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ABSTRACT 35 

The technology of docking molecules in-silico has evolved significantly in recent years and has 36 

become a crucial component of the drug discovery tool process that includes virtual screening, 37 

lead optimization, and side-effect predictions. To date over 43,000 abstracts/papers have been 38 

published on docking, thereby highlighting the importance of this computational approach in the 39 

context of drug development. Considering the large amount of genomic and proteomic consortia 40 

active in the public domain, docking can exploit this data on a correspondingly ‘large scale’ to 41 

address a variety of research questions. Over 160 robust and accurate molecular docking tools 42 

based on different algorithms have been made available to users across the world. Further, 109 43 

scoring functions have been reported in the literature till date. Despite these advancements, there 44 

continue to be several bottlenecks during the implementation stage. These problems or issues 45 

range from choosing the right docking algorithm, selecting a binding site in target proteins, 46 

performance of the given docking tool, integration of molecular dynamics information, ligand-47 

induced conformational changes, use of solvent molecules, choice of docking pose, and choice of 48 

databases. Further, so far, not always have experimental studies been used to validate the 49 

docking results. In this review, basic features and key concepts of docking have been 50 

highlighted, with particular emphasis on its applications such as drug repositioning and 51 

prediction of side effects. Also, the use of docking in conjunction with wet lab experimentations 52 

and epitope predictions has been summarized. Attempts have been made to systematically 53 

address the above-mentioned challenges using expert-curation and text mining strategies. Our 54 

work shows the use of machine-assisted literature mining to process and analyze huge amounts 55 

of available information in a short time frame. With this work, we also propose to build a 56 

platform that combines human expertise (deep curation) and machine learning in a collaborative 57 

way and thus helps to solve ambitious problems (i.e. building fast, efficient docking systems by 58 

combining the best tools or to perform large scale docking at human proteome level).  59 

 60 

Website and other links: We have created web based forms and a website so that scientists, 61 

developers and users of molecular docking tools can share their experiences and expertise to 62 

build a comprehensive resource on molecular docking. In addition, the collected information 63 

shall be used to update the molecular docking website and future versions of this manuscript. 64 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27538v1 | CC BY 4.0 Open Access | rec: 15 Feb 2019, publ: 15 Feb 2019



The website(s) associated with this paper contain additional information in the form of tables and 65 

figures. The information provided on the website(s) is updated on periodic basis. 66 

A) https://tinyurl.com/sci-net2000 67 

B) https://tinyurl.com/docking-tools 68 

C) https://tinyurl.com/networks-docking 69 

D) https://tinyurl.com/docking-review 70 

 71 

Keywords: 72 

Side effect prediction; adverse drug reactions prediction; drug repositioning; drug repurposing; 73 

drug indication prediction, docking, tools, software, database, benchmarking, wet lab validations, 74 

collaborative writing. 75 

 76 

 77 

INTRODUCTION 78 

A major challenge in the healthcare field is to devise a systematic strategy to integrate diverse 79 

biological datasets to provide insight into disease, pathogenesis or discover new and safe 80 

drugs/vaccines against complex diseases. The process encompasses a period of intense research, 81 

typically involving a span of 10-15 years and a huge investment of sometimes more than $1 82 

billion per product [Hughes et al. 2011]. Given the experimental difficulties of attaining 83 

knowledge on the ligand-target interaction at the molecular level, numerous high performing 84 

computational platforms and a wealth of structural data are now being increasingly used for 85 

enhancing the efficiency and speed of the drug discovery process. As it has been said, substantial 86 

progress has been witnessed in recent years for studying protein-ligand interactions over the 87 

traditional paradigm. The computational technique known as “docking” has permeated all 88 

aspects of the drug discovery process such as virtual screening, lead optimization, and side effect 89 

predictions and essentially acts as a complementary tool to predict the structure of a specific 90 

complex formed by two given interacting proteins. Docking holds a significant promise to screen 91 

potential drugs as well as drug targets and elucidate biomolecular interactions. Its applications (at 92 

larger scale) can be seen through public projects such as OpenZika (http://openzika.ufg.br/), 93 

which involves the screening of potential compounds against the models of Zika protein 94 

structures. The mechanistic approach of docking can also play a pivotal role in predicting 95 
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adverse drug reactions (ADRs) for early screening of hazardous drug molecules, which is 96 

initiated by intended, on-target binding or promiscuous binding of drugs to an off-target protein. 97 

Highly publicized examples of phase IV failures including rosiglitazone (“Avandia”) [Nissen et 98 

al. 2010] and rofecoxib (“Vioxx”) [Karha et al. 2004] are indicative of the fact that the current 99 

approach of the pharmaceutical industry involving the use of in vitro toxicity panels to assay 100 

small molecule binding is inadequate [Blomme et al. 2015] and there exists a necessity to 101 

explore docking technologies in order to develop safer medicines. Another field where docking 102 

finds its application is drug repositioning in which already existing compounds can be 103 

repurposed to new potential therapeutic targets. The technique has become progressively main-104 

stream in recent years and is believed to be of particular use in speeding up drug discovery by 105 

inspecting new uses of existing, accepted drugs [Ekins et al. 2017]. This review thus provides 106 

basic insights into the specific features and concepts of docking, with particular emphasis on 107 

applications of docking in the field of side effect prediction and drug repositioning, so as to 108 

develop a more rational and targeted therapy. We also discuss the role of software tools and 109 

online web services and provide a critical analysis to compare their performance on benchmark 110 

datasets along with the challenges of current docking models. To make this review 111 

comprehensive and accurate, we used Perl and Python based text mining/machine learning 112 

systems (developed in-house) to assist expert curators to analyse and curate a large number of 113 

papers/abstracts [Kuhl et al. 1984]. Further, to keep this review updated and to build an 114 

ambitious large-scale docking pipeline using the expertise of practitioners/users of molecular 115 

docking and tool developers, we have initiated an international collaborative effort using 116 

network sciences involving multiple organizations and researchers as co-authors of future 117 

versions of this paper. This initiative based upon the principles of network sciences, is expected 118 

to improve research quality, advance efficiency of the scientific production, and foster 119 

breakthroughs in a shorter time. Here, we also discuss our ongoing collaborative efforts to 120 

discover new vaccine targets using network sciences and the use of docking combined with 121 

experimental techniques in the area of Chagas Disease. 122 

 123 

 124 

 125 

 126 
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2. BACKGROUND 127 

2.1: The illustrious history of docking engines (algorithms) 128 

Following the advent of docking algorithms in the 1980s [Billeter et al. 1987] along with the 129 

advancement of techniques such as X-ray crystallography, nuclear magnetic resonance 130 

spectroscopy and high-throughput protein purification, molecular docking has now become the 131 

most commonly used method among the various rational approaches that are currently being 132 

pursued for drug discovery and development [Lemmon et al. 2012]. Simulated docking processes 133 

aim to predict the interaction of known structures (i.e. receptors, enzymes) with one or more 134 

ligands using computational procedures, principally to exploit their novel relationships to 135 

discover the chemical entities that exhibit strong binding energies for the active site of the 136 

relevant target molecule [Chhabra et al. 2007]. This is achieved by testing various poses (binding 137 

conformations between ligand and protein) which are subsequently ranked via a scoring function 138 

