

A peer-reviewed version of this preprint was published in PeerJ
on 29 July 2019.

View the peer-reviewed version (peerj.com/articles/cs-207), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Semeniuta O, Falkman P. 2019. Event-driven industrial robot control
architecture for the Adept V+ platform. PeerJ Computer Science 5:e207
https://doi.org/10.7717/peerj-cs.207

https://doi.org/10.7717/peerj-cs.207
https://doi.org/10.7717/peerj-cs.207

Event-driven industrial robot control architecture for the

Adept V+ platform

Oleksandr Semeniuta Corresp., 1 , Petter Falkman 2

1 Department of Manufacturing and Civil Engineering, NTNU Norwegian University of Science and Technology, Gjøvik, Norway

2 Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden

Corresponding Author: Oleksandr Semeniuta

Email address: oleksandr.semeniuta@ntnu.no

Modern industrial robotic systems are highly interconnected. They operate in a distributed

environment and communicate with sensors, computer vision systems, mechatronic

devices, and computational components. On the fundamental level, communication and

coordination between all parties in such distributed system are characterized by discrete

event behavior. The latter is largely attributed to the specifics of communication over the

network, which, in terms, facilitates asynchronous programming and explicit event

handling. In addition, on the conceptual level, events are an important building block for

realizing reactivity and coordination. Event-driven architecture has manifested its

effectiveness for building loosely-coupled systems based on publish-subscribe middleware,

either general-purpose or robotic-oriented. Despite all the advances in middleware,

industrial robots remain difficult to program in context of distributed systems, to a large

extent due to the limitation of the native robot platforms. This paper proposes an

architecture for flexible event-based control of industrial robots based on the Adept V+

platform. The architecture is based on the robot controller providing a TCP/IP server and a

collection of robot skills, and a high-level control module deployed to a dedicated

computing device. The control module possesses bidirectional communication with the

robot controller and publish/subscribe messaging with external systems. It is programmed

in asynchronous style using pyadept, a Python library based on Python coroutines, AsyncIO

event loop and ZeroMQ middleware. The proposed solution facilitates integration of Adept

robots into distributed environments and building more flexible robotic solutions with

event-based logic.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

Event-driven industrial robot control1

architecture for the Adept V+ platform2

Oleksandr Semeniuta1 and Petter Falkman2
3

1Department of Manufacturing and Civil Engineering, NTNU Norwegian University of4

Science and Technology, Gjøvik, Norway5

2Department of Electrical Engineering, Chalmers University of Technology, Gothenburg,6

Sweden7

Corresponding author:8

Oleksandr Semeniuta19

Email address: oleksandr.semeniuta@ntnu.no10

ABSTRACT11

Modern industrial robotic systems are highly interconnected. They operate in a distributed environment and

communicate with sensors, computer vision systems, mechatronic devices, and computational components.

On the fundamental level, communication and coordination between all parties in such distributed system are

characterized by discrete event behavior. The la�er is largely a�ributed to the specifics of communication over the

network, which, in terms, facilitates asynchronous programming and explicit event handling. In addition, on the

conceptual level, events are an important building block for realizing reactivity and coordination. Event-driven

architecture has manifested its eûectiveness for building loosely-coupled systems based on publish-subscribe

middleware, either general-purpose or robotic-oriented. Despite all the advances in middleware, industrial robots

remain diûicult to program in context of distributed systems, to a large extent due to the limitation of the native

robot platforms. This paper proposes an architecture for flexible event-based control of industrial robots based

on the Adept V+ platform. The architecture is based on the robot controller providing a TCP/IP server and a

collection of robot skills, and a high-level control module deployed to a dedicated computing device. The control

module possesses bidirectional communication with the robot controller and publish/subscribe messaging with

external systems. It is programmed in asynchronous style using pyadept, a Python library based on Python

coroutines, AsyncIO event loop and ZeroMQ middleware. The proposed solution facilitates integration of Adept

robots into distributed environments and building more flexible robotic solutions with event-based logic.

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

INTRODUCTION28

Robots are always associated with high level of complexity, which is usually considered with respect29

to the task being performed. Because modern robotic systems operate in a networked environment,30

the additional complexity is caused by the nature of interaction and coordination with sensors, vision31

systems, various mechatronic equipment, and computational components, such as servers and cloud32

services. As Kortenkamp and Simmons (2008) note, =robot systems need to interact asynchronously,33

in real time, with an uncertain, o�en dynamic, environment. In addition, many robot systems need34

to respond at varying temporal scopes 3 from millisecond feedback control to minutes, or hours, for35

complex tasks=. �is is the reason why robotic architecture becomes increasingly important.36

To tackle the challenges associated with communication and coordination complexity, a number37

of robotic middleware solutions has been developed. �e Robot Operating System (ROS) is the most38

prominent example of such systems, although other solutions exist, e.g. YARP. Most of them support39

publish-subscribe messaging style, where messages are asynchronously delivered from publisher to40

subscriber nodes. In ROS this is realized with uniquely-named topics, which are internally resolved by41

the master roscore to pairs of TCP or UDP sockets between publishers and subscribers.42

�e primary use of topics is delivery of periodic sensor readings. �e reason is that in many cases,43

especially in the research environment, robots are viewed as continuous systems, characterized by a44

set of continuous time-varying signals, sampled at a constant interval (Dantam et al., 2016). �e idea45

of periodic sampling is central to the classical approach to digital system control, as it is rooted in the46

solid theory of periodic control (ÚAström, 2008). Since robotics shares its intellectual tradition with47

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

control engineering, periodic sampling became a dominant strategy for real-time sensing in robotic48

systems. Although the periodic approach works well for traditional point-to-point control systems,49

in the distributed environment one faces such challenges as latency, ji�er in packet delivery, and lost50

packets. In addition, with introduction of more resource-constrained devices, the cost of communication51

increases, and it becomes of critical interest to base the control system on reactivity only to events of52

particular importance (Miskowicz, 2015). In addition to events derived from continuous signals (e.g.53

based on a signal threshold), numerous classes of sporadic discrete events constitute an important54

abstraction for modeling behaviors in cyber-physical systems.55

�e discrete event behavior is apparent in situations when a system is convenient to model as56

possessing discrete state space (e.g. {IDLE,BUSY,DOWN}), when a system automates discrete57

parts manufacturing, when human iteration is involved (e.g. bu�on press at arbitrary time), when58

unpredictable disturbance requires a system9s component restart, and many others. For a number of59

automated components (e.g. robots, feeders etc) cooperating, events constitute an important abstraction60

that ensures synchronization of the components9 operation. In addition to the inherent discrete event61

nature of many processes where industrial robots are involved, latency, a�ributed to any communication62

system, calls for event-driven and asynchronous design of computational components that involve63

networking.64

From the engineering perspective, it is beneûcial to be able to compose a robot control program from65

modular well-deûned components, rather than coding up everything from scratch in amonolithic fashion66

(Onori and Oliveira, 2010). One approach is to specify sequences of operations to form serial, parallel, or67

arbitrary order sequences (Lennartson et al., 2010). �is paper makes use of the coroutine abstraction to68

deûne composable communication-heavy tasks with event-based logic. �emain idea is to treat the robot69

and external nodes (such as vision systems) as services, and coordinate communication with them from70

a high-level control node. �e logic of the la�er is composed from a set of Python AsyncIO coroutines71

based on domain-speciûc abstractions. �e beneût of this approach is that one is able to realize much72

more complex coordination scenarios, where the burden of error-prone communication is li�ed from73

the native yet restricted robot controller platform to a higher-level AsyncIO-driven application.74

