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The loss of temperate forests of Mexico has continued in recent decades despite wide

recognition of their importance to maintaining biodiversity. This study analyzes land

use/land cover change scenarios, using satellite images from the Landsat sensor. Images

corresponded to the years 1990, 2005 and 2017. The scenarios were applied for the

temperate forests with the aim of getting a better understanding of the patterns in land

use/land cover changes. The Support Vector Machine (SVM) multispectral classification

technique served to determine the land use/land cover types, which were validated

through the Kappa Index. For the simulation of land use/land cover dynamics, a model

developed in Dinamica-EGO was used, which uses stochastic models of Markov Chains,

Cellular Automata and Weight of Evidences. For the study, a stationary, an optimistic and a

pessimistic scenario were proposed. The projections based on the three scenarios were

simulated for the year 2050. Five types of land use/land cover were identified and

evaluated. They were primary forest, secondary forest, human settlements, areas without

vegetation and water bodies. Results from the land use/land cover change analysis show a

substantial gain for the secondary forest. The surface area of the primary forest was

reduced from 55.8% in 1990 to 37.7% in 2017. Moreover, the three projected scenarios

estimate further losses of the surface are for the primary forest, especially under the

stationary and pessimistic scenarios. This highlights the importance and probably urgent

implementation of conservation and protection measures to preserve these ecosystems

and their services. Based on the accuracy obtained and, on the models generated, results

from these methodologies can serve as a decision tool to contribute to the sustainable

management of the natural resources of a region.
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15 ABSTRACT 

16 The loss of temperate forests of Mexico has continued in recent decades despite wide recognition 

17 of their importance to maintaining biodiversity. This study analyzes land use/land cover change 

18 scenarios, using satellite images from the Landsat sensor. Images corresponded to the years 1990, 

19 2005 and 2017. The scenarios were applied for the temperate forests with the aim of getting a 

20 better understanding of the patterns in land use/land cover changes. The Support Vector Machine 

21 (SVM) multispectral classification technique served to determine the land use/land cover types, 

22 which were validated through the Kappa Index. For the simulation of land use/land cover 

23 dynamics, a model developed in Dinamica-EGO was used, which uses stochastic models of 

24 Markov Chains, Cellular Automata and Weights of Evidence. For the study, a stationary, an 

25 optimistic and a pessimistic scenario were proposed. The projections based on the three scenarios 

26 were simulated for the year 2050. Five types of land use/land cover were identified and evaluated. 

27 They were primary forest, secondary forest, human settlements, areas without vegetation and water 

28 bodies. Results from the land use/land cover change analysis show a substantial gain for the 

29 secondary forest. The surface area of the primary forest was reduced from 55.8% in 1990 to 37.7% 

30 in 2017. Moreover, the three projected scenarios estimate further losses of the surface are for the 

31 primary forest, especially under the stationary and pessimistic scenarios. This highlights the 

32 importance and probably urgent implementation of conservation and protection measures to 

33 preserve these ecosystems and their services. Based on the accuracy obtained and, on the models 

34 generated, results from these methodologies can serve as a decision tool to contribute to the 

35 sustainable management of the natural resources of a region.

36

37

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27542v1 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019



38

39 INTRODUCTION

40 Forest ecosystems are important because they provide a wide variety of products and services for 

41 the human well being (Hall et al., 2006; Fischer & Lindenmayer, 2007; Weiskittel et al., 2011) 

42 harvested products (Houghton & Nassikas, 2017), carbon sequestration (Hawkes et al., 2017), soil 

43 retention (Borrelli et al., 2017), water supply (Sun et al., 2006) and are the habitat of many species 

44 of plants and animals. However, antrophongenic activities are the main cause of degradation of 

45 almost half of the world surface in the last three centuries. That has caused the loss of lots of our 

46 precious natural resources. Twenty-five nations have practically degraded 100% of their forests, 

47 and another 29 nations have degraded 10% of their forest areas (Millennium Ecosystem 

48 Assessment, 2005).

49 Temperate forests represent a key element in the carbon cycle (Pan et al., 2011). They are 

50 important carbon dioxide sinks (Ma et al., 2017), offsetting the emissions produced by the world 

51 population (FAO, 2018). Temperate forests store 14% of the planet's carbon (Pan et al., 2011). 

52 However, projections of global environmental change show that temperate forests show high 

53 vulnerability (Gonzalez et al., 2010). This vulnerability can change the productivity of forests by 

54 modifying net carbon sequestration rates (Peters et al., 2013).

