meta-active conformations 346 

(32, 37, 84). Another β5-α5 dimer is associated with inactive conformations (36, 84), as 347 

indicated by the outward orientation of the Phe residue at the Y position. Dimer interaction 348 

centers around the β5-α5 face, sometimes with a slightly tilted α5 helix in contact with both β5 349 

and α4. Formation of the inactive β5-α5 dimer is believed to inhibit the AAA,+ ATPase output 350 

domain from oligomerization and transcription initiation (10, 84). For the LytTR subfamily, 351 

structural information is limited and a dimer also involving the α4-β5 subset of the α4-β5-α5 face 352 

has been observed for ComE (16). 353 

Diverse dimerization modes have also been observed in the NarL subfamily. An α4-β5 354 

dimer interface and the phosphorylation-dependent orientation of the Phe residue have been 355 

reported for the REC domain of FixJ (14). However, most RRs from the NarL subfamily show 356 

an α1-α5 dimer interface (Table 1) distinct from the widely used α4-β5-α5 surface (7, 20, 29, 60, 357 

82, 106). The dimer interface mainly involves the α1 helix, the β1-α1 and β5-α5 loops (Figure 358 

5d). Correspondingly, significant structural rearrangements spanning to the α1 helix have been 359 

observed when apo- and BeF3
--bound structures are compared. As discussed earlier, many RRs 360 

of the NarL subfamily display a constitutive inward orientation of the residue at the Y position, 361 

thus this residue is unlikely to be involved in allosteric regulation. Instead, different switching 362 
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mechanisms involving the T residue and other residues at α1, the β1-α1, β4-α4 and β5-α5 loops 363 

have been proposed for different RRs, such as VraR, DesR and RcsB (20, 60, 106). In addition to 364 

the α1-α5 dimer interface, the α4-β5-α5 surface is also remodeled to alter the positioning of the 365 

accessory β6 and α6 that are directly linked to the effector domain. Another dimer mode 366 

involving β6 and α6 is common (Figure 5d, right) and several RRs, such as VraR (60), DesR 367 

(106), Spr1814 (82) and LiaR (29), show both α1-α5 and β6-α6 dimer modes within a single 368 

crystal. It has been suggested that the β6-α6 dimer may help RRs to form higher order oligomers 369 

on DNA to bind arrays of DNA-binding sites (106). DNA-bound structures of RcsB again 370 

indicate an asymmetric dimer with different rotation symmetry axes for the REC and DBDs (38).  371 

Different relative positions of the REC and DBDs are frequently observed for different full 372 

length RRs. Asymmetry is believed to result from either different REC-DBD interactions (20, 373 

38) or a flexible linker that enables different disposition or even domain-swap of individual 374 

domains trapped in crystals (29, 60). 375 

  376 

5. RESPONSE REGULATOR – HISTIDINE KINASE INTERACTIONS 377 

HK Conformational States 378 

HKs have a modular architecture with a large variety of sensory domains (extracellular, 379 

transmembrane or cytoplasmic) linked to a conserved catalytic domain by one or more signal 380 

transducing domains (12, 69) (Figure 1a). The cytoplasmic enzymatic core of HKs consists of a 381 

dimerization histidine phosphotransfer (DHp) domain and a catalytic ATP-binding (CA) domain. 382 

The DHp domain contains the conserved phosphorylatable His residue and mediates 383 

dimerization of the HK to form a 4-helix bundle that is essential for its activity (Figure 6). The 384 

DHp dimer is flanked by the two α/β catalytic CA domains containing the kinase active sites that 385 
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catalyze phosphoryl transfer from ATP to the His residues. Autophosphorylation of the HK 386 

provides a high-energy phorphoryl group for subsequent phosphotransfer to the RR. Most HKs 387 

also mediate dephosphorylation of their cognate RRs in order to modulate the output response. 388 

 Large conformational changes in HKs occur during transitions between kinase, 389 

phosphoryltranfer and phosphatase states. In the HisKA_3 subfamily of HKs (e.g. DesK of 390 