At the core of the proposed robot control architecture lies two-sided communication: (1) TCP/IP75

connection between the robot controller and the control node, and (2) publish-subscribe communication76

with the external nodes. �e architecture facilitates speciûcation of event-driven communication logic77

and internal asynchronous runtime. As a result, it becomes easier, more ûexible, and less error-prone to78

program industrial robots and integrate them into distributed environments. �e implementation of the79

system is done based on AsyncIO Python abstractions and ZeroMQ middleware. �e architecture is80

validated by a proof-of-concept implementation of a robotic system with vision sensing, where a robot,81

a set of GigE Vision cameras, and a set of computing nodes are connected in a VLAN-based network82

conûguration.83

�e paper is structured as follows. First, the background on approaches to robot programming,84

implementation and semantics of events in computational systems, and event-driven middleware is85

presented. Further, the principles and architecture of the proposed system are described. An application86

use case that validates the ideas of this paper is then introduced and analyzed. �e proposed solutions are87

discussed and compared to similar systems. �e paper concludes with outlining the further development88

directions.89

BACKGROUND90

Approaches to programming industrial robots91

Industrial robots are supplied as end-products with carefully engineered hardware and so�ware compo-92

nents. As robots are essentially programmable devices, an important part of the system is the robot93

controller with the associated computational capabilities and programming interface. Although this94

paper presents a custom solution for the Adept robot platform, it aims at establishing a common design95

paradigm for multitude of industrial robots.96

An Adept robot controller runs V+, a real-time multi-tasking operating system. It controls robot97

motion, input/output, task management, and other necessary operations. V+ is also the name of a98

programming language for the Adept platform. Other robot platforms are based on similar operating99

systems, e.g. KUKA.SystemSo�ware and ABB RobotWare.100

2/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

When developing a robot control program, the most straightforward way to go is programming101

all the logic to be run by the robot controller. �e availability of various I/O interfaces, such as digital102

signals, DeviceNet, Ethernet, and RS-232, allows to communicate with external systems when needed. In103

such an arrangement, the robot has the master role. To program an Adept robot controller, one requires104

a client programming environment (such as Adept ACE, Adept DeskTop), that runs on a Windows-based105

programming station. V+ codebase is comprised of subroutines called programs that are gathered in106

modules. An individual program can be associated with an operating system task, which in turn can be107

run concurrently with other tasks.108

�e conûguration where the robot has the master role oûers good timing properties, but makes the109

control logic rather rigid and monolithic. Speciûcally, it becomes diûcult to operate such robot as a110

part of a system with a large number of distributed components. When more ûexibility is required, an111

alternative solution is a client/server conûguration, where the robot controller runs a TCP/IP server, and112

accepts commands from a client on a general-purpose platform (e.g. x86-64- or ARM-based computer113

running Linux). �e client can be more ûexibly programmed, and normally constitutes a part of a larger114

distributed architecture, for example, as a ROS node or other computational component. �e deûned115

set of commands, may include various motion tasks, as well as coarse-grained tasks, pre-deûned as V+116

programs in the robot controller. One of the challenges in this la�er case is to deûne a suitable wire117

protocol and ensure that commands to the robot controller are read and processed correctly, given the118

stream nature of the TCP protocol.119

Events in computational systems120

One distinguishes between time-driven and event-driven systems. In the former case, everything is121

modeled with respect to a clock with given frequency. For example, a continuous signal is sampled at a122

constant time interval. Such systems are a subject of study in classical control. Conversely, event-driven123

paradigm presumes that a system is characterized by a discrete state space, and events can occur at any124

time instant. An event in this case constitutes any instantaneous occurrence that causes transition from125

one system state to another (Cassandras and Lafortune, 2008).126

�e behavior of industrial automation systems is to a large extent event-driven. It manifests itself in127

both the nature of the applications and in the inherent properties of digital communication systems,128

speciûcally the latency. To deal with the la�er, the operating system provides the abstraction of I/O129

events. An I/O event is associated with a particular resource becoming ready, e.g. data has arrived130

from the network and is ready for non-blocking access. On *nix platforms with POSIX system call API,131

mechanisms for monitoring I/O events comprise I/O multiplexing (select/poll), signal-driven I/O, the132

Linux-speciûc epoll, and BSD-speciûc kqueue (Kerrisk, 2010). Windows features the IOCP threading133

model for concurrent handling of asynchronous I/O.134

To tackle system design when waiting for a network operation to complete, the event-driven program-135

ming paradigm is employed, which directly harnesses I/O events. An event driven system component is136

comprised of (1) a continuous event loop, (2) a polling source, (3) a set of possible events on every loop137

iteration, and (4) data containers for accumulation of request and response data. �e logic of a common138

event loop is presented as algorithm 1 (adapted from the event-driven server example by Rhodes and139

Goerzen (2010)). Here p constitutes a polling source, such as one of the I/O monitoring system calls140

with a set of monitored ûle descriptors.141

Implementing such loops directly is error-prone. �erefore, a number of event-driven networking142

frameworks exist for diûerent programming languages. �ey encapsulate the low-level system calls and143

provide object-oriented interface based on such design pa�erns as Reactor and Proactor (Buschmann144

et al., 2007). Such pa�erns realize the Inversion of Control (IoC) principle, where application-speciûc145

callbacks are registered, and later called by the framework on occurrence of the respective events.146

Examples of such frameworks are Boost Asio and ACE for C++, and AsyncIO and Twisted for Python.147

AsyncIO is a part of Python standard library, introduced in Python 3.4, which provides a standardized148

way for implementing event loops with sets of concurrent non-blocking coroutines. A coroutine149

constitutes an executable object that represent particular application-speciûc task. An important feature150

of a coroutine is that it can pause its execution and yield control to the event loop. As a result, one achieves151

cooperative multitasking, where a set of coroutines get suspended and resumed as diûerent events occur152

and conditions get satisûed. Such programming style gives the most evident advantage in realizing153

scalable event-driven servers. In addition, as further shown in this paper, several communication-heavy154

tasks can be composed together in a well-deûned way when implemented as AsyncIO-based coroutines.155

3/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

Algorithm 1 Event-driven component

1: function E����L���(p)
2: Initialize S ² Set of monitored connections
3: Initialize Din ² Dictionary of input bytes per connection
4: Initialize Dout ² Dictionary of output bytes per connection
5: while true do

6: events← poll(p)
7: for e ∈ events do

8: if e = New connection c is available then
9: Add c to S

10: else if e = Connection c got closed then

11: Remove c from S

12: Remove Din[c] and Dout[c]
13: else if e = Data available for reading at connection c then

14: Read from c to Din[c]
15: if Din[c] contains a complete request then
16: Dout[c]← Process bytes in Din[c]
17: end if

18: else if e = Connection c is available for writing then

19: Write to c some bytes from Dout[c]
20: Dout[c]← Unsent bytes in Dout[c]
21: end if

22: end for

23: end while

24: end function

Another use case of explicit utilization of events is asynchronous programming. A functions call156

can be either synchronous, which blocks until the function completes, or asynchronous, which returns157

immediately. �e results of an asynchronous function call shall be processed as a part of other operation158

once they become ready. A completion event in this case can be captured and processed in a way similar159

to algorithm 1. As a polling source, a blocking queue can be used, with one execution thread pu�ing a160

event object in it, and the other thread (running the polling loop) ge�ing an event object from the queue161

when one is ready. When using future objects, the polling source constitutes a set of futures, which are162

monitored in a way similar to polling ûle descriptors in algorithm 1. Although futures and queues are163

typically used to realize thread-based concurrency, their counterparts exist also in AsyncIO.164