55 Temperate forests of Mexico occupy 17% of the national territory, represented by 32 millions 

56 hectares. In this region, the greatest association of pine and oak forests in the world occurs 

57 (González et al., 2012). Around 23 different species of pines and close to 200 species of oaks live 

58 in the ecoregion of Sierra Madre Occidental (Navar, 2009). However, 40 thousand hectares of 

59 forests get on average lost annually. This region has the highest deforestation rate in the world 

60 (Velázquez et al., 2002; Mas et al., 2004). 
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61 The study of the land use/land cover changes (LULCC) has become a fundamental research topic, 

62 since the change in land use/land cover (LULC) affects forest ecosystems and their biodiversity 

63 (Gharun et al., 2017). The LULCC, produced by anthropogenic activities have significantly altered 

64 the ecosystems biodiversity and services (Butler & Laurance, 2008; Miles & Kapos, 2008; 

65 Miranda-Aragón, 2013). The dynamics of LULCC directly affect the landscape patterns, the 

66 biogeochemical cycles, the ecosysistems structure and function (Scheffer et al., 2001). Recently, 

67 the analysis of the spatio-temporal patterns has been the objective of several research studies 

68 (Huang et al., 2009; Manjarrez-Domínguez et al., 2015; Vázquez-Quintero et al., 2016). The 

69 models of LULCC commonly employed, quantify deforested surfaces, measuring the degree of 

70 change in the ecosystem  (Lapola et al., 2011). Regression methods suchs as the logistic regression 

71 have been employed to generate models of LULCC. These models suppose that the relationship 

72 between the LULCC and the variables that produce it is a logistic function; however, it has been 

73 demonstrated that this relationship is too general (Mas, 2010; Mas, 2014). The dynamics and 

74 complexity of the ecosystem requires a more complete evaluation of LULCC. The spatial 

75 modeling is a technique contemplating alternative scenarios of LULCC, which could contribute to 

76 better explain the key processes influencing LULCC (Pijanowski et al., 2002; Eastman et al., 2005; 

77 Torrens, 2006; Perez-Vega et al., 2012). Thus, one of the main functions of the LULCC models is 

78 the establishment of scenarios, with the aim of changing policies and inadequate practices for the 

79 sustainable management of natural resources (DeFries et al., 2007; Berbero�lu et al., 2016). 

80 Several approaches to establish LULCC scenarios have been developed and tested to generate 

81 scenarios of LULCC. Ferrerira et al. (2012) generated deforestation scenarios to 2050 in the central 

82 Brazilian savanna biome finding the possible increase of 13.5% in deforested areas. Kamusoko et 

83 al. (2011) evaluated three scenarios (optimistic, pessimistic and business-as-usual) in the 
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84 Luangprabang province, Lao People9s Democratic Republic, finding decreases in forest areas in 

85 the pessimistic and business-as-usual scenarios and an increase in forest areas in the optimistic 

86 scenario under a strict regulatory policy. Gago-Silva et al. (2017) used a combination of Bayesian 

87 methods and Weights of Evidence  to model the probability of change in a western part of 

88 Switzerland. Galford et al. (2015) used Bayesian Weights of Evidence for policiy scenarios from 

89 2010 a 2050 evaluating plans for agriculture and forest in Democratic Republic of Congo.

90 The models to establish reference scenarios of changes in LULCC are based on: systems of 

91 equations, statistic models, experts, evolutionary and cellular models, even though there have been 

92 efforts to combine plataforms in a multiagent system (Mas et al., 2014; Stan et al., 2017). The 

93 statistical models employ spatial statistics and regression, in comparison with the expert models, 

94 which allow the expert knowledge to lead the model path (Parker et al., 2003; Soares-Filho et al., 

95 2013). The evolutionary or cellular models are very competent to determine the ecologycal 

96 alteration; however, they just provide information about the causality or the decision-making 

97 (Parker et al., 2003).

98 The generation of LULCC scenarios for the forest region of the state of Chihuahua, Mexico is 

99 necessary because of the higher temperate forest deforestation rates in the country. The generation 

100 of the LULCC scenario shows two important aspects: expert knowledge and knowledge based on 

101 data. Expert knowledge is useful to establish methodological processes according to the needs of 

102 the user (Gounaridis et al., 2018). Knowledge based on data, helps to understand the general 

103 behavior between the factors of change of land use in a spatial way (Olmedo et al., 2018). Most 

104 studies are based on knowledge of the data (Peagelow and Olmedo, 2005; Kityuttachai et al., 

105 2013), however, few allow the inclusion of both (Sohares-Filho et al., 2006; Olmedo et al., 2018).
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106 The Dinamica Environment for Geoprocessing Objects (Dinamica-EGO) is a flexible open 

107 platform, which allows analyzing distribution, abundance and spatio-temporal dynamic of the 

108 landscape (Soares-Filho et al., 2002; Lima et al., 2013). The model incorporated to Dinamica-EGO 

109 employs cellular automata to simulate the changes happening in a grid, estimating the transition 

110 probability, as well as the direction of changes based in stocastic processes (Rutherford et al., 2008; 

111 Arsanjani et al., 2011). Dinamica-EGO allows users to incorporate expert knowledge into the 

112 overall statistical analysis based on the spatial data set (Mas et al., 2014). In addition, Dinamica-

113 EGO incorporates the possibility of modifying landscape metrics in the calibration procedure to 

114 generate the simulation (Mas et al., 2012). In a comparative evaluation of approaches to modeling 

115 LULCC, two key advantages over Dinamica-EGO were emphasized: 1) incorporation of the 

116 Patcher and Expander functions. The first function generates new patches in the landscape and the 

117 second expands the previously formed patches, 2) Dinamica-EGO allows the incorporation of 

118 multiresolution validation by means of the Fuzzy Similarity Index.