Bacillus subtilis), the switch between states involves a large rotation of the DHp domains, a 391 

mechanism that is less pronounced in the HisKA subfamily. Specific regulatory mechanisms 392 

have been described for individual HKs, including the stabilization of the phosphatase state by 393 

ligand binding (e.g. c-di-GMP binding on CckA) and the inhibition of the phosphatase state by a 394 

pH-dependent conformational switch (33, 62). In contrast to the different conformations of HKs, 395 

structures of HK-REC domain complexes determined to date indicate that REC domains bound 396 

to either phosphotransfer or phosphatase states of HKs have similar conformations, with the REC 397 

domain displaying a meta-active conformation, as defined in the previous section. 398 

Partner Recognition and Specificity  399 

Specificity of HK-RR pairs is crucial for the integrity of signaling pathways, given the large 400 

number of different TCSs that typically exist in a single cell. Specificity within a pair is mediated 401 

by recognition residues that participate in HK-RR binding. These residues are located in helix α1 402 

of the REC domain and in the two α helices of the HK DHp domain that contribute to the 403 

binding interface. Signaling pathways have been successfully rewired by substituting as few as 404 

three co-evolved specificity residues (88, 96). Additional strategies are employed to further 405 

ensure specificity of the pairs. For example, the phosphatase activity of HKs eliminates non-406 

specific phosphorylation by non-cognate kinases or small molecule phosphodonors such as AcP. 407 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27554v2 | CC BY 4.0 Open Access | rec: 21 Mar 2019, publ: 21 Mar 2019



 20 

The low-abundance of HKs relative to RRs also minimizes cross-phosphorylation between non-408 

cognate pairs (57). 409 

 In an HK-RR complex, the REC domain inserts its α1 helix and β5-α5 loop between the 410 

two helices of the DHp domain, primarily contacting the DHp α1 helix that contains the 411 

phosphorylatable His residue. This conserved mode of binding buries the active site of the REC 412 

domain at the HK-RR interface (Figure 6). Thus, conserved residues of both the HK and RR 413 

form a substantial subset of the interface residues, with specificity being determined by a 414 

relatively small set of variable residues. In addition to these specificity residues in α1 of the REC 415 

domain and the two helices of the DHp domain, additional variable contacts can involve the β2-416 

α2, β3-α3 and β4-α4 loops of the REC domain interacting with the CA domain, the C-terminal 417 

region of the DHp and the DHp-CA linker of the other protomer of the dimer (Figure 6) (21, 72, 418 

74, 88, 107, 108, 114, 118, 122). Other contacts can occur between the REC domain and 419 

additional domains within the HK, increasing the specificity and/or stability of the pair (e.g. 420 

contacts between the PAS domain of ThkA and the RR TrrA) (118). These elements suggest that 421 

beyond the conserved REC-DHp interface that buries the active site, the binding interface can 422 

vary greatly in different HK-RR pairs. 423 

 A model based on structures of HK FixL and full-length RR FixJ suggests that the RR 424 

effector domain is free to move and does not participate in binding to the HK (116). However, a 425 

lack of structures of full-length RRs bound to HKs leaves open the question as to how effector 426 

domains might be positioned relative to REC domains and domains of the HK. Given the great 427 

diversity in REC-effector domain arrangements in different inactive RRs, it is possible that 428 

diversity exists in the ways effector domains interact in different HK-RR complexes. It is easy to 429 

envision how an effector domain could participate in the stability of the complex and/or the 430 
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efficiency of catalysis. Indeed, the meta-active conformation of the REC domain observed in 431 

HK-REC domain complexes might be a consequence of isolated REC domains being unhindered 432 

by REC-effector interactions that could bias conformational states. 433 

Phosphotransfer State 434 

Structural and biochemical studies of DesK-DesR complexes suggest that one HK dimer binds to 435 

one RR molecule in an asymmetric conformation. The DesK-DesR structure and a docking 436 

model of CpxA-CpxR in a putative phosphotransfer state show asymmetry within the HK dimer, 437 

with the CA domain of one monomer bound to the DHp domain of the other monomer, leaving 438 

the second CA domain untethered with enough space for RR binding to the DHp. Structural data 439 

from the DesK-DesR complex and from CpxA-CpxR model suggest that this highly dynamic 440 

state is coupled with autokinase activity, involves back-and-forth movements of the DHp and CA 441 

domains, and is modulated by REC domain binding (72, 107). 442 

Phosphatase State 443 

In contrast to the asymmetrical domain arrangements associated with phosphotransfer, HK-RR 444 

complexes in putative dephosphorylation states have symmetrical arrangements of the HK DHp 445 

and CA domains. The REC domains are also arranged symmetrically, each interacting with a 446 