Similarly to synchronous vs asynchronous function calls, when dealing with networking, one can165

realize two communication styles: request/reply, which is logically synchronous, and publish/subscribe,166

which decouples operations of sending/publishing a message and its receiving on the subscriber9s side.167

�e publish-subscribe messaging in the backbone of event-driven middleware, which is presented in168

the following subsection.169

Event-based middleware170

As the contemporary robotic systems are necessarily distributed, an important component is robotic171

middleware, which provides a uniûed set of communication and input/output capabilities.172

�e transport layer functionality (TCP and UDP protocols) on POSIX-based operation systems can173

be implemented via the C-based socket API, as well as by utilizing various object-oriented network174

frameworks (Komu et al., 2012). �e =native= connection-oriented communication (using a pair of TCP/IP175

sockets) is a straightforward and low-overhead means of exchanging data between two networked176

nodes. It, however, presumes temporal dependency, i.e. requirement for the components to be available177

at the same time, along with address knowledge and agreement on data representation. In contrast,178

messaging middleware allows to decouple the communicating components by introducing message179

queuing, built-in address resolution (e.g. via handling logical addresses such as topic names), and usage180

of a common data serialization format (Magnoni, 2015). An important feature of middleware is the181

provision of the publish/subscribe and other messaging pa�erns, which allows to design a distributed182

4/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

system in event-driven fashion.183

�e deûning components of a particular middleware solution are the communication protocol184

(transport-level TCP and UDP, wire-level AMQP, ZeroMQ/ZMTP, MQTT), the communication styles185

(request/reply, publish/subscribe), and the data serialization method (typically realized with an interface186

deûnition language like Protobuf or Apache �ri�). Many middleware solutions are based on a central187

broker, e.g. ActiveMQ and RabbitMQ. �e additional hop through the broker adds a constant value to188

the communication latency (Dworak et al., 2012), which is not desirable for time-sensitive applications189

such as robotics. ZeroMQ is an example of broker-less middleware, in which the message queuing logic190

runs locally within each communicating component (ZeroMQ, 2008).191

Several state-of-the art middleware solutions has been evaluated at CERN (Dworak et al., 2011) to ûnd192

the most suitable candidate for realizing the upgraded CERN Controls Middleware, a systems responsible193

for managing communication with a multitude of sensors and actuators at the organization9s accelerator194

complex. Similarly to the speciûcs of the robotics context, for CERN engineers it was important to195

achieve low latency, as well as lowmemory and resource usage. In addition, it was preferable to possess a196

solution without message brokers, central servers, or additional daemons. As a result of the performance197

study with diûerent communication scenarios, ZeroMQ was chosen as the most suitable technology.198

A speciûcally good results were shown with respect to system scalability (latency was kept relatively199

constant regardless the number of clients added) due to its automatic buûering capability (Dworak et al.,200

2011, 2012).201

Robot Operating System (ROS) is the most widely used middleware that is speciûcally designed202

for building distributed robotic systems. It supports request/reply remote procedure calls via services,203

and publish/subscribe communication via topics. Messages in ROS are serialized with the built-in204

serialization mechanism. A ROS system requires a central master server, responsible for name resolution.205

On the transport layer, both TCP and UDP are supported via standard sockets. In its current form, ROS206

is tightly coupled with Ubuntu as the runtime platform.207

To preserve the philosophy of ROS and most of working code, yet adapt it to the production envi-208

ronment, the ROS2 initiative has started (Gerkey, 2018), introducing cross-platform support (including209

for small embedded platforms) and built-in real-time control capabilities. Data Distribution Service210

(DDS) is used as a communication backbone in ROS2. DDS is a data-oriented middleware standard with211

several industrial-grade implementations, which provides various transport conûgurations suitable for212

real-time control (e.g. deadline and fault-tolerance) (Maruyama et al., 2016).213

ROS is perhaps themost widely used roboticmiddleware, although not the only one. �e development214

of the iCub humanoid platform has spinned-oû YARP, which is based on ACE for communication and215

�ri� for typed data serialization. YARP supports the publish/subscribe messaging paradigm and216

diûerent buûering policies, such as FIFO and Oldest Packet Drop (ODP) (Natale et al., 2016).217

�e low-level operating system capabilities are directly utilized by the ach interprocess communica-218

tion library (Dantam et al., 2015, 2016), designed speciûcally for real-time transmission of periodically219

sampled sensor signals in a robotic system. �e goal of the library is to guarantee processing of the220

latest sample with a minimum latency. Contrary to traditional robotic middleware solutions, ach is221

implemented as a Linux kernel module.222

Robotic middleware solutions such as ROS, YARP, and ach are rooted in the research environment,223

and o�en used with complex prototypes such as humanoid robots, AGVs, and various custom-built224

robotic systems. When it comes to industrial robots, their support is rather limited, even in the context of225

the popular ROS platform. Support for the la�er is being added by the participants of the ROS-Industrial226

consortium, and, for some new robot models, ROS support comes built-in out of the box. In general,227

however, there is a long way to go. �e Adept platform, for instance, does not have a maintained ROS228

driver.229

�e pilot implementation of the robot control solution proposed in this paper uses ZeroMQ as the230

middleware for publish-subscribe communication. In addition to being highly lightweight, eûcient, and231

cross-platform, ZeroMQ natively supports AsyncIO event loop.232

SYSTEM ARCHITECTURE233

�is section presents the architecture for industrial robot control that facilitates integration of the robots234

into distributed systems with publish-subscribe communication and building ûexible solutions with235

event-based logic. First, the general principle of the architecture, along with a step-by-step example of236

5/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

communication between the robot controller and the high-level control node is presented. Further, a237

more detailed description of the proposed wire protocol is described, followed by an overview of the238

developed so�ware abstractions based on AsyncIO and ZeroMQ.239

Components and general principles240

�e proposed system for control of an industrial robot is based on two principal networked components:241

(1) RobotServer, a TCP/IP server realized on the robot controller, and (2) MasterControlNode, a high-242

level control node running on a dedicated computer, perfoming computations aimed at establishing the243

desired control logic, and communicating with both the RobotServer and other networked components244

(Figure 1).245

MasterControlNodeRobotServer

TCP server TCP async writer

TCP async reader

ZeroMQ publisher

ZeroMQ subscriber

skill1
skill1

skilli

coroutinej

AsyncIO event loop

Server/executor

task

Direct robot control

Figure 1. Structure of the proposed robot control system

RobotServer is associated with the deûned set of actions, dubbed skills. �ey are implemented as246

procedures in the robot controller9s programming language, each accepting its own set of parameters.247

To make the robot perform a speciûc skill, the MasterControlNode sends the corresponding ASCII byte248

string command over the TCP socket connecting it with the RobotServer. A correctly forma�ed byte249

string that correspond to the available skill is referred to as a message, and it is always delimited with250

"\r\n". A more formalized description of the communication protocol between MasterControlNode251

and RobotServer is presented in the following subsection.252

As an example, consider a robot operation of motion towards a speciûed pose in the world coordinate253

frame. To perform it, MasterControlNode sends a byte string such as the following:254

eae86869:move_to:-80.000,-481.000,112.500,180.000,90.000,180.000\r\nee861124:break\r\n255