119 The aim of the present study was (a) to evaluate the change dynamics in the period from 1990 to 

120 2017; (b) to simulate the changes of LULCC for the year 2050 and (c) to elaborate a discussion 

121 about the impacts of different scenarios, which could happen in the future in a forest region of the 

122 state of Chihuahua, Mexico. Specifically three scenarios, pessimistic, optimistic and stationary 

123 state. The model will identify where the different types fo LULCC could hapen. This will allow 

124 that future studies could determine changes in carbon sequestration in both, on the surface 

125 extension and quantity.

126 MATERIALS & METHODS

127 Study area
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128 The study area is located in the western part of the state of Chihuahua, Mexico. It is part of the 

129 8Sierra Tarahumara9 and have a surface area of 497,159 ha. Its extreme coordinates are 108° 00´ 

130 W, 29° 00´N and 107° 10´ W, 27° 30´ N (Figure 1). It is one of the regions of temperate forests, 

131 which has experimented the greatest disturbances in the past years in the state of Chihuahua 

132 (Herrera, 2002). It belongs to the most extensive forest areas in North America. It is immersed 

133 within a complex orography composed of large canyons and deep canyons, which results in a 

134 mixture of temperate and tropical ecosystems. It is characterized by its high biodiversity and 

135 number of endemic species, estimating the presence of around 4000 species of plants. Also, it is 

136 recognized by the International Union for the Conservation of Nature as one of the megacenters 

137 of plant diversity (Felger et al., 1995). The main land uses in the area include: pine forests, oak 

138 forests, pine-oak and oak-pine forest associations, agriculture and grassland communities. The 

139 economic activities in the region are forestry, extensive livestock and rainfed agriculture (INEGI, 

140 2003).

141 Figure 1. Location and elevations of the study area.

142 Data source

143 For the analysis of the LULCC, three scenes of the Landsat sensor (Path 33, Row 41), with a spatial 

144 resolution of 30 m, were used. The scenes corresponded to the years 1990, 2005 and 2017 and they 

145 were acquired from clear sky days and each of them taken during the same month to reduce the 

146 temporal variation. The scenes were downloaded from the United States Geological Survey 

147 (USGS, 2018). The characteristics of each scene can be seen in Table 1.

148 Table 1. Scenes characteristics.

149 TM= Thematic Mapper, OLI= Operational Land Imager 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27542v1 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019



150 The scenes were radiometrically corrected. The radiometric correction was carried out with the 

151 QGis software v.2.8 through the SemiAutomatic Classification plugin (Congedo, 2013). 

152 Integration and composition of bands

153 Once the scenes were corrected, they were integrated into a layer stack. False color composites for 

154 the Landsat TM5 were then generated, with a combination of the bands 5, 4 and 3. Band 5 

155 corresponds to the infrared channel (1.55-1.75 ým), band 4 to the near infrared (0.76-0.90 ým) and 

156 the band 3 to the red channel (0.63-0.69 ým). This combination was applied to the scenes of 1990 

157 and 2005. Regarding the scene of 2017, the combination for Landsat OLI8 was applied and 

158 corresponded to the bands 6, 5 and 4, where band 6 corresponds to the medium infrared channel 

159 (1.55-1.65 ým), band 5 to the near infrared channel (0.85-0.88 ým) and band 4 to the red channel 

160 (0.64-0.67mn) (Lillesan and Kiefer, 2000).

161 Land use and land cover classification

162 The Suport Vector Machine (SVM) classification was applied to the 1990, 2005 and 2017 images 

163 through the software R (R Core Team, 2016) with the R package <caret= (Kuhn et al., 2018) to 

164 obtain LULC information. The SVM classifier is a supervised technique of nonparametric 

165 statistical methods (Mountrakis & Ogle, 2011). The SVM classification has been used in several 

166 research studies in the past (Kavzoglu & Colkesen 2009; Otukei and Blashke 2010; Shao & 

167 Lunetta, 2012). For the supervised classification, five classes of land use were defined; 1) primary 

168 forest, 2) secondary forest, 3) human settlements, 4) areas without vegetation and (5) water bodies 

169 (Table 2).

170 Table 2. Land use/land cover types determined through the supervised classification method.

171 Modeling and spatial simulation with Dinamica-EGO
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172 The LULCC scenarios were made based on the historical trends of change in forest cover during 

173 1990-2017 of the supervised classifications using Dinamica-EGO (Sohares-Filho et al., 2002). The 

174 historical trends of LULCC is based on the transition matrix (Monteiro et al., 2018). Dinamica-

175 EGO uses the algorithm of cellular automata, and the method Weights of Evidence (Olmedo et al., 

176 2018). For the simulation of deforestation, the following steps were undertaken: 1) selection of 

177 change drivers as well as transitions, 2) exploratory analysis of the drivers of deforestation, 3) 

178 simulation and 4) validation. These four steps are described in the following sections.

179 Selection of variables and transitions

180 The selection of the set of exploratory variables to simulate the LULCC is essential for the 

181 modeling success (Miranda-Aragón et al., 2012; Perez-Vega et al 2016). In this study, 19 variables 

182 were used; 17 static and two dynamic variables. Static variables remain constant during model 

183 execution. Dynamic variables change during the execution of the model and they are continuously 

184 updated in each iteration (Olmedo et al., 2018). The set of variables used is shown in Table 3.