DHp domain with a 2:2 HK:RR stoichiometry (62, 107). The HK in its phosphatase state is more 447 

rigid than in the phosphotransfer state, with the N-terminal coiled-coil of the DHp domains being 448 

highly stable. 449 

 Despite the large number of structures recently determined, the mechanistic details of the 450 

enzymatic reactions involving HKs and RRs are not fully understood. Discrimination between 451 

the phosphotransfer and phosphatase states that have been trapped in crystal structures still 452 

remains challenging. The situation is further complicated by distinct phosphatase mechanisms 453 
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used by HKs of different subtypes. A major limitation of current studies is the use of truncated 454 

proteins, most notably the cytoplasmic domains of transmembrane HKs lacking sensor and 455 

transmembrane regions that in intact proteins control the signaling states of HKs, and REC 456 

domains of RRs in the absence of effector domains that are known to influence their 457 

conformational equilibria. While conserved features of HK-RR interactions are beginning to be 458 

elucidated, variations on the theme are anticipated. Similar to many other aspects of TCS 459 

structure and function, it is likely that the great variety of domain architectures in TCS proteins 460 

enable different modes of HK-RR interactions and regulatory mechanisms that are adapted to 461 

individual HK-RR pairs. 462 

 463 

6. NON-CANONICAL MODES OF RR REGULATION 464 

The canonical mechanism for regulation of RR activity involves phosphorylation at a conserved 465 

Asp in the REC domain, stabilizing an active conformation that enables effector domain function. 466 

Regulation of RR activity, in addition to or in place of Asp phosphorylation, potentially can be 467 

achieved in many different ways including post-translational modifications at other sites that bias 468 

the conformational equilibrium of the REC domain or directly alter effector domain function, 469 

interactions that lower the energetic barrier for transition to an active conformation, ligand 470 

binding to the RR, and regulation of expression to control RR levels and thus dimerization or 471 

oligomerization. Indeed, each of these strategies has been observed and a few examples are 472 

described below. 473 

Reversible protein acetylation is known to regulate metabolic enzymes and transcription 474 

in bacteria (49) and was documented in CheY more than 20 years ago (90). Enzyme catalyzed 475 

acetylation of CheY at K91 and K106 increases in response to acetate and promotes clockwise 476 
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flagellar rotation, with acetylation at K91 proposed to alter conformational dynamics of the β4α4 477 

loop (39). Autoacetylation with AcCoA as acetyl donor at other sites in CheY is thought to link 478 

chemotaxis to the metabolic state of the cell (120).  Another well-characterized example of 479 

acetylation occurs in E. coli transcription factor RcsB. Acetylation of K154, a residue in the 480 

helix-turn-helix motif that interacts with a phosphate in the DNA backbone, disrupts DNA 481 

binding, down-regulates expression of the acid stress response genes, and compromises survival 482 

in acidic conditions (22, 51). It should be noted that the stoichiometry of acetylation has not been 483 

determined, thus physiological effects observed with mutations that mimic fully unmodified or 484 

acetylated states might overestimate regulation that occurs in wild-type cells. A proteomics study 485 

in E. coli documented acetylation of seven RRs: ArcA, CheY, CpxR, EvgA, NarL, OmpR and 486 

RcsB (22). The E. coli genome encodes 26 putative Gcn5 N-acetyltransferases (GNATs) and a 487 

single known deacetylase (CobB) (49). While the best-characterized acetyltransferase, PatZ, is 488 

proposed to mediate a global strategy linking regulation to metabolic state, the large number of 489 

acetyltransferases raises the possibility of substrate specificity that might enable system-specific 490 

signaling mechanisms. 491 

Signal-induced, HK-dependent, phosphorylation-independent monomer to dimer 492 

activation has been observed for several RR transcription factors.  In the extensively studied B. 493 

subtilis system, binding of DesR to DesK promotes an active conformation of DesR. At 494 

sufficiently high RR concentrations and with a slow active to inactive state transition, 495 

dimerization can occur upon release of the RR from the HK with subsequent stabilization of the 496 

dimer upon DNA binding (106). Similar phosphorylation-independent activation of OmpR by 497 