[DeLuca et al. 2015]. Protein-ligand docking can broadly be divided into three classes namely 139 

rigid body docking (where receptor and ligand conformations are fixed), semi-flexible ligand 140 

docking (the ligand’s internal bond rotation is allowed and receptor is held fixed or the receptor 141 

is considered as flexible and the ligand is treated as a fixed molecule) and flexible docking (both 142 

molecules are considered flexible) [Halperin et al. 2002]. Rigid docking has been used in the 143 

majority of the docking software. It is relatively less demanding with respect to computing 144 

power when searching the space of the docked conformations. Whereas, flexible docking is 145 

computationally demanding and provides better results since its conjecture about the binding 146 

geometries of ligands surpass rigid-receptor docking [Camacho et al. 2002]. The representative 147 

set of docking tools used in each type of docking has been summarized in Table 1. 148 

Computational biologists have used a wide variety of computational techniques in docking 149 

studies/tools which includes evolutionary programming, fast Fourier transform, genetic 150 

algorithms, guided differential evolution, incremental construction, fragment-based approaches, 151 

multiple copy approach, matching algorithm, molecular dynamics, Monte Carlo simulations, 152 

simulated annealing, and Tabu search (See Table 2). Each technique offers unique advantages to 153 

the user for conducting docking studies. In the present work, we describe features of a variety of 154 

docking tools, along with their disadvantages so that a user is able to select the right algorithm 155 

for their research work. 156 

 157 
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2.2: Ab-initio Vs Knowledge Based Docking 158 

Traditionally, energy landscapes are used in solving protein structures. The outlook becomes 159 

extremely complicated when we consider interactions of two molecules and intend to find global 160 

minima [Vakser et al. 1996, Ruvinsky et al. 1996, Vakser et al. 2008]. Current protocols are 161 

based upon concepts of physics (steric complementarity) [Katchalski-Katzir et al. 1992, Vakser 162 

et al. 1997, O’Toole N et al. 2008, Vakser et al. 2008, Ruvinsky et al. 2008, Vakseret et al. 2008 163 

] and on the techniques borrowed from computer science and other engineering disciplines which 164 

includes pattern recognition, optimization, machine learning, etc. In knowledge-based docking 165 

approaches, strategies are adopted from comparative modelling systems. These includes 166 

approaches based on comparison/alignment of sequences [Aloy et al. 2003, Kundrotas et al. 167 

2008, Rodrigues et al. 2013], sequences and structures (i.e. threading) [Lu et al. 2002, Guerler et 168 

al. 2013, Szilagyi et al. 2014], or only on the structures [Szilagyi et al. 2014, Günther et al. 2007, 169 

Zhang et al. 2012, Ghoorah et al. 2011, Tuncbag et al. 2012, Sinha et al. 2010, Kundrotas et al. 170 

2013] because the structures of the protein to be docked are assumed to be known by the very 171 

definition of docking. In a 2012 research study, it was reported that, in spite of the limited 172 

number of protein-protein complexes in the Protein Data Bank, docking templates can be found 173 

for complexes representing almost all known protein-protein interactions, provided the 174 

components themselves have a known structure or can be homology-built [Kundrotas et al. 175 

2012]. In 2005, an approach named TM-align was described to identify the best structural 176 

alignment between protein pairs that combines the TM-score rotation matrix and Dynamic 177 

Programming (DP) which built a foundation for template-based docking [Zhang et al. 2005]. The 178 

translational, rotational and conformational degree of freedom facilitates a large number of 179 

binding modes between the ligand and protein molecules. Therefore, various sampling 180 

algorithms have been deployed to overcome the infeasibility of computational generation of 181 

attainable conformations [Sherman et al. 2006]. The process is supported with the structural and 182 

affinity information available in the databases such as Protein Data Bank (PDB) [Schneidman-183 

Duhovny et al. 2005], ZINC [Irwin et al. 2005], PubChem [Wang et al. 2009], DrugBank, 184 

PDBBIND [Wang et al. 2004], ChemDB [Chen et al. 2005], AffinDB [Block et al. 2006], PLD 185 

[Puvanendrampillai et al. 2003] and CREDO [Schreyer et al. 2009], which aids the development 186 

and validation of these algorithms. 187 

 188 
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2.3: Docking methods and scoring functions 189 

The conformations obtained during docking are ranked via a scoring function, which accurately 190 

represents energetically favourable protein-ligand complexes and differentiates valid binding 191 

pose predictions from invalid ones. Three types of scoring functions are mainly employed for 192 

predicting target-ligand binding affinity. First, the force-field or molecular mechanics-based 193 

scoring functions, which can utilize the sum of van der Waals and electrostatic interactions and 194 

access the binding free energy of protein-ligand complexes; this scoring function has been used 195 

in DOCK [Raha et al. 2004]. The van der Waals energies are computed using Lennard-Jones 196 

potentials and electrostatic terms and are represented by coulomb interactions (with distance-197 

dependent dielectric constant). Second, the empirical scoring function which is based upon 198 

evaluation of binding energy due to various energy components like hydrogen bonds, binding 199 

entropy, ionic interaction, and hydrophobic effect. Third, a knowledge-based scoring function in 200 

which statistical analysis of a co-crystallized ligand-protein complex is employed and contact 201 

frequencies and/or distances between a protein and its ligand is obtained [Beutler et al. 1994]. It 202 

evaluates the final score by promoting preferred contacts and penalizing repulsive interactions 203 

between each ligand-protein atom [Liu et al. 2015]. Table 3 summarizes the above-mentioned 204 

scoring functions.  Using text mining scripts, we found that over 107 scoring functions have been 205 

published till date (Table 8). In terms of choice of scoring functions, Feher proposed the use of a 206 

consensus scoring function rather than relying on a single system to improve the predictions 207 

[Feher et al. 2006]. In 2015, Chen et al. claimed that a weighted scoring system performs better 208 

than a consensus-based method. From the user’s perspective, the choice of a rigid versus a 209 

flexible type of docking is dependent upon factors such as availability of computational 210 

hardware, the character of the target protein, the number of ligands and the number of target 211 

proteins used in the study, Also deserving consideration is whether the binding pocket will 212 

change the shape of the binding site, etc. (Table 4) [Chen et al. 2015]. In addition, the user also 213 

faces questions about the choice of software for conducting these docking simulations. When we 214 

searched for the top-ranking docking algorithms in a web or literature search, AutoDock and 215 

GOLD appeared as the top-ranking tools based on the number of citations and the popularity in 216 

internet searches. Though these are popular programs, they are not necessarily more accurate 217 

than others. As we can see from the comparative analysis in Table 5 and the Table 7, each 218 

program offers unique advantages, but also has several limitations. Therefore, the user is always 219 
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advised to carefully review the details for each program and also consider other relevant tools 220 