185 Table 3. Variables feeding the deforestation model.

186 The transition refers to the total amount of LULCC that occurred in the simulation period. In this 

187 study, the transitions of interest were: a) primary forest to secondary forest, b) primary forest to 

188 areas without apparent vegetation, c) primary forest to urban areas and d) secondary forest to areas 

189 without apparent vegetation (Table 4).

190 Table 4. Transitions of land use/land cover

191 Exploratory analysis of the data

192 When we modeled LULCC dynamics, Weights of Evidence (WoE) were applied to project 

193 transition probabilities. Regarding deforestation, degradation or any other type of change, we 

194 previously know about the location of favorable conditions for LULCC. The influence of static 
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195 and dynamic variables and the elaboration of the LULC maps was performed with WoE in the 

196 Dinamica-EGO software (Soares-Filho et al., 2010).

197 Positive values of WoE represent an attraction between a transition of land use and a specific 

198 variable. The greater the value of W+, the greater the probability of transition. Negative values of 

199 W- indicate low probabilities of transition instead (Maeda et al., 2010). By using the WoE values 

200 of the variables used in the analysis of LULCC, the Dinamica-EGO model calculates the transition 

201 probability of each pixel to change. Thus, the pixels are assigned with a probability value for a 

202 given transition and probability maps are generated for the transitions of interest (Soares-Filho et 

203 al., 2009 and 2010; Mas and Flamenco, 2011).

204 Given that the basic hypothesis of the WoE technique is that the driving variables must be 

205 independent, for this study the correlation between the variables was tested through the Cramer 

206 Coefficient (V), represented by Equation 2.

ý= ÿ2ÿ&ý (2)

207 Where:  = is the chi-square statistic of the contingency between two variables,  = denotes the ÿ2 ÿ
208 sum of the values of contingency,  = is the minimum of n-1 or m-1, where n denotes the number ý
209 of rows and m the number of columns. Bonham-Carter (1994) mentioned that values lower than 

210 0.5 for the Cramer Coefficient (V) suggest independence, while values higher than 0.5 involve a 

211 greater association (Almeida et al., 2003, Teixerira et al., 2009).

212 Simulation of land use and land cover changes

213 Three types of scenarios were used for 2050; they were called pessimistic, optimistic and 

214 stationary. For the three scenarios, the modeling base was the period 1990-2017. The transition 

215 matrix of 1990 and 2017 were used to estimate the possible change in forestry coverage in the 

216 future, taking 2017 as the beginning year and 2050 as the final year. In the pessimistic scenario, 
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217 the transition probability matrix and the change function (patcher and expander) were modified, 

218 increasing the deforestation and fragmentation rates between 1990 and 2017. This was done based 

219 on the hypothesis that the development of road infrastructure, urban expansion, fires, uncontrolled 

220 exploitation, among others, will produce strong spatial changes of land use. For the optimistic 

221 scenario, the state and national forest development plans were considered. Such plans promote the 

222 protection and conservation of forest resources (CONAFOR, 2001). For this scenario, the 

223 conservation and promotion of strategies to protect forests were represented by reducing the 

224 transition matrix value, as well as the patcher and expander change functions. Regarding the 

225 stationary scenario, transitions or change functions were not modified. In this case, it is assumed 

226 that the trend will be the same as the one between 1990 and 2017.

227 Validation

228 To evaluate the model performance, we used a Fuzzy Similarity Index (FSI), where the 

229 representation of a pixel is influenced by itself and its neighborhood (Ximenes et al 2011; Yanai 

230 et al., 2011; Chadid et al., 2015). The FSI employed in this study was developed by Hagen (2003), 

231 modified by Soares-Filho (2014) and implemented in Dinamica-EGO. The FSI verifies the 

232 agreement between the observed and the simulated land use and land cover datasets by obtaining 

233 the number of coincident cells within increasing window sizes of a neighborhood (Costanza 1989; 

234 Soares-Filho, 2017). The validation process was carried out by comparing a simulated map and a 

235 reference map. The simulation of the 2017 LULCC map was generated. To generate the simulation 

236 of 2017, the transition matrix was used between 1990 and 2005. The comparison through the FSI 

237 allowed to evaluate the areas of coincidence of change and no change between the real and 

238 simulated map of 2017. Finally, the general procedure used in this study is outlined in the flowchart 

239 depicted in Figure 2.
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240 Figure 2. Flowchart of the methodological procedure followed to produce the proposed scenarios. 

241 Abbreviations: TM: Tematic Mapper, OLI: Operational Land Imager, WoE: Weights of Evidence, 

242 LUCC: Land use and cover change.

243
244 RESULTS

245 Detection of land use/land cover changes

246 Results from the analysis of LULCC show a considerable gain for secondary forest. The forest 

247 cover of the primary forest was reduced from 55.8% of the study area in 1990 to 37.7% in 2017. 

248 The areas without vegetation increased their area from 4.11% to 4.87% during 1990-2017 (Table 

249 5). Regarding human settlements and water bodies, they showed a positive trend with an increase 

250 from 0.03% and 0.01 in 1990 to 0.1% and 0.03 in 2017, respectively. In general, the primary forest 

251 was the land use that experimented a negative trend. The rest of the land uses showed surface 

252 gains. The rate of change obtained indicate that the secondary forest, the human settlements and 

253 the water bodies were the land uses with the greatest transformation rates, with 8.03, 12.58 and 

254 27.48, respectively, for the period of 1990-2017 and with 10.68, 15.96 and 12.3, respectively, from 

255 2005 to 2017. Figure 3 shows the area occupied by the land uses studied. Likewise, it shows the 

256 rate of change of these land use/land cover for the periods 1990-2005 and 2005-2017. The 

257 calculated global precision, based on the Kappa Index, presented values of 80%, 85% and 84% for 

258 1990, 2005 and 2017, respectively.