HK EnvZ has been observed in acidic conditions (23). Cyanobacterial transcription factor NblR 498 

contains a conserved Asp, but lacks other residues necessary for phosphorylation. HK NblS is 499 
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required for phosphorylation-independent activation of NblR. However, no NblS-NblR 500 

interactions have been detected and the activating monomer to dimer transition is postulated to 501 

be promoted by another protein partner (93). 502 

Multiple strategies have been identified for regulation of orphan RRs that lack a 503 

conserved Asp and/or other conserved residues necessary for phosphorylation. In streptomycetes, 504 

two atypical RR transcription factors that lack residues necessary for phosphorylation, JadR1 and 505 

RedZ, are regulated by the end products of the antibiotic biosynthetic pathways they control. The 506 

antibiotic JdB binds directly to the JadR1 REC domain, disrupting DNA binding (112). A 507 

different strategy is used by Helicobacter pylori HP1043, which exists as a constitutively active 508 

dimer in vitro with a crystal structure similar to that of other activated OmpR subfamily 509 

members (50). Levels of HP1043 are regulated both transcriptionally and post-transcriptionally 510 

leading to speculation that control of expression of this constitutively active RR may be the sole 511 

mechanism for regulating HP1403 activity (75). 512 

Combinations of these mechanisms create even more strategies. Streptomyces coelicolor 513 

GlnR, which regulates genes for nitrogen assimilation, is an orphan OmpR subfamily RR that 514 

lacks residues for Asp phosphorylation and forms a constitutive α4-β5-α5 dimer (61). GlnR is 515 

phosphorylated at 6 Ser/Thr sites in the DNA-binding domain under N-rich conditions, 516 

disrupting DNA binding.  GlnR is also acetylated at multiple Lys residues in the DNA-binding 517 

domain, with acetylation enhancing DNA binding (4). 518 

 519 

7. CONCLUDING REMARKS 520 

When the structure of an RR REC domain was first reported thirty years ago, a central question 521 

was how this single conserved domain could regulate responses as diverse as flagellar rotation, 522 
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transcription, and enzyme activity. The answer that emerged defined a mechanism that was both 523 

simple and versatile. The small α/β REC domain exists in equilibrium between two primary 524 

conformations with phosphorylation stabilizing an active conformation. This phosphorylation-525 

regulated switch enables regulatory strategies via any type of activating or inhibitory 526 

macromolecular interactions that discriminate between the two states. Hundreds of structures of 527 

RRs have provided descriptions of the conformations of REC domains in inactive and active 528 

states, interactions with effector domains, DNA, HKs and auxiliary proteins. These structures 529 

provide a foundation for identifying conserved features as well as specific variations in 530 

individual RRs. Beyond the universally conserved enzymatic mechanisms facilitated by 531 

configurations at the active site, other features such as Y-T coupling, regions of conformational 532 

perturbations, domain arrangements and modes of DNA binding show distinct trends among RRs 533 

within specific subfamilies. 534 

Numerous variations on most every feature of RRs have been observed and undoubtedly, 535 

many more remain to be discovered. The plasticity of the REC domain and versatility of RR 536 

design allow an almost unlimited array of adaptations to fit the needs of individual signaling 537 

systems. Defining details of how specific structural features impact function is important for 538 

interpreting the nuances of RR behavior within specific TCSs as well as for pursuit of applied 539 

projects such as development of antimicrobial therapeutics or the engineering of synthetic 540 

biosensing pathways. 541 

Our current understanding of RR structure is largely informed by compiling information 542 

derived from many partial structural descriptions of different RRs. Very few structures are 543 

available for full-length multi-domain RRs in both inactive and active states. The crystal 544 

structures that do exist are constrained by the limitations of the methodology, specifically the 545 
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capture of single discrete states that do not reflect conformational distributions and the potential 546 

promotion of inter- and/or intra-molecular interactions that are influenced by the high 547 