(Rosetta -http://boinc.bakerlab.org/) [Li et al. 2006]. The next important factor to consider is 221 

the availability of a reliable target protein structure. PDB and the structure databases serve as 222 

starting points to search protein targets but the user must consider the quality and reliability of 223 

the structure using meta-information such as details of X-crystallography experiments namely 224 

resolution and conditions under which protein crystal was obtained. User may also consider 225 

employing molecular docking (MD), energy minimization or clustering to improve the structure 226 

before start of docking experiments [Huang et al. 2010]. MD offers several benefits which 227 

includes depiction of mechanism of action of compounds [Gohlke et al. 2000], confirming 228 

experimental findings such as ensuring the stability of protein and the candidate compound 229 

binding [Milan et al. 2015] and modelling the potency of multi-target drugs through in-silico 230 

tests [Li et al. 2014], but one issue which has come into focus lately is that an increasing number 231 

of available protein sequences does not have existing PDB entries, with the ratio of the former to 232 

the latter showing an alarming trend for the worse. It has been reported that in 2012, only one in 233 

200 entries in UniProt had a corresponding PDB entry; the figure for 2007 was 100 [Buturak et 234 

al. 2014]. Therefore, in case the user is looking to increase the search space of target proteins for 235 

a given ligand(s), it will be advisable to include large scale automated 3D structure prediction 236 

programs before undertaking docking studies [Lee et al. 2014]. Conventionally docking 237 

programs restrict the search to small size binding sites (pockets) and small number of interacting 238 

residues otherwise the search time becomes impractically long and complex. Therefore, the user 239 

is encouraged to list docking sites during the preparatory phase. In case the target site is not 240 

known (blind docking), researchers split the docking box into multiple boxes, or repeat the 241 

search several times using different seeds, and then merge the results manually. Tools such as 242 

QuickVina-W [Trott et al. 2010] are useful in situations where target sites are not known 243 

beforehand. A novel virtual screening tool namely ‘SQM/COSMO filter’ (featuring semi-244 

empirical quantum mechanics (SQM), Cabrera et al. (2011) has evidently outperformed the most 245 

widely used scoring tools. There have also been calls for changing current approaches since 246 

comparison of binding sites of proteins is more useful than comparing entire sequences and 247 

structures of the protein [Cabrera et al. 2011]. 248 

 249 

2.4: Protein-Protein Docking 250 
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In recent times, docking is moving from the standard drug-ligand interaction to study protein-251 

protein interactions as well. The large part of this interest is driven by CAPRI (Critical 252 

Assessment of Predicted Interactions); an experiment involving separate groups of predictors and 253 

assessors (http://www.ebi.ac.uk/msd-srv/capri/)[Janin et al. 2013]. CAPRI is a blind prediction 254 

experiment which uses unpublished crystal or NMR structures of complexes, communicated on a 255 

confidential basis by their authors to the CAPRI management. The predictor group build models 256 

of based upon their algorithms and assessors evaluate their predictions in context of experimental 257 

information. Though the principles behind protein-protein docking are similar to protein-ligand 258 

docking, specialised programs are being developed due to the increased complexity of the 259 

system. On one hand, protein-protein docking programs need to deal with the conformational 260 

changes between unbound and bound structures, but on the other hand the inaccuracies of the 261 

interacting modelled structures present challenges. Over the past decade, protein–protein docking 262 

has significantly evolved from initial ab-initio docking [Katchalski-Katzir et al. 1992, Vakser et 263 

al. 1997] to interface-guided docking [de Vries et al. 2007].  264 

A 2009 CAPRI study reported that there are 3 classes of methods for protein-protein docking. 265 

The global method, based on Fast Fourier Transformation (e.g. ZDOCK, PatchDock tools), the 266 

medium range method, based on Monte Carlo minimization (e.g. Rosetta-dock tool) and a 267 

restraint-based method, where prior information on the interface residues is available (e.g. the 268 

HADDOCK tool). Resources such as Dockground [Douguet et al. 2006, Gao et al. 2007] and 269 

benchmark datasets from Weng’s group are playing an important role in this domain of docking 270 

[Huang et al. 2013]. Ruvinsky et al. (2012) presented a systematic large-scale analysis of 271 

conformational changes in the side chains during protein-protein interaction. Following on the 272 

same work, they developed a tool named “HingeProt” which separates proteins into their rigid 273 

parts and the hinge regions connecting them. The method is useful in flexible protein-protein and 274 

protein-ligand docking, flexible docking of protein structures into cryo-EM maps, and 275 

refinement of low-resolution EM structures. Tools such as DOT program finds low-energy 276 

docked structures for two proteins by performing a systematic search over six degrees of 277 

freedom by incorporating Poisson–Boltzmann electrostatic energy and a van der Waals energy, 278 

each represented as a grid-based correlation function [Mandell et al 2001]. Apart from these, 279 

methods have been developed for discretization of the conformational space into rotameric states 280 

[Beglov et al. 2011, Ruvinsky et al. 2012]. Protein-Protein docking problems become more 281 
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complicated when docking of modelled protein structures is performed. This is because models 282 

are considered to be less accurate than experimentally determined structures. Tovchigrechko et 283 

al. (2002) presented a prediction system on co-crystallized complexes for low resolution docking 284 

of protein models. In a recent work, Anishchenko et al. (2014) contributed that meaningful 285 

results in these circumstances can be obtained through carefully curated sets of structures with 286 

levels of distortion typical for modelled proteins. It is to be noted that each of these methods is 287 

suitable for different families of proteins [Tovchigrechko et al. 2002, Anishchenko et al. 2014]. 288 

 289 

2.5: Protein-Nucleic acid Docking 290 

Though protein–RNA and protein–DNA interactions are important cellular processes, but the 291 

computational community has paid relatively little attention to protein–nucleic acid docking, and 292 

specifically protein–RNA docking. There are few tools such as HADDOCK [Dominguez et al. 293 

2003], GRAMM [Katchalski-Katzir et al. 1992], HEX [Ritchie et al. 2000, Kemp et al. 2000], 294 

PatchDock [Schneidman-Duhovny et al. 2005] and FTDock [Gabb et al. 1997] which were 295 

originally developed for protein-protein docking and later adapted to accept nucleic acid as an 296 

input. Further, the lack of availability of scoring functions to assess protein-RNA interactions 297 

compounds the problem. Recent efforts by different scientific groups aim to improve protein-298 

nucleic acid docking systems [Puton et al. 2012, Zheng et al. 2007, Perez-Cano et al. 2010, 299 