�e above byte string is comprised of two messages, corresponding to skills move to and break,256

each deûned as a V+ program. �e former accepts six real-valued arguments, while the la�er is invoked257

without arguments. It is a common pa�ern to combine a motion command with breaking, as this ensures258

that several subsequent motions are not interpolated, and the robot9s end eûector reaches the speciûed259

pose.260

�e ûrst 8 bytes of each message correspond to a unique ID, generated by the MasterControlNode.261

It is obtained as the ûrst 8 bytes of an UUID generated by the uuid.uuid4 function. �e remaining262

components, separated by colon, constitute the name of the skill and the list of parameters.263

RobotServer operates as a task in the robot controller that realizes a TCP server. A�er a complete264

message is read from the TCP stream, it is mapped to speciûc skill, which gets executed, with the start265

and completion timestamps being recorded. A�er the completion, an acknowledging message of the266

following form is sent back to MasterControlNode:267

eae86869:done:2492.516,2492.539:480.014,-0.038,709.975,0.000,179.995,0.004\r\n268

�e parts of the acknowledging message, separated by colon, constitute the associated command ID,269

execution status, starting and completion timestamps separated by a comma, and current robot pose270

separated by commas. �e timestamps are measured in seconds with millisecond precision, and the271

pose parameters correspond to translation vector components x, y, z, expressed in millimeters, and272

rotation angles (yaw, pitch, roll) expressed in degrees.273

6/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

MasterControlNode monitors the arrival of responses from RobotServer, and, for the current274

operation, once all of the IDs that characterize this operation have been acknowledged, the operation is275

marked as completed.276

In addition to communication with the RobotServer via TCP, the MasterControlNode participates277

in a distributed publish/subscribe network. All the communication primitives are implemented on top278

of Python9s AsyncIO event loop.279

Communication protocol280

MasterControlNode and RobotServer communicate with a TCP-based protocol described in this281

subsection.282

When MasterControlNode (the client) gets connected to RobotServer (the server), a communica-283

tion session is established. It stays active until one of the endpoints (normally the client) closes the284

connection.285

Both endpoints send each other streams of bytes, where every byte is semantically regarded as the286

corresponding ASCII-encoded character. Sequence "\r\n" has a role of delimiter string, which separates287

two consecutive commands.288

delimiter ::= "\r\n"289

A command represent a string that can be mapped to a predeûned V+ program. �e most important290

set of commands constitutes motion commands, all of which map to programs having 6 real-valued291

arguments (representing either poses or joint vectors). Formally, a motion command, along with its292

components, is deûned as follows:293

motion_command ::= motion_command_name ":" location delimiter294

motion_command_name ::= "move_to" | "move_joints" |295

"move_rel_world" | "move_rel_joints" | "move_rel_tool"296

location ::= real "," real "," real "," real "," real "," real297

real ::= digit+ "." fractional;298

fractional ::= digit digit digit299

digit ::= [0-9]300

Semantics of the motion commands is the following:301

" move to:x,y,z,yaw,pitch,roll moves the robot9s tool center point to the speciûed pose, ex-302

pressed in the world coordinate frame. Here x,y,z represent a translation vector expressed in303

millimeters, and yaw,pitch,roll represent a vector of rotation angles expressed in degrees.304

" move rel world:x,y,z,yaw,pitch,roll performs movement relative to the current pose ex-305

pressed in the world coordinate frame: given the current pose w¿now , move to the pose w¿now
⊕

¿,306

where ¿ is embodied in the pose parameters x,y,z,roll,pitch,yaw.307

" move rel tool:x,y,z,yaw,pitch,roll performs movement relative to the current pose t¿now308

expressed in the tool coordinate frame (t¿now
⊕

¿).309

" move joints:j1,j2,j3,j4,j5,j6 move robot to the speciûc joints conûguration.310

" move rel joints:j1,j2,j3,j4,j5,j6 performs relative joint movement by displacing each311

joint in the amounts speciûed by j1,j2,j3,j4,j5,j6.312

Apart from the motion commands, other classes of commands are deûned. break command signalizes313

the robot that two subsequent motions with break in between shall not be interpolated. air command314

is used to control vacuum valves a�ached to the tool. speed command speciûes speed factor for the315

subsequent motion command.316

command ::= motion_command | break_command | air_command | speed_command317

speed_command ::= "set_speed" ":" digit delimiter318

air_command ::= (�enable_air� | �disable_air�) delimiter319

break_command ::= "break" delimiter320

7/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

One or more commands constitute a command chain.321

command_chain ::= command+322

By the nature of TCP protocol, the bytes are communicated between endpoints in a streaming323

fashion: the correct order of bytes is guaranteed, but a sent command may not be delivered as an atomic324

message, and may arrive in pieces. �at9s why, on both the MasterControlNode9s and RobotServer9s325

side, buûering of the incoming bytes is performed.326

So�ware abstractions327

�e pilot implementation of the proposed architecture is released as the pyadept Python library1,328

together with the associated V+ code structured into the AdeptServer project2. �e intended workûow329

is based on treating the robot controller as a service. �e ûrst stage is to enable high power for the330

robot and start the AdeptServer9s server V+ program on the robot controller side. A�er this, a Python331

program based on pyadept can be launched and used for high-level system coordination.332

Robot commands (as speciûed in the =Communication protocol= subsection), are deûned as classes in333

the pyadept.rcommandsmodule. �ey construct immutable instances providing the functionality of cor-334

rect generation of the corresponding byte strings. All robot command classes realize the get messages335

method, returning a tuple of byte strings, each ûnalized with the delimiter sequence "\r\n".336

�e pyadept.rprotocol module consists of classes, functions and coroutines realizing the logic337

behind two-sided communication of a MasterControlNode, as well as tools for data capture during338

system operation. �e two central classes of this module are RobotClient and ProtobufCommunicator,339

realizing AsyncIO-based communication with the RobotServer and the external systems respectively:340

" RobotClient provides coroutine methods connect (establishing the connection with the server),341

as well as cmdexec and cmdexec joined (providing execution of commands). �e two la�er342

methods accept one on more instances of robot commands and initiate communication with the343

RobotServer using AsyncIO9s StreamWriter/StreamReader pair. Several commands supplied344

to cmdexec are handled one-by-one: each command9s messages are sent to the server, and345

the corresponding responses are awaited before proceeding to the next command. Conversely,346

cmdexec joined combines messages from the supplied commands into a single sequence, and347

sends all of them in one run.348

" ProtobufCommunicator uses AsyncIO-compatible ZeroMQ primitives to announce a Protobuf-349

based request event and wait for the corresponding Protobuf-based response in the context of a350

publish/subscribe system.351

APPLICATION USE CASE352

Problem context353

�e functionality of the proposed system is demonstrated on a robotic application of handling a small354

part for detailed vision-based quality inspection. Drawing from the previous work on picking and355

inspection of small automotive components (Semeniuta et al., 2016), the described setup is aimed at356

moving the part from the pick pose ¿pick to the inspection-start pose ¿is in front of a Prosilica GC1020C357

camera with a 35 mm Fujinon HF35HA-1B lens, with the subsequent sequence of tool rotations while358

keeping the part in focus of the camera. On each rotation increment, an image of the camera is requested359

by the MasterControlNode.360

�e primary operation, described in the previous paragraph, is performed a�er the initial calibration361

phase, which includes determination of the inspection-start pose ¿is. Since the chosen camera setup is362

aimed at close-range imaging of small parts, it is rather sensitive to the depth at which the manipulated363

part is being held. �at9s why, in order to determine the focus plane, a calibration tool is moved ûrst to364

the approach pose ¿appr , and eventually aligned with the focus plane by a series of small linear motion365

increments with vision feedback. A robot in poses ¿appr and ¿is is shown in Figure 2.366