concentrations of proteins used in crystallization and/or stabilization of conformations necessary 548 

for crystallization and lattice interactions. While NMR studies have provided information about 549 

dynamics and conformational distributions in solution, size limitations have mostly precluded 550 

studies of full-length RRs, dimers, oligomers and complexes of RRs with HKs or other 551 

macromolecular partners. Thus, while structures unambiguously define allowable states, it is 552 

important to keep in mind the conformationally dynamic nature of RRs and the potential 553 

influence of associated domains and macromolecular partners when interpreting structures 554 

determined by methodologies with technical limitations. The emergence of new structural 555 

methods such as high-resolution cryo-electron microscopy promise to provide solutions to some 556 

of these challenges. 557 
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 TERMS AND DEFINITIONS 898 
 899 
AcP acetyl phosphate 900 

BeF3
- beryllofluoride 901 

CA catalytic/ATP-binding (domain) 902 

DBD DNA-binding domain 903 

DHp dimerization/histidine phosphotransfer (domain) 904 

ECF extracytoplasmic function  905 

HK histidine kinase 906 

HPt histidine-containing phosphotransfer (domain) 907 

PDB Protein Data Bank 908 

REC receiver (domain of response regulator protein) 909 

RR response regulator protein 910 

SDRR single-domain response regulator 911 

TCS two-component system 912 

  913 
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FIGURE CAPTIONS 914 

Figure 1. Common features of RRs. (a) Schematic diagram of the prototypical TCS pathway. (b) 915 

The conserved (βα)5 fold of REC domains. Phosphorylation site residues and the phosphoryl 916 

group mimic, beryllofluoride (BeF3
-), are shown in sticks. (c) Sequence conservation of RECs. 917 

The profiled hidden Markov model (HMM) for the REC protein family (Pfam PF00072) is 918 

shown as sequence logos (113) with the secondary structure elements illustrated. Heights of 919 

individual stacked letters at each position correspond to information contents, reflecting the 920 

probability of observing the particular amino acids at each position. Phosphorylation site 921 

residues (stars), named after the most conserved amino acids (DD, D, T and K), are among the 922 

most conserved residues in REC domains. 923 

 924 

Figure 2. Classification of RRs by their effector domains. The percentile distribution is indicated 925 

for RR effector functional classes and RR subfamilies. RR subfamilies are defined by effector 926 

domain folds identified in Pfam. Representative proteins are traditionally used to name the 927 

OmpR, NarL and NtrC subfamilies with effector domains named Trans_reg_C, GerE and 928 

Sigma54_activa in Pfam. Representative structures of each subfamily are shown with REC 929 

domains colored in grey and effector domains in colors (PDB ids: KdpE, 4KNY; RcsB, 5W43; 930 

LuxO, 5EP0; AgrA, 3BS1; AmiR, 1QO0; WspR, 3BRE; CheB, 1A2O).  931 

 932 

Figure 3. Phosphorylation site of the REC domain. The phosphoryl group is positioned by a 933 

network of hydrogen bonds (dashed lines) with side chains of the highly conserved residues 934 

(orange) as well as backbone atoms of non-conserved residues (light pink). Non-conserved 935 
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active site residues are labeled by their relative sequence positions to the nearest conserved 936 

residues, such as T+1, indicating one residue C-terminal to the conserved Thr/Ser residue. (a) 937 

Phosphorylation site of the archetype RR CheY in the active conformation (PDB id: 1FQW) with 938 

residues that are differently positioned in the inactive conformation (2CHE) shown in cyan. (b) 939 

The putative trigonal bipyramidal transition state for both phosphorylation and 940 

dephosphorylation. X represents the leaving group of the phosphodonor for phosphorylation or 941 

the attacking water for dephosphorylation. (c) Surface view of the active site in the phosphatase-942 

REC complex (3HZH).   943 

 944 

Figure 4. RR regulatory strategies. (a) Distinct inactive and active RR conformations 945 

exemplified by full-length RR VraR (PDB ids: 4GVP, 4IF4). BeF3
- is shown in red spheres. (b) 946 