Huang et al. 2014] (http://genesilico.pl/NPDock). 300 

 301 

2.6: Issues in comparative analysis of docking tools 302 

A plethora of docking tools has been developed in the past 20 years and the number of new tools 303 

is steadily increasing (Table 5 and 7). A comprehensive understanding of the advantages and 304 

limitations of each docking program is fundamentally important to conduct more reasonable 305 

docking studies and docking-based virtual screening but comparing them is very difficult. This is 306 

due to the following factors: First, during our review process we were not able to download or 307 

install many of the published tools due to several reasons such as broken hyperlinks, obsolete 308 

websites, and issues during installations. Second, only a few studies have been conducted to 309 

assess the relative performance of docking algorithms/scoring functions [Bissantz et al. 2000, 310 

Charifson et al. 1999, Keseru et al. 2001] and most of these studies focused on the use of only a 311 

few methods. Third, scientists have different points of view regarding the performance of the 312 
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tools since the examined properties vary in each of these studies (quality of the top-ranked pose, 313 

quality of all plausible poses, binding free energy prediction, and virtual screening utility). 314 

Fourth, the use of approximations during the docking process may lead to variable results such as 315 

inhomogeneous docking paces ranging from a few seconds to a few hours. Last, most of the 316 

docking tools have been calibrated and validated on small protein–ligand data sets instead of 317 

large datasets [Kramer et al. 1999, Diller et al. 2001, Pang et al. 2001, Paul and Rognan et al. 318 

2002, Verdonk et al. 2003, Nissink et al. 2002] (Table 5 and 7) (to predict ligand binding poses) 319 

and the scoring functions (to rank the binding affinities). In addition, one must keep in mind the 320 

diversity of protein structure/domains and therefore expect variations in performance of docking 321 

tools/scoring functions due to the differences between protein families. For example, LeDock 322 

performs well for docking studies for eukaryotic proteases and pepsin families but performs 323 

poorly for retroviral proteases and phosphate binding proteins. 324 

 325 

2.7: Online Web Services for docking 326 

The availability of web-enabled docking servers takes computational load from the user’s 327 

computer thereby helping scientists particularly those with minimal or no background in 328 

computers. Over the years several web servers have been developed to handle different aspects 329 

of docking. For example, ZDock [Chen et al. 2003] and PatchDock [Schneidman-Duhovny et al. 330 

2005] were developed to perform rigid-body docking. A program named ClusPro [Comeau  et al. 331 

2004, Comeau et al. 2004] can filter, cluster and rank docking solution candidates. SmoothDock 332 

(version of ClusPro) [Camacho et al. [2003] refines the representatives of the largest clusters. 333 

RosettaDock [Wang et al. 2005] allows search in the vicinity of a single given input solution 334 

candidate. The GRAMM-X [Tovchigrechko et al. 2006,Vakser et al. 2006] and Hex [Ritchie et 335 

al. 2000, Kemp et al. 2000] web servers perform rigid-body docking followed by an optimization 336 

of the rigid-body orientation. There is significant interest in this area as evidenced by a growing 337 

list of docking servers currently available, such as Docking Server 338 

(http://www.dockingserver.com/web), 339 

DockingAtUTMB(https://scsb.utmb.edu/facilities/software/), Pardock (http://www.scfbio-340 

iitd.res.in/dock/pardock.jsp), PatchDock(http://bioinfo3d.cs.tau.ac.il/PatchDock/), MetaDock 341 

(http://dock.bioinfo.pl/), PPDock (http://140.112.135.49/ppdock/index.html) and MEDock 342 

(http://medock.ee.ncku.edu.tw/), PliP (projects.biotec.tu-dresden.de/plip-web), ClusPro [Comeau 343 
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et al. 2004], HADDOCK [de Vries et al. 2012], RosettaDock server [Lyskov et al. 2008], 344 

GRAMM-X [Tovchigrech at al. 2006], 3D-Garden [Lesk et al. 2008], HEX server [Macindoe et 345 

al. 2010], SwarmDock [Torchala et al. 2013], ZDOCK server [Pierce et al. 2014], PatchDock 346 

[Schneidman-Duhovny et al. 2015], ATTRACT[de Vries et al. 2015], pyDockSAXS [Jimenez-347 

Garcia et al. 2015], Inter EvDock and NPDock [Tuszynska et al. 2015]. 348 

Further state-of-the-art web tools such as SwissDock [Gabb et al. 1997], GalaxySite [Vakser et 349 

al. 1997] or ProBiS [de Vries et al. 2007] can thus be applied in the evaluation of docking 350 

results. HexServer is based on Fast Fourier transform (FFT) and takes 15 s for each blind 6D 351 

docking calculations (http://hexserver.loria.fr/). It uses two graphics processors simultaneously 352 

and demonstrates the ability to produce up to 1,000 docking predictions [Macindo et al. 2010]. 353 

This server has played a role in clinical studies such as finding the role of mutations in the 354 

NOTCH pathway regulator MIB1 in left ventricular non-compaction cardiomyopathy. It has also 355 

played a role in several other studies. For instance, Demchuk et al. used this server to find 356 

several potential bindings. The 3D models of FtsZ-ligand complexes generated using the Hex 6.1 357 

server facilitated the identification of benzimidazoles binding sites on FtsZ2-2 protein surface 358 

present in Arabidopsis thaliana. Paul et al. (2014) also applied HexServer to dock 44 potential 359 

inhibitors of oncogenes and transcription factors having anti-cancer properties; in which 360 

significant interactions were found in 21 docking cases. The GRAMM-X web server extends 361 

original FFT methodology by employing smoothed potentials, refinement stage, and knowledge-362 

based scoring. A full docking protocol for a single complex on an average is completed in 2 363 

minutes, running on 16 2.0 GHz Opteron processors. It is implemented in Python and C++ hence 364 

combining the fast prototyping power of Python with the numerical performance of C++ 365 

modules [Tovchigrechko et al. 2006]. It is freely accessible at 366 

(http://vakser.bioinformatics.ku.edu/resources/gramm/grammx).  367 

Cluspro (https://cluspro.bu.edu/login.php) was the first fully automated, web-based program 368 

employed for the prediction of protein structures. Billions of putative complexes can be 369 

evaluated through this docking algorithm. A filtering method is executed in a certain number of 370 

structures; only those with good electrostatic and desolvation free energies are further selected 371 

for clustering. When the algorithm was applied to a benchmark set of 2000 conformations, 372 

within the top 30 predictions, at least one experimentally relevant complex was predicted 373 

[Comeau et al. 2004]. The output generates a list of complexes that are ranked on the basis of 374 
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their clustering properties [Comeau et al. 2005]. The performance of ClusPro suggests that its 375 

success rate is around 71% when targets having a significant structural rearrangement upon 376 

binding are not included [Comeau et al. 2007]. The new version of ClusPro also incorporates the 377 

docking program PIPER, which effectively increases the number of near-native docked 378 

structures [Comeau et al. 2007]. SwissDock is freely available at http://www.swissdock.ch. It is 379 

dedicated to docking of small molecules on target proteins and uses the EADock DSS engine. 380 