259 Table 5. Area occupied for five types of land uses during 1990, 2005 and 2017, and rate of change 

260 for the periods 1990-2005 and 2005-2017.

261 Table 6 shows the land use/land cover change dynamics. The primary forest lost the greatest 

262 surface area (28,406 ha) during 1990-2005, increasing the surface lost to 63,546 ha during 2005-

263 2017. In contrast, the secondary forest showed the largest increases in area with 87,800 ha in the 

264 period 1990-2017.
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265
266 Figure 3. Land use/land cover of 1990 (a), 2005 (b), 2017 (c), changes during 1990-2005 (d) and 
267 changes during 2005-2017. Abbreviations: AWV: areas without vegetation, SF: secondary forest, 
268 WB: water bodies, HS: human settlements and PF: primary forest.

269 Table 6. Land use/land cover change dynamics

270 Transition matrix

271 The transition probabilities of LULCC for the periods 1990-2005 and 2005-2017 are shown in 

272 Table 7. The diagonal of the matrix represents the permanence probability, i.e. the probability of 

273 a LULC type to remain unchanged. The areas without vegetation showed a 90% probability of 

274 transition from 1990 to 2005, lowering it to 62% from 2005 to 2017. The areas of primary forest 

275 presented a negative trend with a 71% probability of permanence in the period 1990 to 2005, and 

276 changing it to 61% for the period 2005-2017.

277 Table 7. Transition matrix of probability for land use/land cover change (1990-2005, 2005-2017, 

278 1990-2017).

279 Weights of evidence (WoE) analysis

280 The WoE of the 19 variables were analyzed to eliminate those values that were above 0.5, based 

281 on the Cramer Coefficient (V). The distance to urban locations showed positive values of WoE 

282 from 1000 to 9000 m distance and from 42,000 to 47,000 m indicating an influence for cover 

283 change from secondary forest to area without vegetation. The distance to rural localities showed 

284 positive values of WoE in distances from 0 to 700 m. The topographic position index showed 

285 positive values in the ranges of -150 to -60 and 120 to 240. The distance to sawmills indicates that 

286 deforestation appears from 0 to 16,000 m with respect to the process of change between secondary 

287 forest to areas without vegetation. The transition from primary forest to area without vegetation is 

288 likely to occur in distances to the main roads between 13,000 and 21,000 m. The density of main 

289 streams such as rivers and creeks had an influence in densities from 0.039 to 0.079 m2/ km2.
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290 In the transition from primary forest to secondary forest, the variable altitude showed positive 

291 values of WoE in the range of 1,200-1,300 m, suggesting that most of the changes occur in this 

292 range. The slope showed that the process of change between primary forest and secondary forest 

293 is located on slopes of 45-60 and 60-75 degrees. The transition from primary forest to human 

294 settlements was influenced by the distance to secondary streams from 500 to 1000 meters. The 

295 distance to sawmills presented an influence from 0 to 6,000 meters. The distance to mines showed 

296 that the attraction to change occurs between 2000 and 10,000 m.

297 Model validation

298 The model validation was carried with the simulated and the true land use classification of 2017. 

299 The FSI was applied for neighborhoods from 1 x 1 to 7 x 7 pixels. The minimum value reported 

300 for FSI was 49% in 1x1 pixels, while in 7x7 pixels the value of FSI was 91%. These results indicate 

301 that the real and simulated land use changes agree from 49% to 91%. Simulation starts with 49% 

302 and adjusts to 91%, reaching a similarity adjustment value at a distance of 210 m. These results 

303 agree with that obtained by Ximenes et al. (2011). According to Soares-Filho (2017), and similar 

304 studies (Carlson et al., 2012; de Rezende et al., 2015; Elz et al., 2015), for the resolution and the 

305 number of transitions considered in the model, the values obtained for the FSI suggest that the 

306 models are good and can be used in the simulation of LULCC scenarios. Figure 4 represents the 

307 FSI in relation to the size of the window.

308 Figure 4. Variation of the FSI as a function of different distance.
309

310 Scenarios

311 The LULCC based on the transitions between 1990 and 2017 for the stationary, optimistic and 

312 pessimistic scenarios are presented in Table 8.
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313 Table 8. Percentage of surface area occupied by five land use/land cover types and rate of change 

314 for 2017-2050 based on three scenarios.

315 Figure 5 shows the LULC classification of 2017 and the stationary, optimistic and pessimistic 

316 scenarios for 2050, after the model calibration.

317 Figure 5. a)  Land use/land cover of 2017 and simulated land use/land cover projected for the year 

318 2050 as a result of the b) Stationary, c) Pessimistic and d) Optimistic scenarios. Abbreviations: 

319 AWV: areas without vegetation, SF: secondary forest, WB: water bodies, HS: human settlements 

320 and PF: primary forest.