Schematic diagrams of RR regulatory mechanisms. Functional sites of effector domains, such as 947 

enzyme sites or DNA recognition regions, are shown as pink dots. These sites can be buried or 948 

exposed in a wide variety of inactive RR conformations and their activity depends on different 949 

interactions between the REC and effector domains. Phosphorylation of the RR can relieve REC 950 

domain inhibition, promote effector function or both. Representative RRs that utilize these 951 

strategies are indicated. 952 

 953 

Figure 5. Phosphorylation-induced conformational changes in the REC domain. RR structures 954 

with or without BeF3
- were aligned using the conserved strands β1, β3, β4, and β5 to compute the 955 

average backbone RMSD per residue (a, right). RMSD values above the median + 2x MAD 956 

(median absolute deviation) are considered as significant conformational changes and the 957 
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corresponding residues are colored blue. Non-REC structural elements are colored cyan. BeF3
- is 958 

shown as red spheres and residues involved in the potential Y-T coupling are shown as green or 959 

gray sticks. Representative protein structures shown for the (a) Stand-alone, (b) OmpR, (c) NtrC 960 

and (d) NarL RR subfamilies are CheY (1F4V), DrrB (3NNS, 1P2F), NtrC1 (1ZY2, 1NY5) and 961 

VraR (4IF4). Y/T residues from the inactive CheY structure (2CHE) are differently positioned 962 

from the active structure. For the OmpR, NtrC and NarL subfamilies, two proteins from each 963 

subfamily were used for RMSD analyses and both showed similar regions of conformational 964 

changes. Substantial changes in α1 are also observed in one protein from the NtrC subfamily 965 

(pink). 966 

 967 

Figure 6. Structure of the HK-RR complex. Ribbon (a) and surface (b) views of the HK856-968 

RR468 complex (PDB id, 3DGE). Residues that determine the HK-RR interaction specificity (19, 969 

96) are highlighted in light orange and cyan in the HK and RR, respectively. HK-RR contacts 970 

also involve other surface regions (grey), including both active sites of the HK (red) and the RR 971 

(pink). 972 
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Table 1. Dimerization modes and orientations of the conserved aromatic residue in RR subfamilies. 
 

Family P Position of Y/F 
(inward) Active Dimer Interface Alt. Dimer Interfaces 

OmpR + 10/10a α4-β5-α5   (10/10) 
(1zes, 1xhf, 4uhk, 4s04, 6br7,…)  N.A. 

 - 3/9 (MD)  
9+3b/18(Rec) 

α4-β5-α5   (MD 3/9, Rec 16/18) 
(1xhe, 2hqr, 3nhz, 3r0j, 4kny, 4uhs,…) 

α1-α5   (2/27) (1b00, 4uhs) 
Other (1mvo) 

NtrC + 6/6 α4-β5   (4/5) 
(1l5y, 1zy2, 2jrl, 4d6y) β5-α5   (1/5) (2vui) 

 - 0/4 (MD) 
2/7(Rec) 

α4-β5   (MD 0/4, Rec 2/7) 
(3cfy, 4d6x) 

β5-α5   (5/9) 
(1l5z, 2jk1, 3dzd, 4i4u, 5m7n)  

NarL + 8/8 α1-α5   (7/8)  
(4if4, 4ldz, 4zmr, 5hev, 5o8z, 4e7p, 4le0) 

β6-α6   (6/8) (4if4, 4ldz, 4zmr, 5hev…) 
α4-β5   (1/8) (1d5w)  

 - 6/8 (MD) 
7/8(Rec) 

α1-α5   (MD 4/8, Rec 5/8) 
(1rnl, 5vxn, 4hye, 4le1, 3eul, 3b2n…) 

β6-α6   (7/16) (4hye, 4le1, 2qsj, 5f64…) 
α4-β5   (1/8) (1dbw)  

LytTR +/-c 1/1 (MD) 
1/1(Rec) α4-loop-β5   (4cbv, 4ml3) N.A. 

 
a: Numbers are for individual protein fragments. The REC domain or multi-domain (MD) fragments of the same protein are individually counted. 
b: Mixed positioning. Protein chains contain both inward and outward orientations of Y within a single crystal symmetry unit.            
c: Phosphorylation status is mimicked with D to E or D to A mutations.             
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Figure 2
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Figure 3
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Figure 4
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Figure 5
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