Success rates for small and relatively rigid ligands with less than 10 flexible rotatable bonds have 381 

been reported by [Grosdidier et al. 2011]. It has been implemented in various studies, one of 382 

which involved screening molecules which can act as antibiofilm agents, needed for the purpose 383 

of inhibiting Staphylococcus epidermidis biofilm production [Al-Khafaji et al. 2014]. The Istar 384 

web server, freely available at http://istar.cse.cuhk.edu.hk/idock, provides a key computational 385 

method for large scale protein-ligand docking. The website facilitates filtering of ligands on the 386 

basis of desired molecular properties, monitoring job progress, and visualization of ligand 387 

conformations. Results show that it outperformed AutoDock Vina in terms of docking efficiency. 388 

Moreover, the use of Istar requires no manual processing of input proteins in most of the cases 389 

[Li et al. 2014]. The PharmMapper web server is another tool used for potential drug target 390 

prediction against any given small molecules via a ‘reverse’ pharmacophore mapping approach. 391 

[Xiaofeng Liu et al. 2010] searched the potential drug target proteins for tamoxifen via the 392 

PharmMapper server. 393 

 394 

2.8: Distinct features of docking software and its performances on different datasets 395 

Existing docking software can be classified based on its search algorithm, scoring function and 396 

several other factors. The following section summarizes popular and highly cited software along 397 

with its applications in the context of large-scale docking studies (Also see Table 7). 398 

 399 

2.9: Large Scale Docking 400 

Research projects employing docking to study the interaction at the whole proteome or genome 401 

level or using a large number of ligands can be labelled as ‘large-scale’. Using this criterion, 402 

previously published studies by Gao et al. (~1,100 targets [Gao et al. 2008]), and Hui-fang et al., 403 

(1,714 targets and 8 compounds) [Hui-fang et al. 2010], or modeling networks [Szilagyi et al. 404 

2014, Wass et al. 2011, Vakser et al. 2013, Mosca et al. 2013, Wodak et al. 2013, Zhang et al. 405 
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2012, Kundrotas et al. 2012, Kar et al. 2012, Kundrotas et al. 2010] may be designated as large-406 

scale docking studies. On similar lines, Lee and Kim in 2012 generated a 2D matrix of docking 407 

scores among all the possible protein structures in yeast and humans for 35 well-known drugs. In 408 

2016, our group built an automated docking pipeline to dock orlistat as well as other drugs 409 

against the 24,000 proteins in the human structural proteome to explain the therapeutics and side 410 

effects at a network level. In Table 5, we discuss various examples where tools such as 411 

GemDock and PsiDock were used to dock a large number of ligands and protein targets. 412 

Conventionally, protein interactions are studied using free docking methods [Zhu et al. 2008, 413 

Mosca et al. 2009], or template-based docking methods at larger scale [Zhang et al. 2012, 414 

Kundrotas et al. 2012, Kar et al. 2012]. 415 

 416 

2.10: Limitations of Docking tools: Challenges and Opportunities 417 

In several studies, it was observed that despite obtaining high docking scores or binding affinity 418 

(in-silico/in-vitro/in-vivo systems), potent lead for a commercial drug is difficult to find. The 419 

reasons are attributed to problems in protein structure [Hoelder et al. 2012], variations in 420 

environment of binding site, and variations in pH affecting target proteins in context of human 421 

body [Kitchen et al. 2004]. Similarly, many studies have shown poor correlations between 422 

docking scores and experimental binding affinities. A study was conducted to improve this 423 

correlation by implementing a multipose binding concept in the docking scoring scheme 424 

[Atkovska et al. 2014]. In many instances, researchers tend to over-interpret docking results. For 425 

example, some authors have claimed a particular ligand as agonist/inhibitor for a target protein 426 

only on the basis of docking scores without conducting confirmatory studies [Alves et al. 2007, 427 

Chen et al. 2012, Chen 2013, Hong et al. 2012]. McGaughey et al. (2007) have also shown that 428 

2D and 3D ligand similarity-based methods outperform docking tools in virtual screening 429 

experiments. Molecular dynamics (MD) simulations can be used to validate docking results since 430 

MD is able to check movement of the protein-ligand complex over a period of time. This is 431 

important since changes in structure of protein/ligand during perturbation can modify final 432 

binding pose [McGaughey et al. 2007]. Although MD provides useful information to 433 

complement the docking prediction, very few studies have utilised MD [Cavalli et al. 2004, Park 434 

et al. 2004]. The presence of solvent (water) molecules plays an important role such as 435 

electrostatic screening [Schutz et al. 2001], catalysis and molecular recognition [Ben et al. 2001, 436 
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Bienstock et al. 2015] and well known docking packages incorporate water molecules explicitly 437 

to predict protein–ligand docking [Verdonk et al. 2005, Osterberg et al. 2002, Friesner et al. 438 

2006]. But, very few methods exist that allow the prediction of hydration water positions at 439 

protein–protein interfaces [Ruyck et al. 2016]. Recently, researchers have developed several 440 

methods to incorporate solvation to improve docking predictions such as WaterMap protocol 441 

[Yang et al. 2013], SZMAP [Kumar et al. 2013], Ligand Hydration Methods [Forli et al. 2012], 442 

and WaterDock [Sridhar et al. 2017]. Besides receptor flexibility, ligand induced large scale 443 

conformational changes add a new set of challenges in front of computational biologists. To 444 

investigate one such problem, Dietzen et al. used normal mode analysis (NMA) in predicting the 445 

conformational changes observed upon small-molecule binding, albeit with limited success. In 446 

addition, specific parts of the protein structure such as ionizable residues [Yuriev et al. 2015], 447 

and protein pockets were also examined in the past. There have been number of studies which 448 

had explored the role of ligand structure (namely ionization and tautomerism parameters) to 449 

improve docking predictions. For instance, Natesan et al. (2012), introduced the concept of multi 450 

species approach into the QM/MM linear response method and used it for structural correlation 451 

of published inhibition data on mitogen-activated protein kinase (MAPK)-activated protein 452 

kinase (MK2) by 66 benzothiophene and pyrrolopyridine analogues with reasonable success 453 

[Natesan et al. 2012]. Continuing on similar lines, Feher and Williams et al. (2012) examined the 454 

sensitivity of docking programs to small changes in input files of ligands. They also 455 

demonstrated that part of the docking variation is due to numerical sensitivity and potentially 456 

chaotic effects in current docking algorithms and not solely due to incomplete ligand 457 

conformation and pose searching [Feher et al. 2012, Williams et al. 2012]. 458 

During docking, ligand flexibility is a major reason for failure of docking protocols to correctly 459 

predict the pose. Bohari and Sastry (2012) recommended that docking protocols perform 460 

optimally when a balanced type of hydrophilic and hydrophobic interaction or dominant 461 

hydrophilic interaction exists. Similarly, by using more than one docking program to predict the 462 

binding pose, correct poses were identified more accurately and there appears to be a certain 463 

ligand size that maximizes pose prediction accuracy because of optimum flexibility. In order to 464 

circumvent these issues, tools/methods such as S4MPLE have been designed [Beato et al. 2013, 465 