321
322 In the stationary scenario the area without vegetation would increase from 4.8% in 2017 to 5.27%. 

323 Likewise, the secondary forest would increase from 57.7% (2017) to 73%. For this scenario, the 

324 changes in human settlement and water bodies would not increase or reduce their area. Conversely, 

325 the rate of change of primary forest and secondary forest were the greatest between 2017 and 2050. 

326 Regarding the optimistic scenario, it showed reductions in areas of primary forest; however, in 

327 lower magnitudes than for the stationary and pessimistic scenarios. For the pessimistic scenario, 

328 the Markov matrix was modified considering a greater pressure on the forest ecosystem. The area 

329 without vegetation showed a positive trend, with 4.8% in 2017 and an increase to almost 8% in 

330 2050. The secondary forest would go from 57.7% to 85.6% in 2050. Finally, the primary forest 

331 would reduce its area to a 8% and isolated forest areas would appear. The rate of change for this 

332 scenario were the ones that showed the highest values. The LULCC dynamics projected for 2050 

333 for the three scenarios (stationary, optimistic, pessimistic) is presented in Table 9.

334 Table 9.  Land use/land cover change dynamics (ha) under three projected scenarios.

335 DISCUSSION

336 In this study, scenarios of LULCC for 2017 and 2050 were generated for a temperate forest region 

337 of Chihuahua Mexico. The scenarios were developed in Dinamica-EGO. Results were consistent 
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338 with the results described by Maeda et al. (2011). For the generation of transitions and simulation 

339 of scenarios, LULC of 1990, 2005 and 2017 were determined. In general, proximity to sources 

340 with anthropogenic activity as well as topography were important factors influencing the change 

341 in forest cover. The exchange between primary forest and secondary forest represented the main 

342 transition between 1990 and 2017. This transition produced the greatest impact, in agreement with 

343 the results reported by Perez-Vega et al. (2016). Such transition was influenced by the altitude, 

344 slope, and density of water streams, in agreement with the results of Armenteras et al. (2006) and 

345 Chadid et al. (2015). The transition from primary to secondary forest could be attributed to the 

346 reduction in pine vegetation, where shrubs would become dominant. A consequence of the 

347 reduction of primary forest is the migration of fauna, which deals with the dispersal of the seeds 

348 of large-crowned trees (Lehouck et al., 2009). Other consequences include the change of lands to 

349 livestock production systems (Maeda et al., 2010) and the presence of areas with high solar 

350 incidence and low coverage, which are prone to fires (de Rezende et al., 2015). Another reason for 

351 the reduction of primary forest is the proximity to urban rural localities and roads, which is in 

352 agreement with the results reported by Aguiar et al. (2007) and Osorio et al. (2015). The proximity 

353 to urban and rural communities indicates the possible extraction of wood for export and also 

354 facilitates the expansion of the agricultural or grazing frontier (Chadid et al., 2015). This can be 

355 verified by the number of sawmills in the study area. The process of deforestation/degradation is 

356 strongly related to this cause. In the forested areas of Chihuahua, the rural localities are in a high 

357 degree of marginalization (González et al., 2012) where there exist agricultural incentives PEF 

358 2025 (CONAFOR, 2001), causing the possible increase of the areas without vegetation. Another 

359 reason for the degradation may be the distance to the main roads and the topographic position.
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360 The results obtained for the different scenarios showed differences among the surfaces of land use. 

361 The stationary scenario resulted in a considerable change in the primary forest, mainly. This 

362 scenario considers that the transition values among land use coverages will continue. The long-

363 term impacts of the deforestation/degradation process include increased reservoir sedimentation 

364 and decreased flows in the dry season (Gingrich, 1993). Although the optimistic scenario showed 

365 increases in non-forested areas, this scenario was the one that showed the greatest resistance fo the 

366 transitions from primary forest to any other LULC. This scenario considers the strict application 

367 of the regulation of forest resources, in agreement with the general trend in the protection of forest 

368 ecosystems to degradation (UN, 2015) and the projections of the PEF 2025 (PEF, 2001). The 

369 pessimistic scenario showed the greatest losses in the coverage of the primary forest. In addition, 

370 the increase in areas without vegetation, which is mainly associated to cropping and the proximity 

371 to water currents, is one of the main outputs of the pessimistic scenario, which agrees with the 

372 study by Elz et al. (2015). The increase in agricultural areas resulting from this scenario may 

373 benefit the inhabitants economically; however, the expansion of this type of land use/land cover 

374 could lead to a greater demand of water for irrigation purposes, which could potentially impact 

375 water resources (Maeda et al., 2010).