1�e pyadept implementation is available under the 3-clause BSD license at https://github.com/semeniuta/pyadept
2�e AdeptServer implementation is available under the 3-clause BSD license at

https://github.com/semeniuta/AdeptServer

8/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

!"##$

!%&

Figure 2. Robot in the approach pose ¿appr and the sought inspection-start pose ¿is

System components367

To realize the described task and demonstrate composability of the MasterControlNode/RobotServer368

pair with components providing vision services, the system shown in Figure 3 is considered. In addition369

to the robot-related components, it includes an FxIS-based image acquisition service ImAcqService370

(Semeniuta and Falkman, 2018), and ImProcNode 3 a computational component responsible for image371

processing. �e ImProcNode component is realized with EPypes primitives (Semeniuta and Falkman,372

2019), i.e. the logic of the image processing routine is speciûed as a directed acyclic bipartite graph of373

computational procedures as data tokens.374

�e vision-related components (ImAcqService and ImProcNode) are composed via thread-based375

concurrency, with asynchronous communication being performed via blocking queues. ImAcqService376

performs continuous image acquisition from one or more GigE Vision cameras while keeping a circular377

buûer of a number of recent images. On arrival of a vision request event, the buûer is queried to retrieve378

the most closely associated in time image. �e la�er undergoes processing in the ImProcNode, with the379

result being published.380

MasterControlNode

PUB1 SUB1

PUB2

SUB2

ImAcqService

ImProcNode
RobotServer

Figure 3. Event-driven communication in a robotic cell

More complex systems bearing the same architecture can be comprised of larger number of nodes.381

�e subset of components shown as a part of the gray-shaded region constitutes the system with382

9/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

publish-subscribe communication. �e green double-sided arrow shows the TCP-based communication383

between MasterControlNode and RobotServer.384

Network topology design385

�e laboratory setup used in this paper constitutes a distributed system (Figure 4) consisting of a386

robot controller (ROB, Adept V+), three GigE Vision-based industrial cameras (C1, C2, C3), and three387

computational nodes: a computer performing image acquisition and running computer vision routines388

(VIS, Ubuntu), a robot programming station running Adept DeskTop (ADT, Windows), and a Raspberry389

Pi single-board computer running the master control node (MCN, Debian).390

�e above components are joined into two IP networks: (1) the Robot Network, and (2) the Vision391

Network. Both of them are realized with a single managed network switch (Netgear GS108Ev3) sup-392

porting the IEEE 802.1Q protocol for virtual LANs. �e MCN component is conûgured with two virtual393

network adapters and connected to the tagged port on the switch. MCN thus belongs to both networks.394

MCN

VISFxIS

ADT

ROB

Robot network

Vision

network

C1

C2

C3

1 2 3 4 5 6 7 8

Figure 4. Network conûguration

With regards to the components shown in Figure 3, they are deployed as follows. ROB hosts the395

RobotServer, while MCN hosts the MasterControlNode. �e vision-related components (ImAcqService396

and ImProcNode) run on the same physical machine (VIS). �is is motivated by the substantial cost397

of image transmission over the network. ImAcqService performs acquisition from C1, C2, C3. C1 is398

the camera with the 35 mm focal length lens employed for close-range measurement, and it is used to399

perform the experiment described further.400

Vision system for sharpness measurement401

In order to realize robot movement with visual feedback on how focused the tool plate is, the following402

system is employed. A simple planar calibration object is a�ached to the robot9s tool plate (Figure 5).403

�e object constitutes a series of rectangles of diûerent sizes enclosed one inside another. A rectangle9s404

border is a thin black line. �e motivation is that when the object is out of focus, the thin lines become405

blurred. By devising a method that systematically measures sharpness of the object, it can be possible to406

provide the necessary feedback to MasterControlNode. �e white background makes the object easily407

segmentable.408

�e developed algorithm for sharpness measurement is visualized as an EPypes computational graph409

in Figure 6. Here, ellipses represent data tokens, and rectangles represent processing functions. �e410

shaded tokens are the pre-deûned conûguration values.411

�e original image is supplied in the grayscale format. First, it undergoes thresholding operation412

to highlight the light regions on the image (including the white background of the calibration object).413

�e thresholded binary image is eroded to remove the inûuence of the black lines in well-focused414

images. Further, connected components are identiûed. �e goal is to segment the connected component415

belonging to the calibration object. To do that, a ûlter based on width-to-height ratio range and minimal416

region area is applied. �e selected region of interest is cropped from the original image, and is used417

as an input to the Sobel operator, applied in the x direction. From the middle, in terms of y axis, of418

resulting gradient image, a horizontal line proûle is extracted. As a measure of sharpness, the standard419

deviation of this proûle is used: the more the original image is in focus, the greater variability between420

dark and bright pixels in the calibration region.421

10/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

Figure 5. Calibration object on the robot9s tool plate

sobel_x

sobelx_im

h_proûle_sobelx

proûle_sx

measure_sharpness

sharpness

identify_object_region

region_vertices region_info

crop_roi

region_image

erosion

eroded_light

ûnd_ccomp

ccomp_stats_df ccomp_labels

highlight_light

thresholded_light erosion_kernel_size

wh_ratio_hi wh_ratio_lo area_lo

main_threshold image

Figure 6. Computational graph of the sharpness measurement algorithm

Figure 8 demonstrates the intermediate results (sobelx im and profile sx tokens) of the sharpness422

measurement routine for images with diûerent positioning of the calibration object.423

Performance of the proposed algorithm on a sequence of images with varying sharpness is shown424

in Figure 7. Here, the robot arm was gradually moved from the approach pose closer to the cameras.425

�e red vertical line correspond to the image with maximal sharpness (as perceived by a person). It is426

clearly seen that the sharpness curve, measured with the proposed algorithm, reliably corresponds to427

human perception.428

Coroutines429

�e logic of the focus plane calibration is realized with a set of coroutines. �e ûrst two can be regarded430

as =helper= coroutines. �e init move coroutine performs the initial set of motions: retract to the home431

pose ¿home, and then transition to the approach pose ¿appr :432

11/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Image index

0

50

100

Sh
ar

pn
es

s

Figure 7. Sharpness measurement on a sequence of images a�er consecutive robot motions

async def init_move(rc):433

return await rc.cmdexec(434

rcommands.MoveJoints([0, -90, 180, 0, 90, 0]), # "home" joint configuration435

rcommands.MoveRelJoints([-90, 60, 30, -90, 0, 0]),436

rcommands.MoveRelTool([40, -25, 185, 0, 0, 0]),437

rcommands.MoveRelJoints([0, 0, 0, 0, 0, 1.5])438

)439

�e parameter rc of the coroutine supplies reference to the instance of RobotClient. As can be440

seen from the code, init move consists of only one await call to the rc.cmdexec coroutine method,441

with the ûrst command corresponding to the motion towards ¿home, and the la�er three commands442

corresponding to the motion ¿home → ¿appr .443

�e second coroutine, move tool z, combines sending the se�ing speed command and the commands444