Des Jarlais et al. 1986]. 466 
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Scoring functions and sampling are often criticised in the event of poor performance of docking 467 

programs. A study by [Greenidge et al. 2014] demonstrated that identification of the correct pose 468 

(docking power) can be improved by incorporating ligand strain into the scoring function or 469 

rescoring an ensemble of diverse docking poses with MM-GBSA in a post processing step. 470 

 471 

2.11: Binding site prediction, Interaction hotspots and docking 472 

Information on binding site (BS) on target protein plays an important role in obtaining accurate 473 

docking results. BS can be classified as following: (i) Lipophilic buried cavities such as COX-2  474 

and estrogen receptor, (ii) binding sites of intermediate polarity with hydrogen bonding motifs 475 

common to the majority of inhibitors such as p38 MAP kinase, gyrase B and thrombin and (iii) 476 

which are very polar, solvent-exposed binding sites seen in neuraminidase and gelatinase A. 477 

[Schulz-Gasch et al. 2003] have described a set of guidelines for virtual screening/docking 478 

system based upon their results for the benefits of the users. Advances in technologies are also 479 

contributing towards our improved understanding of role of binding or interaction sites [Nero et 480 

al. 2014, Kahraman et al. 2013]. In a comprehensive cross-docking study, Lopes et al. (2003), 481 

docked over 300,000 conformations per protein pair for the set of 28,224 possible pairs (168 482 

proteins of the Mintseris Benchmark 2.0) [Lopes et al. 2013]. From a docking point of view, 483 

Protein-Protein Interaction (PPIs) is in principle similar to traditional drug targets and was shown 484 

to be amenable to docking [Koes et al. 2012]. Therefore, docking methods are used in several 485 

stages during the design of PPI inhibitors as well as in finding interaction hotspots [Sable et al. 486 

2015]. 487 

 488 

 489 

2.12: Inverse/Reverse docking systems 490 

Chen and Zhi introduced this term in 2001 for finding potential protein targets of a small 491 

molecule by the computer automated docking search of a protein cavity database. Subsequently, 492 

reverse docking was used in a number of important investigations: (A) the virtual target 493 

screening method calibrating a set of small molecules against a protein library [Sung et al. 2012], 494 

and (B) the activity prediction of 656 marketed drugs on 73 unintended “side effect” targets 495 

[Lounkine et al. 2012], (See Table 5). 496 

 497 
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2.13: Ensemble based Docking 498 

In a recent work, Kim et al. developed a new program named as ALIS-DOCK (Automated 499 

pLatform for Integrative Structure-based DOCKing) for automated structure based virtual 500 

screening (SBVS) to identify inhibitor against Heat shock protein 90 (Hsp90) [Kim et al. 2018]. 501 

Authors employed ensemble-based docking strategies in which multiple input receptor 502 

conformations are fed into docking programs followed by experimental verification studies. 503 

Ensemble-based methods are considered to be better than a single receptor conformation input 504 

[Sinko et al. 2013]. However, several drawbacks limit ensemble-based docking which includes 505 

the lack of a protocol to generate ensembles, in terms of both size and membership [Yuriev et al. 506 

2011, Yuriev et al. 2013, Korb et al. 2012]. Rueda et al. (2012) dealt with this problem by 507 

introducing a method based on exhaustive combinatorial searching and individual addition of 508 

pockets, selecting only those that maximize the discrimination of known active compounds from 509 

decoys. To address these problems, Xu and Lill (2012) combined experimental knowledge with 510 

different computational methods to reduce the ensemble of protein structures to increase 511 

efficiency and enrichment quality. Apart from the above mentioned studies, several other 512 

techniques have been introduced to address the issues of receptor flexibility. 513 

 514 

2.14: Fragment based docking 515 

In order to design efficient drugs, fragment-based drug design (FBDD) was proposed in 1996. 516 

FBDD focuses to find molecules/fragments having low in molecular-weight and chemical 517 

complexity to target sub-pockets in active site. The approach is inspired from the divide and 518 

conquer algorithm and the fragments serve as starting points for “growing” the lead candidate. 519 

Though various computational methods have been developed for FBDD, molecular docking 520 

remains an attractive way to prioritize fragments from  much larger commercially available data 521 

sets. Several factors such as non-optimised scoring functions, affect the accuracy of fragment-522 

based docking results. Programs such as LUDI, GLIDE, LigBuilder, and S4MPLE are powerful 523 

enough to place fragments into the correct pocket of the active site. In 2016, Hao et al. developed 524 

a web-based server dedicated for FBDD [Hao et al. 2012]. Apart from these, FBDD and docking 525 

continue to be major strategy to discover new lead molecules and efforts are being made to 526 

improve FBDD. MM-PBSA rescoring; [Kawatkar et al. 2012, Zhu et al. 2013] a combination of 527 

structure-based and ligand-based screening; [Cortes-Cabrera et al. 2012], protein mapping with 528 
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FTMap; [Hall et al. 2012], templating of fragment ligands on known structures; [Tosh et al. 529 

2012], and GPU-accelerated MD [Zhu et al. 2013]. 530 

 531 

2.15: Benchmarking datasets/studies and evaluation of docking tools 532 

Evaluating docking tools is challenging since we are dealing with a system which is highly non-533 

linear and multi-dimensional which treats proteins as a rigid entity. Further docking methods are 534 

strongly dependent on choices of input preparation that vary between different practitioners. The 535 

next screening process is also biased since it involves a highly skewed population of actives 536 

(very few) versus inactives (very many) coupled with an operational cost function that varies 537 

from user to user [Jain et al. 2008]. Moreover, problems in dataset sharing, bias in datasets, 538 

variations in sample sizes, enrichment issues and statistical measures for reporting- are major 539 

factors to be considered when designing any evaluation or benchmarking study. 540 

The benchmarking of docking tools started as early as 1990 when one research group docked 541 

103 ligands against chymotrypsin using the DOCK tool and found that the computational 542 

predictions matched the experimental data [Stewart et al. 1990]. In 2004, eight docking programs 543 

(DOCK, FLEXX, FRED, GLIDE, GOLD, SLIDE, SURFLEX, and QXP) were compared to 544 

recover the X-ray pose of 100 small-molecular-weight ligands, and for their capacity to 545 

discriminate known inhibitors of an enzyme (thymidine kinase) from randomly chosen “drug-546 

like” molecules (Kellenberger). Continuing on similar lines, Huang et al. constructed the 547 

directory of useful decoys (DUD), with 2,950 ligands for 40 different targets leading to a 548 

database of 98,266 compounds [Huang et al. 2006]. This is an important resource for the 549 

evaluation of docking tools (http://blaster.docking.org/dud/). The same research group generated 550 

another resource, DUD-E, which includes more diverse targets such as GPCRs and ion channels, 551 

totalling 102 proteins with 22886 clustered ligands drawn fromChEMBL, each with 50 property-552 

matched decoys drawn from ZINC. In 2010, Plewczynski et al. conducted first large-scale 553 

evaluation of seven popular docking tools on the extensive dataset composed of 1300 protein–554 

ligands complexes from PDBbind 2007 database, where experimentally measured binding 555 

affinity values were also available. In another study, Bohari and Sastry (2012) evaluated the 556 

performances of five popular docking protocols, (Glide, Gold, FlexX, Cdocker and LigandFit) on 557 