376 Population growth (Barni et al., 2015), the market demand and the lack of technification for wood 

377 processing cause the opening of land and the extraction of wood for self-consumption. Taking 

378 these aspects into account, the simulation of changes in forest cover indicates pressure on forest 

379 resources, which is consistent with that found by Kamusko et al., (2011). As a consequence, forest 

380 degradation could lead to soil loss (Quan et al., 2011), loss in biodiversity (Falcucci et al., 2007) 

381 and landscape connectivity (Tambosi et al., 2014), habitat fragmentation (Nagendra et al., 2004), 

382 the presence of invasive species (Mas et al., 2012), among others.
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383 The LULCC model of this study incorporated the Markov chains, Cellular Automata and WoE 

384 methods. Several transitions were simulated as in the studies by Soares-Filho et al., (2010), 

385 Ferreira et al. (2013) and Elz et al. (2015). The validation was carried out based on the FSI, as it 

386 was also performed in previous research (Ximenes et al., 2011). The result of this analysis, where 

387 the three aforementioned methods are combined, highlighted the variables driving the process of 

388 degradation/deforestation, as well as the manipulation based on the knowledge of the transition 

389 probabilities, being more suitable for the simulation of LULCC (Mas & Flamenco, 2011). The 

390 transition probability matrices revealed that the primary forest has a negative trend in its occupied 

391 area, suggestsing that degradation will continue over this land use, this area of primary forest 

392 changed to secondary forest. Although the other transitions did not produce important changes in 

393 the spatial configuration of the landscape, but their cumulative long-term effect could negatively 

394 impact the functioning of the ecosystems and their biodiversity (Pompa, 2008). 

395 In this study, we focused on hypothetical scenarios where the pressure of forest resources was 

396 controlled by changing the transition probability. However, it is necessary to study scenarios where 

397 market demand (Merry et al., 2009) or illegal timber extraction (Chadid et al., 2015) is considered. 

398 The wood clandestinage corresponds to 30% in the some forest management units of Chihuahua 

399 (Silva, 2009). 

400 The scenarios are not exact projections of the future state of the environment (Feng and Liu, 2016). 

401 However, it is an alternative means of supporting forest managers, which can serve as a valuable 

402 tool for studying political decisions (Kolb and Galicia, 2018). That would lead to a better 

403 knowledge of forest exploitation and protection. Managers can take into account the proposed 

404 scenarios and take decisions based on the one with the most promising results.
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405 Due to the distribution of economic information (municipality based) and the lack of information 

406 from georeferenced illicit extractions, we believe an approach such as agent-based models would 

407 help to improve the study and address these issues. Finally, the model did not consider climatic 

408 variations such as precipitation and temperature, which can affect patterns and dynamics in 

409 recovery zones. That should be implemented in future studies.

410 CONCLUSIONS

411 The use of scenarios as a methodology to study LULCC has been studied in depth at different 

412 scales and in different areas. However, several improvements can be implemented. This study 

413 presents an approach that integrates expert knowledge, and geospatial technologies such as 

414 geographic information systems and spatial simulation. The developed scenarios were based on 

415 the application of the forestry law (non-spatially) as well as the state of the landscape, and not only 

416 on the extrapolation of past trends. In addition, the scenarios are spatially explicit, which allow 

417 identifying the spatial pattern of change and the possible critical areas of change in forest cover. 

418 Finally, this study contributes to the understanding of the future fragmentation of the forest cover. 

419 Therefore, the current decisions in the field of forest management and land use/land cover 

420 influence the future of our forests and can probably be represented in one of the three proposed 

421 scenarios.
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Table 1(on next page)

Scenes characteristics
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Sensor Date Characteristics

Landsat TM 5 1990 7 spectral bands, 30 m resolution

Landsat TM 5 2005 7 spectral bands, 30 m resolution

Landsat OLI 

8

2017 8 spectral bands, 30 m resolution; 1 panchromatic band 15 

m resolution

1 TM= Thematic Mapper, OLI= Operational Land Imager 

2
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Table 2(on next page)

Land use/land cover types determined through the supervised classification method
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Land use and land cover Acronym Description

Primary forest PF Forest fully covered with canopy

Secondary forest SF Forest partially covered with canopy

Human settlements HS Residential areas

Areas without vegetation AWV Areas without vegetation, agriculture areas or induced 

grasslands

Water bodies WB Water bodies

1
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Table 3(on next page)

Variables feeding the deforestation model
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No Variable type Name Unit Acronym

1 Density of main roads m2/Km2 Denmr

2 Density of secondary roads m2/Km2 Densr

3 Density of main streams m2/Km2 Denms

4 Density of secondary streams m2/Km2 Denss

5

Density

Density of rural settlements m2/Km2 Denrs

6 Distance to sawmills m Diss

7 Distance to water bodies m Diswb

8 Distance to main roads m Dismr

9 Distance to secondary roads m Dissr

10 Distance to main streams m Disms

11 Distance to secondary streams m Disss

12 Distance to rural settlements m Disrs

13 Distance to urban settlements m Disus

14 Distance to mines m Dism

15

Proximity

Distance to areas without apparent 

vegetation

m Disawav

17 Altitude m Alt

18 Slope ° Slop

19

Topographic

Topographic position index Dimensionless TPI

1
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Table 4(on next page)

Transitions of land use/land cover
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To

PF SF HS AWV WB

PF 7 7 7
SF 7
HS

AWV

F
r
o
m

WB

1
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Table 5(on next page)

Area occupied for five types of land uses during 1990, 2005 and 2017, and rate of

change for the periods 1990-2005 and 2005-2017.
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Occupied area (Ha) Occupied area (%)

Rate of 

change

Land Use

1990 2005 2017 1990 2005 2017
1990-

2005

2005-

2017

AWV 20444.18 23828.59 24101.92 4.11 4.79 4.85 8.33 8.43

SF 199121.38 223948.16 286922.04 40.05 45.05 57.72 8.03 10.68

HS 154.60 272.35 521.65 0.03 0.05 0.10 12.58 15.96

WB 26.9712 103.76 153.91 0.01 0.02 0.03 27.48 12.36

PF 277380.46 248973.97 185427.79 55.80 50.08 37.30 6.41 6.21

1 AWV=Areas without vegetation, SF= Secondary forest, HS= Human settlements, WB=Water bodies, PF= Primary 

2 forest.