for tool motion in the z direction:445

async def move_tool_z(rc, appr_speed, delta_z):446

return await rc.cmdexec_joined(447

rcommands.SetSpeed(appr_speed),448

rcommands.MoveToolZ(delta_z)449

)450

Note that for the increment towards the focus plane, two commands are supplied to the cmdexec joined451

coroutine method of the instance of RobotClient. �e SetSpeed command produces a single message,452

while MoveToolZ produces two messages (one for motion and one for break). By supplying them as453

in the provided example, all three messages will be sent to the RobotServer conceptually at the same454

time.455

�e primary coroutine, ufloop, realizes the overall logic of approaching the focus plane with vision456

feedback. In addition to rc, it accepts pbcomm, an instance of ProtobufCommunicator, as well as the457

parameter for approach vector increment (delta z, mm) . �e source code of ufloop is presented458

below:459

async def ufloop(rc, pbcomm, delta_z, appr_speed):460

461

await rc.connect()462

await init_move(rc)463

464

sharpness = []465

while True:466

467

pb_req = create_vision_request()468

469

await pbcomm.send(pb_req)470

pb_resp = await pbcomm.recv()471

472

resp_attrs = get_attributes_dict(pb_resp.attributes.entries)473

12/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

0 100 200 300 400 500

400

200

0

200

400

0 100 200 300 400 500

400

200

0

200

400

0 100 200 300 400 500 600

400

200

0

200

400

0 100 200 300 400 500 600

400

200

0

200

400

0 100 200 300 400 500 600

400

200

0

200

400

Figure 8. Visualization of sharpness measurement intermediate results for images with diûerent
positioning of the calibration object

s = resp_attrs[�sharpness�]474

sharpness.append(s)475

476

if len(sharpness) > 1 and (sharpness[-1] < sharpness[-2]):477

break478

479

await move_tool_z(rc, appr_speed, delta_z)480

481

await move_tool_z(rc, appr_speed, -delta_z) # retract back482

483

13/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

return sharpness484

First, a TCP connection to RobotServer is established and the initial motion commands are executed.485

Following that, a series of vision requests are announced using pbcomm. A response obtained as a result486

of each request contains, amongst others, a real-valued a�ribute with sharpness measurement from487

the vision pipeline. A list of these measurements is maintained, and a new value is compared to the488

previous one. It is expected that sharpness should rise as the robot arm approaches the focus plane. If489

the new value is smaller than the last, it is an indication that the focus plane has been passed. �e robot490

tool should move one delta z backwards and the loop should be completed. �e ûnal pose of the robot491

arm can be recorded as ¿is.492

Coroutines are scheduled to be executed by an event loop. In a simpliûed form, this includes493

instantiation of the event loop, the coroutine object (ufloop coro), and scheduling the la�er in the494

event loop:495

loop = asyncio.get_event_loop()496

ufloop_coro = ufloop(rc, pscomm, delta_z)497

loop.run_until_complete(ufloop_coro)498

Time measurements499

A MasterControlNode with logic deûned with ufloop has been deployed to MCN and run together with500

Adept Viper s850 robot and the network conûguration described in the =Network topology design=501

subsection. �e vision pipeline from the =Vision system for sharpness measurement= subsection is502

deployed to the VIS node.503

To study the timing properties of such AsyncIO-based logic, the approach phase is of interest504

(implemented as an inûnite loop in ufloop with the sharpness-based termination condition). Figure 9505

shows two iterations in the approach phase. Vision (orange) and robot (blue) requests are shown in a506

way similar to a Gan� chart: a horizontal bar starts at a time instant when the request is sent and ends507

when the response is received. All time instants are measured in terms of MCN9s AsyncIO clock.508

3.4 3.6 3.8 4.0 4.2 4.4
Time, s

vision_request
set_speed

move_rel_tool
break

vision_request
set_speed

move_rel_tool
break

Figure 9. Vision (orange) and robot (blue) requests during the approach phase of the ufloop coroutine

Each iteration in the approach phase is comprised with a request to the vision system, followed by509

sending two commands (embodied in the three messages) to the RobotServer. �e event-driven nature510

of the AsyncIO-based implementation is clearly seen for the case of sending the three messages for511

each robot motion increment. �e bytes of the messages are sent asynchronously, and the responses512

tagged with the same IDs are received as fast as they arrive. RobotServer executes the set speed513

and move rel tool skills quickly, sending the corresponding responses back to MasterControlNode.514

Invocation of break blocks until the physical motion has completed.515

For each iteration, let t(vreq) and t(vresp) correspond to the timestamps of sending the vision516

request and receiving the vision response respectively. Similarly, let t
(rreq)
ss , t

(rreq)
mrt , and t

(rreq)
b denote517

timestamps of requests to the RobotServer corresponding to the set speed, move rel tool, and break518

messages. Notiûcation about the completed motion is received at t
(rresp)
b .519

Travel time of a robot motion increment Çr is measured as a diûerence between the duration of520

waiting on the client side and duration of the operation on the server side. More concretely, it is deûned521

as follows:522

14/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

Çr = (t
(rresp)
b − t(rreq)ss)− (t

(rstart)
b − t(rstart)ss)

where t
(rstart)
b and t

(rstart)
ss denote the starting timestamps (measurement in the robot controller9s523

clock) corresponding to the break and set speed skills respectively.524

3 4 5 6 7 8
r, ms

0

50

100
Fr

eq
ue

nc
y

Figure 10. Distribution of travel times of robot motion increments

Figure 10 shows a histogram of Çr measurements derived from an experiment with 32 runs of525

ufloop program with varying values of appr speed and delta z. It can be seen that Çr has Gaussian526

distribution with mean of 5.219 ms and standard deviation of 0.964 ms.527

�e switching durations between robot and vision requests are computed as follows:528

Ç
(r→v)
i = t

(vreq)
i − t

(rresp)
b,i−1

Ç
(v→r)
i = t

(rreq)
ss,i − t

(vresp)
i

Given the same experiment, the histograms representing distributions of Ç
(r→v)
i and Ç

(v→r)
i are529

presented in Figure 11, with the vertical lines representing the respective minimal and maximal value.530

�e distribution of these characteristics is heavy tailed, with most of the occurrences being around 1 ms.531

1.0 1.5 2.0 2.5 3.0
(r v), ms

0

250

Fr
eq

ue
nc

y

1.0 1.5 2.0 2.5 3.0
(v r), ms

0

500

Fr
eq

ue
nc

y

Figure 11. Distributions of switching durations between robot and vision requests

Durations between the events of starting consecutive send operations for each robot motion incre-532

ment are deûned as follows:533

Ç (ss→mrt) = t
(rreq)
mrt − t(rreq)ss

Ç (mrt→b) = t
(rreq)
b − t

(rreq)
mrt

15/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

�e distributions of these durations are visualized in Figure 12. One can notice similarities with distri-534

butions of robot/vision switching durations in Figure 11, although the range of observed measurements535

tend to be smaller (with most of occurrences being around 0.2 ms).536

0.2 0.4 0.6 0.8 1.0 1.2
(ss mrt), ms

0

500

Fr
eq

ue
nc

y

0.2 0.4 0.6 0.8 1.0 1.2
(mrt b), ms

0

500

Fr
eq

ue
nc

y

Figure 12. Distributions of durations between starting consecutive send operations to RobotServer