199 FDA approved drugs and declared Glide and Cdocker as top ranking tools [Plewczynski et 558 

al. 2010, Bohari et al. 2012 ]. One of the research teams evaluated a panel of 20 scoring 559 
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functions in terms of “scoring power” (binding affinity prediction), “ranking power” (relative 560 

ranking prediction), “docking power” (binding pose prediction), and “screening power” 561 

(discrimination of true binders from random molecules) [Li et al. 2014]. Wang et al. (2016) 562 

found that academic programs performed better than commercially available docking tools. We 563 

have compiled a list of benchmarking and evaluation studies for the benefits of the users of 564 

docking tools [Wang et al. 2016]. 565 

 566 

3. APPLICATIONS OF DOCKING 567 

3.1: Drug repositioning (repurposing) using molecular docking 568 

Drug repositioning is finding new uses for existing drugs and offers several advantages such as 569 

reducing time efforts, expenses and failures typically associated with the drug discovery process. 570 

Scientists have devised several strategies for repositioning which includes the use of 571 

transcriptional signatures [Lamb et al. 2006, Chang et al. 2010, Iskar et al. 2013], networks [Hu 572 

et al. 2012, Agarwal et al. 2009, Jin et al. 2012], ligand based approaches [Brown et al. 2017, 573 

Patel et al.2017, Shameer et al. 2017, Keiser et al. 2009, Liu et al. 2010, Vasudevan et al. 2012, 574 

Sawada et al. 2015], ligand based chemigenomics and machine learning approaches [Mestres et 575 

al. 2006, Bender et al. 2007, Gregori-Puigjané et al. 2008, Mestres et al. 2008, Bender et al. 576 

2007]. [Unterthiner et al. 2014, Alaimo et al. 2016], structure-based approaches [Ehrt et al. 2016 577 

,Zhang et al. 2004, Jalencas et al. 2013, Mestres et al. 2013, Anighoro et al. 2015], and molecular 578 

docking [Kinnings et al. 2009, Li et al. 2011, Dakshanamurthy et al. 2012]. Li et al. (2011) used 579 

docking methods on drugs of the DrugBank database and 35 crystal structures of MAPK14. The 580 

study identified the chronic myeloid leukemia drug nilotinib as a potential anti-inflammatory 581 

drug with an in vitro IC50 of 40 nM [Li et al. 2011]. Dakshanamurthy et al. (2012) successfully 582 

tested an anti-parasitic drug as an anti-angiogenic Vascular Endothelial Growth Factor Receptor 583 

2 (VEGFR2) inhibitor, and a new connection was discovered between previously untargeted 584 

Cadherin-11, implied in rheumatoid arthritis, and cyclooxygenase-2 (COX-2) inhibitor 585 

celecoxib. We have compiled several research studies which used molecular docking tools for 586 

repositioning purposes. 587 

 588 

3.2: Side effect prediction using docking 589 
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The docking technique plays an important role in predicting effects; docking-based tools have 590 

predicted the efficacy of potential therapeutic compounds and have also helped in predicting the 591 

range of unintended and undesired interactions between the specific compound and the human 592 

proteome. Using docking studies in combination with pharmacophore modeling, novel 593 

benzodiazepine (binding site) agonists in GABA receptors were designed, examined and 594 

compared with existing agonists [Sieghart et al. 2006]. These analyses have been used for 595 

finding comparative side effects of individual drugs against the same disease. Docking studies 596 

and a subsequent analysis has enabled us to find the probable off-target receptors in certain 597 

pockets which had a higher affinity for one drug; this was demonstrated in a study where 598 

Sunitinib co-existed more frequently than Sorafenib with respect to the hypothyroidism events 599 

[Venkatapathy et al. 2004]. 600 

Moreover, docking methods on adverse reactions on enzymes have also been used for quite some 601 

time [Drwal et al. 2005, Malgorzata et al. 2005]. Using pharmacophore pre-alignment and QSAR 602 

models along with flexible docking techniques to quantify the binding affinity, adverse reactions 603 

were predicted for a certain drug [Devillers et al. 2010]. It was reported that SolB (Schisandrol 604 

B) has a protective effect against APAP overdose induced acute liver failure. While the same 605 

was checked in mice, docking studies confirmed the binding of SolB with the residue through 606 

inhibiting their activities [Jiang et al. 2014]. Drug modelling for gout also used docking to devise 607 

compounds which are expected to report fewer side effects than the previous drugs used [Moon 608 

Ho et al. 2012]. 609 

A study by LaBute et al. (2014) also depicted the use of molecular docking for high throughput 610 

screening of drug molecules and for prediction of ADRs. Based on the docking score of 506 611 

compounds out of 906 small molecule drugs docked against 409 protein targets from DrugBank 612 

via Autodock (Vina LC), a logistic regression model predicted 85 side-effects. The validation of 613 

ADR prediction modes is based upon docking score and is carried out by comparing AUCs/area-614 

under-the-receiver-operating-characteristic-curves (AUCs) with experimentally derived drug-615 

protein interactions [Liu et al. 2010]. 616 

Additionally, inverse docking has also been believed to lead to the identification of the proteins 617 

which the specific molecule has a likelihood of acting on, leading to a predictive analysis of the 618 

potential ADRs the drug molecule could cause [Gfeller et al. 2014]. Grinter et al. (2011) used the 619 
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docking software MDock to perform an inverse docking study to identify potential targets of 620 

PRIMA-1, to investigate its ability to cause apoptosis in cancer cells [Grinter et al. 2011]. 621 

 622 

3.3: Docking and Experimental studies 623 

Apart from drug repositioning and side effect prediction, docking has also been used as an 624 

intermediate step in the search for finding new drugs in conjunction with time-consuming 625 

experimental high-throughput screening. Due to the use of virtual screening and docking, 626 

researchers are able to save time and efforts for screening new drugs. Docking, being a part of 627 

virtual screening has been used as this initial step in a number of studies. In this section, we 628 

discuss studies where docking is integrated with experimental system (in-vivo or in-vitro) to 629 

confirm the predictions. These studies majorly focussed on discovery of new inhibitors for 630 

targets drawn from infectious agents which include Mycobacterium tuberculosis, Bacillus 631 

anthracis, Vibrio harveyi, HIV, vaccinia, variola and monkey-pox viruses. Apart from that, in a 632 

number of studies, docking was used in conjunction with wet-lab experiments for finding new 633 

drugs/treatment modalities for metabolic and non-communicable disorders such as diabetes, 634 

cancer, obesity and allergies (Table 6). Recently, structure-guided design [Cobb et al. 2015] and 635 

virtual screening [Chaudhary et al. 2014] were successfully applied in order to identify and 636 

evaluate new molecules with a potent inhibitory effect on Plasmodium falciparum. 637 