3
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Table 6(on next page)

Land use/land cover change dynamics
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Land use
Difference 

1990-2005 (ha)

Difference 

2005-2017(ha)

Overall 

Difference (ha)

Type of 

change
1990-2005 (ha) 2005-2017 (ha)

AWV 3384.40 273.34 3657.74 Deforestation 3120.40 7283.95

SF 24826.78 62973.88 87800.66 Degradation 54455.78 73904.27

HS 117.74 249.31 367.05 Other 76.22 219.41

WB 76.79 50.15 126.94 Recovery 27128.71 20204.13

PF -28406.49 -63546.18 -91952.66 -- -- --

1 AWV=Areas without vegetation, SF= Secondary forest, HS= Human settlements, WB=Water bodies, PF= Primary 

2 forest.

3
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Table 7(on next page)

Transition matrix of probability for land use/land cover change (1990-2005, 2005-2017,

1990-2017)
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Periodo AWV PF HS WB PF

1990-2005 0.9000 0.0250 0.0250 0.0250 0.0250

2005-2017 0.6250 0.3504 0.0108 0.0029 0.0109AWV

1990-2017 0.6615 0.3124 0.0120 0.0035 0.0106

1990-2005 0.0222 0.7516 0.0008 0.0005 0.2248

2005-2017 0.0557 0.8116 0.0004 0.0000 0.1323SF

1990-2017 0.0654 0.7945 0.0012 0.0006 0.1384

1990-2005 0.0452 0.0645 0.8806 0.0000 0.0097

2005-2017 0.0557 0.2479 0.6959 0.0000 0.0004HS

1990-2017 0.0651 0.0774 0.8575 0.0000 0.0000

1990-2005 0.0000 0.1254 0.0000 0.8553 0.0193

2005-2017 0.0095 0.1684 0.0000 0.8030 0.0191WB

1990-2017 0.0000 0.1868 0.0000 0.7957 0.0175

1990-2005 0.0020 0.2865 0.0000 0.0000 0.7115

2005-2017 0.0056 0.3798 0.0003 0.0000 0.6144PF

1990-2017 0.0071 0.4419 0.0002 0.0000 0.5508

1 AWV=Areas without vegetation, SF= Secondary forest, HS= Human settlements, WB=Water bodies, PF= Primary 

2 forest.

3

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27542v1 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019



Table 8(on next page)

Percentage of surface area occupied by five land use/land cover types and rate of

change for 2017-2050 based on three scenarios
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Occupied surface area (%) Change rate

Land Use

2017 2050s 2050o 2050p 2017-2050s 2017-2050o 2017-2050p

AWV 4.848 5.275 5.017 7.695 3.40 3.23 4.96

SF 57.716 73.721 61.863 83.628 3.99 3.35 4.53

HS 0.105 0.105 0.105 0.105 3.13 3.13 3.13

WB 0.031 0.031 0.031 0.031 3.12 3.13 3.12

PF 37.300 20.868 32.983 8.541 1.75 2.76 0.72

1 AWV=Areas without vegetation, SF= Secondary forest, HS= Human settlements, WB= Water bodies, PF= Primary 

2 forest, S= Stationary, O= Optimistic, P= Pessimistic.

3
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Table 9(on next page)

Land use/land cover change dynamics (ha) under three proyected scenario.
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Land use 2017-2050s 2017-2050o 2017-2050p

AWV 2121.97 840.44 14150.28

SF 79565.57 20617.02 128818.00

HS 0.87 1.25 1.05

WB 0.46 0.32 0.10

PF -81688.00 -21459.04 -142969.31

1 AWV=Areas without vegetation, SF= Secondary forest, HS= Human settlements, WB= Water bodies, PF= Primary 

2 forest, S= Stationary, O= Optimistic, P= Pessimistic.

3
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Figure 1

Location and elevations of the study area
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Figure 2

Flowchart of the methodological procedure followed to produce the proposed scenarios.

Abbreviations: TM: Tematic Mapper, OLI: Operational Land Imager, WoE: Weights of

Evidence, LUCC: Land use and cover change
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Figure 3

Land use/land cover of 1990 (a), 2005 (b), 2017 (c), changes during 1990-2005 (d) and

changes during 2005-2017. Abbreviations: AWV: areas without vegetation, SF:

secondary forest, WB: water bodies, HS: human settlements and PF: primary forest.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27542v1 | CC BY 4.0 Open Access | rec: 18 Feb 2019, publ: 18 Feb 2019



Figure 4

Variation of the FSI as a function of different distance
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Figure 5

a) Land use/land cover of 2017 and simulated land use/land cover projected for the year

2050 as a result of the b) Stationary, c) Pessimistic and d) Optimistic scenarios.

Abbreviations: AWV: areas without vegetation, SF: secondary forest, WB: water bodies
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