Composition of coroutines537

�e code of the ufloop coroutine looks simple and clear, despite the built-in communication and asyn-538

chronous logic. One can argue, however, that the sequential nature of this particular example could539

be exploited with more traditional blocking I/O primitives. One argument in favor of coroutines is the540

resulting more eûcient runtime, as shown in Figure 9. Another advantage is the one of composability:541

several coroutines can be composed together in a well-deûned way and treated as a collection of concur-542

rent =lightweight threads=. For example, a particular event of interest can be continuously monitored by543

the dedicated coroutine, say listener coro. It can be scheduled together with ufloop coro as follows:544

loop.run_until_complete(545

asyncio.gather(546

ufloop_coro,547

listener_coro548

)549

)550

�e same composition logic can be applied to any number of concurrent coroutines. As synchro-551

nization mechanisms, one can use the AsyncIO-native Event, Queue, Condition, and others. Concrete552

use cases of multiple coroutines composition will be investigated in the further work.553

DISCUSSION554

Similar work555

Establishing ûexible interfaces to industrial robot controllers is a widely practiced endeavour, speciûcally556

in research environments. Such projects are motivated by the constrained capabilities of the proprietary557

robot platforms, in particular when it comes to sensors integration, multi-robot synchronization, con-558

nectivity with external systems, and utilization of methods and tools from modern so�ware engineering559

in the robotics domain (Angerer et al., 2013). Depending on the intended application and the available560

robots platforms9 capabilities, the developed interfaces oûer either ûne-grained real-time control, or561

coarse-grained control with so� real-time properties.562

Sophistication of the available robot interfaces vary depending on the original robot platform563

capabilities and the degree of involvement of the respective robot vendors in the development process.564

A great deal of ûexible robot interfaces development has been done with KUKA robots. Research565

around KUKA Lightweight Robot (iiwa) resulted in a fast real-time interface based on UDP and ability to566

access the controller9s motion kernel in a highly ûne-grained manner (e.g. supplying custom trajectories567

and realization of custom cyclic control modes, such as impedance control), having cyclic time frame of568

1 to 100 ms (Schreiber et al., 2010).569

16/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

Traditional KUKA robots can be supplied with the vendor-provided Kuka.RobotSensorInterface (RSI)570

and Kuka.Ethernet KRL XML packages, which require additional investments. �e user are nevertheless571

required to create custom communication solutions integrated into existing robot controller code. An572

example of such approach is an RSI-based conûguration for adaptive robot-based fabrication integrating573

a CAD system and a 3D sensor (Sharif et al., 2017).574

An alternative approach for the traditional KUKA robots is based on application of KUKAVARPROXY,575

a Windows binary that can be deployed to the Windows-side of the robot controller and thus provide576

access to global variables using the CrossCom interface (Eriksen, 2017). JOpenShowVar (Sanûlippo et al.,577

2015) is a Java-based client to KUKA robot controllers via an existing KUKAVARPROXY. It uses TCP/IP578

to communicate with KUKAVARPROXY, and is hence constrained by so� real-time tasks.579

ROS interface for COMAU robots is described by Stefano et al. (2014), providing position and velocity580

controller. �e available control modalities include additional and absolute position control, additional581

current control, trajectory management and modiûcation of pre-planned trajectory. �e interface, which582

is implemented as a multithreaded solution, requires an external PC with real-time Linux. �e resulting583

UPD-based real-time communication with the robot controller has frame rate of 2 ms.584

A comparison of three custom interfaces for direct joint control of NACHI, KUKA, and Universal585

Robots (UR) is done by Lind et al. (2010). Communication with NACHI and UR is based on UDP (with586

cyclic time frames of 10 ms and 8 ms respectively), while with KUKA 3 on TCP-based RSI (having the587

time frame of 12 ms).588

Comparing with the abovementioned robot interfaces, pyadept/AdeptServer in its current form589

stands in the category of coarse-grained so� real-time solutions, and bears most similarity with590

KUKAVARPROXY and JOpenShowVar. In contrast to the la�er, the proposed architecture provide591

a greater decoupling of higher-level logic with native robot controller logic. When it comes to the Adept592

robot platform, the proposed solution is the ûrst publicly available ûexible interface. Earlier a�empts593

were made around the year 2012 with establishing of a ROS interface for Adept robots (Willow Garage,594

2012). However, the limited initial functionality was not further developed3. Another novelty of the595

proposed solution is utilization of AsyncIO coroutines for speciûcation of communication-heavy robot596

logic.597

Lessons learned598

�e presented solutions for ûexible coarse-grained control of Adept robots resulted from the ongoing599

work of integrating an Adept Viper s850 robot with distributed vision systems based on GigE Vision.600

�e Python codebase evolved together with V+ codebase to form pyadept and AdeptServer. �e choice601

of AsyncIO coroutines enabled speciûcation of composable logic with well-deûned coordination of602

multiple connections.603

�e choice of Python for implementation of the high-level part of the robot interface may seem604

questionable, as the real-time guarantees cannot be provided. However, for the purpose of coarse-grained605

control with communication over TCP/IP, such choice is acceptable. �e current version of the system606

is designed to provide reasonable timing characteristics and assure logically correct robot behavior607

and ûexible interaction with external systems. �e la�er aspect motivated the application of Python608

coroutines to allow speciûcation of complex tasks based on composition.609

During development of the presented solutions, the biggest hurdle was associated with implementa-610

tion and debugging of V+ logic. As the V+ language is designed for implementing robotic tasks directly611

in the robot controller, it suits well use cases with repeatable pre-deûned motions. At the same time, V+612

debugging capabilities are extremely limited for non-trivial tasks. One of these is communication with613

external systems. Networking capabilities are built-in in V+, although implementation of speciûc clients614

and servers is error-prone.615

Big advantage of the proposed architecture is that the robot controller is treated as a service: once the616

server task is launched, the central application logic is driven by the Python-based MasterControlNode.617

�is comes in hand particularly during interactive development: more complex robot scenarios can be618

realized in a high-level programming language quickly, with a rich set of communication capabilities.619

It is clear that the proposed architecture cannot beat a dedicated V+ program in terms of execution620

speed. For one thing, the communication overhead exists per each command. Secondly, because the621

RobotServermaps the incoming ASCII byte strings to the available skills (realized as V+ programs) and622

3�e project web page: h�p://wiki.ros.org/adept

17/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

executes the la�er with the CALLS call4, the operation is by deûnition slower than if V+ programs would623

be called natively. On the other hand, the proposed architecture targets applications with discrete event624

behavior, where no ûne-grained control is required, and the overall sequential logic of the operation625

and communication capabilities are of greater importance.626

As mentioned before, the most challenging part of development of the presented solutions lies in627

ensuring that V+ code in AdeptServer works correctly and reliably. As such, the forthcoming research628

and development eûorts shall be focused on improvement of the V+ functionality.629

SUMMARY AND FURTHER WORK630

�is paper has presented an industrial robot control architecture for the Adept V+ platform that aims631

at maximizing ûexibility of system development. �e la�er is achieved by explicitly incorporating632

event-based logic in the master control node and use of AsyncIO as the underlying platform. By633

creating modular logic blocks as coroutines, one achieves well-deûned composability and sophisticated634

networking capabilities. On the robot controller side, a native V+ server and a collection of robot skills635

are realized. As such, in the proposed architecture, the robot controller is treated as a service, with all636

core logic being implemented in on a higher level and with extensible communication capabilities.637

In its current form, pyadept, the library incorporating the ideas described in this paper, can be used638

on any platform supporting the latest versions of Python (3.6 and onwards) and TCP/IP connectivity.639

When used together with the RobotServer code, pyadept allows to prototype robotic applications that640

communicate with other distributed components via TCP/IP or ZeroMQ. It can also be extended with641

additional networking modalities, due to the use of the polymorphic AsyncIO9s reader/writer interface.642

�e presented solutions were validated on an application combining robot motion with vision643

feedback. Experiments based on this application revealed timing properties of data transmission and644

AsyncIO-driven task coordination.645

When compared to the established robotic frameworks, in its current form, pyadept is platform-646

speciûc and rather high-level. �e goal, however, is not to develop yet another robotic middleware,647

but to test-drive the ideas of using asynchronous coroutines and event-driven logic in building robotic648

systems in distributed environments. �e most natural future strategy is to adapt both the Python code649

in pyadept and V+ code in AdeptServer to be used with ROS2. �e la�er natively supports Python 3, so650

the available codebase will serve as a framework for coroutine-based ROS2 node design. �e V+ code651

can form the basis for Adept robots support in ROS2.652

In future iterations of the proposed architecture, it is of interest to investigate more high-performance653

approaches, such as binary message formats and high-frequency periodic UPD-based communication.654

REFERENCES655

Angerer, A., Hoûmann, A., and Schierl, A. (2013). Robotics api: Object-oriented so�ware development656

for industrial robots. Journal of So�ware Engineering for Robotics, 4(May):1322.657

ÚAström, K. J. (2008). Event based control. In Analysis and Design of Nonlinear Control Systems, pages658

1273147. Springer Berlin Heidelberg, Berlin, Heidelberg.659

Buschmann, F., Henney, K., and Schmidt, D. (2007). Pa�ern-Oriented So�ware Architecture: A Pa�ern660

Language for Distributed Computing. John Wiley & Sons.661

Cassandras, C. and Lafortune, S. (2008). Introduction to Discrete Event Systems. Springer.662

Dantam, N. T., Bøndergaard, K., Johansson, M. A., Furuholm, T., and Kavraki, L. E. (2016). Unix663

philosophy and the real world: Control so�ware for humanoid robots. Frontiers in Robotics and AI,664

3(March):1315.665

Dantam, N. T., Lofaro, D. M., Hereid, A., Oh, P. Y., Ames, A. D., and Stilman, M. (2015). �e ach library:666

A new framework for real-time communication. Robotics & Automation Magazine, IEEE, 22(1):76385.667

Dworak, A., Charrue, P., Ehm, F., Sliwinski, W., Sobczak, M., Dworak, A., Charrue, P., Ehm, F., Sliwinski,668

W., and Sobczak, M. (2011). Middleware trends and market leaders 2011. In 13th International669

Conference on Accelerator and Large Experimental Physics Control Systems, number October, pages670

133431337, Grenoble, France.671

Dworak, A., Ehm, F., Charrue, P., and Sliwinski, W. (2012). �e new cern controls middleware. Journal672

of Physics: Conference Series, 396.673

4�e CALLS is a V+ instruction allowing to call a subroutine identiûed by its string-based name and a sequence of arguments

18/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

Eriksen, I. (2017). Setup and Interfacing of a KUKA Robotics. PhD thesis, Norwegian University of Science674

and Technology.675

Gerkey, B. (2018). Why ros 2.0? Accessed: 2018-02-28.676

Kerrisk, M. (2010). �e Linux Programming Interface: A Linux and UNIX System Programming Handbook.677

No Starch Press.678

Komu, M., Varjonen, S., Gurtov, A., and Tarkoma, S. (2012). Sockets and beyond: Assessing the source679

code of network applications. In Linux Symposium, pages 7323.680

Kortenkamp, D. and Simmons, R. (2008). Robotic systems architectures and programming. In Siciliano,681

B. and Khatib, O., editors, Springer Handbook of Robotics SE - 9, pages 1873206. Springer Berlin682

Heidelberg.683

Lennartson, B., Bengtsson, K., Chengyin, Y., Andersson, K., Fabian, M., Falkman, P., and ÚAkesson, K.684

(2010). Sequence planning for integrated product, process and automation design. Automation Science685

and Engineering, IEEE Transactions on, 7(4):7913802.686

Lind, M., Schrimpf, J., and Ulleberg, T. (2010). Open real-time robot controller framework. In 2010 3rd687

CIRP Conference on Assembly Technology and Systems, number June 2010, pages 13318.688

Magnoni, L. (2015). Modern messaging for distributed sytems. Journal of Physics: Conference Series,689

608(1):138.690

Maruyama, Y., Kato, S., and Azumi, T. (2016). Exploring the performance of ros2. In Proceedings of the691

13th International Conference on Embedded So�ware - EMSOFT 916, pages 1310, New York, New York,692

USA. ACM Press.693

Miskowicz, M. (2015). Reducing communication by event-triggered sampling. In Miskowicz, M., editor,694

Event-Based Control and Signal Processing, pages 37358. CRC Press.695

Natale, L., Paikan, A., Randazzo, M., and Domenichelli, D. E. (2016). �e icub so�ware architecture:696

Evolution and lessons learned. Frontiers in Robotics and AI, 3(April):1321.697

Onori, M. and Oliveira, J. B. (2010). Outlook report on the future of european assembly automation.698

Assembly Automation, 30(1):7331.699

Rhodes, B. and Goerzen, J. (2010). Foundations of Python Network Programming. Apress, Berkeley, CA.700

Sanûlippo, F., Hatledal, L. I., Zhang, H., Fago, M., and Pe�ersen, K. Y. (2015). Controlling kuka industrial701

robots: Flexible communication interface jopenshowvar. IEEE Robotics & Automation Magazine,702

22(4):963109.703

Schreiber, G., Stemmer, A., and Bischoû, R. (2010). �e fast research interface for the kuka lightweight704

robot. In IEEE Workshop on Innovative Robot Control Architectures for Demanding (Research) Applica-705

tions How to Modify and Enhance Commercial Controllers (ICRA 2010), pages 15321.706

Semeniuta, O., Dransfeld, S., and Falkman, P. (2016). Vision-based robotic system for picking and707

inspection of small automotive components. In 2016 IEEE International Conference on Automation708

Science and Engineering (CASE), pages 5493554. IEEE.709

Semeniuta, O. and Falkman, P. (2018). Flexible image acquisition service for distributed robotic systems.710

In 2018 Second IEEE International Conference on Robotic Computing (IRC), pages 1063112. IEEE.711

Semeniuta, O. and Falkman, P. (2019). Epypes: a framework for building event-driven data processing712

pipelines. PeerJ Computer Science, 5:e176.713

Sharif, S., Agrawal, V., and Sweet, L. (2017). Adaptive industrial robot control for designers. In 35th714

Annual International Conference of eCAADe 3 Educational and research in Computer Aided Architectural715

Design in Europe.716

Stefano, M., Elisa, T., Fabrizio, R., Valentina, F., and Emanuele, M. (2014). Ros-i interface for comau717

robots. Simulation, Modeling, and Programming for Autonomous Robots, 8810:2433254.718

Willow Garage (2012). Willow garage collaborating with adept technologies and southwest research719

institute for ros industrial. Accessed: 2018-11-21.720

ZeroMQ (2008). Broker vs. brokerless. Accessed: 2018-02-28.721

19/19PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27552v1 | CC BY 4.0 Open Access | rec: 27 Feb 2019, publ: 27 Feb 2019