3.4: Docking in Immunoinformatics 638 

Zhang et al. (2013) used docking for epitope prediction methods in combination with 3D 639 

structural modeling of peptide-MHC-TCR complex to identify MHC class I restricted T-cell 640 

epitopes for use in epitope-based vaccines like HIV and human cancers [Zhang et al. 2013]. In 641 

another collaborative study by Indian-UK based researchers worked on Crimean–Congo 642 

hemorrhagic fever virus (CCHFV) to predict epitopes which can be helpful for vaccine designing 643 

[Papa et al. 2002]. Krawczyk et al. developed a new method which combines conformational 644 

matching of the antibody-antigen structures and a specific antibody-antigen score [Krawczyk et 645 

al. 2014, Konrad et al. 2014]. Recently in 2018, researchers described the use of an incremental 646 

meta-docking approach for structural prediction of pMHC complexes to overcome challenges 647 

faced by previous methods [Antunes et al. 2018]. This study is important since it addressed 648 

major limitations of docking approaches since docking methods are known to be much less 649 

reliable when applied to larger ligands (e.g., ligands with more than 10 internal DoFs) [Chang et 650 
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al. 2010, Michel et al. 2010]. For instance, peptides are known to be very flexible ligands 651 

[Devaurs et al. 2015]; binding mode prediction of even small peptides, composed of up to 5 652 

amino acids (which means around 24 internal DoFs), can be particularly challenging for 653 

available docking method [Rentzsch et al. 2015, Wang et al. 2016].  654 

In the vaccine design domain, docking is being increasingly used to find novel candidates. For 655 

example, Alam et al. (2007) docked two predicted epitopes to HLA-A*53:01 with Autodock and 656 

reported good predicted binding affinities for the peptides [Mirza et al. 2016].  In another study 657 

by Mirza et al. (2016) investigated the binding interactions of CTL epitopes with three class I 658 

major histocompatibility complex (MHC I) proteins after docking the peptides to the binding 659 

groove of the MHC I proteins.  660 

Recently this approach is being used to target pathogens responsible for neglected tropical 661 

diseases (NTDs) in order to develop innovative “anti-poverty” vaccines [Hotez, 2018]. Studies 662 

by Khatoon et al. [2017, 2018], used an immunoinformatics approach to evaluate both membrane 663 

and secretory proteins of Leishmania donovani followed by molecular docking and dynamics to 664 

evaluate the binding affinity and stability of receptor (TLR-4) and ligand (vaccine protein) 665 

complex. Recently, our group has started working on a collaborative project to identify new 666 

vaccine candidates for Chagas Disease, a poverty related NTD in the Americas (Beaumier et al 667 

2016, Jones et al 2018). This approach is focused on augmenting host immunity to improve on 668 

current chemotherapeutic approaches, and proposes combining text mining, machine learning, 669 

network sciences and immunoinformatics approaches to build multi-layered network of 670 

Trypanosoma cruzi and host to obtain comprehensive understanding of molecular 671 

pathophysiology of Chagas Disease (Jagannadham et al. 2016). In our platform, we shall use the 672 

docking systems for investigation of binding interactions of CTL epitopes with MHC proteins 673 

(https://sites.google.com/view/vaccinepipeline/). The hope is that this approach might accelerate 674 

the discovery, development and testing of NTD anti-poverty vaccines. 675 

 676 

3.5: Use of Automation, Cloud, Parallel and Distributed Computing in Docking 677 

Pharmaceutical companies value workflows and pipelines which integrate various steps of 678 

docking or virtual screening process. Taking these cues, Therrien et al. (2014) built a web 679 

enabled system for drug discovery system which implements steps such as ligand molecule 680 

processing, macromolecule preparation for docking, and docking with Flexibility Induced 681 
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through targeted Evolutionary Description (FITTED) method. Docking methods when used in 682 

VS workflow suffer from bottleneck due to lack of computational capabilities. Advancements in 683 

computational field particularly in cloud computing, parallel and distributed computing can 684 

alleviate such problems [Yuriev et al. 2015, Dong et al. 2015]. Servers such as iSCREEN and 685 

MTiOpenScreenv are also good example of cloud-based web implementation of docking tools. 686 

 687 

4. DISCUSSIONS AND FUTURE DIRECTIONS 688 

A cursory look across the wide range of studies we reviewed reveals that docking is a powerful 689 

tool, engendering many success stories in drug discovery process as well as side effect 690 

prediction. It complements the experimental approaches or can even be used to find novel 691 

unknown targets. The field is quickly advancing and expanding its practical applications due to 692 

the continuous increases in computational power. Making docking services available online, thus 693 

letting external servers do the computing, and allowing the user to visualize and obtain the 694 

docking results. However, there is still a necessity to resolve certain issues such as construction 695 

of datasets of target structure, computational efficiency, the inclusion of receptor flexibility, 696 

improved search algorithm and scoring function accuracy for explicit target identification. More 697 

importantly, normalization of docking scores is necessary in order for it to be a truly successful 698 

tool. A recent study suggested role of machine learning in combining multiple docking tools as 699 

well as scoring functions to improve performance [Hsin et al. 2013]. There is lot of interest in the 700 

application of machine learning techniques in virtual screening and computational docking as 701 

evident by huge number of publications in recent years. The effort needs to be concentrated in 702 

these areas so that more intriguing applications can be uncovered in the future. 703 

 704 

 MATERIALS AND METHODS 705 

We have created a new technology assisted review system which incorporates support vector 706 

machines, information retrieval programs, web based forms and programs built in Perl and 707 

Python (Jagannadham et al. 2016; Cormack et al. 2015) (Figure 1).  The system consists of 708 

automated paper writing module and automated review module. We searched literature resources 709 

such as PubMed and Google Scholar with queries such as “Molecular Docking”, “Docking”, and 710 

“Docking tools” to retrieve abstracts & full length articles. The manual screening was conducted 711 

by the three independent teams comprising trained researchers.  712 
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 1452 

 1453 

 1454 

Table 1: Examples of docking tools used in rigid and flexible docking.   1455 

 1456 

RIGID DOCKING FLEXIBLE DOCKING 

● ZDOCK ● AutoDock 

● RDOCK ● FLIPDock 

● MEGADOCK ● HADDOCK 

● SOFTDOCK ● FTDOCK 

● BiGGER  

● SKE-DOCK  

 1457 

 1458 

 1459 

 1460 

 1461 

 1462 

 1463 

 1464 

 1465 

 1466 

 1467 

 1468 

 1469 

 1470 

 1471 

 1472 

 1473 

 1474 

 1475 

 1476 

 1477 

 1478 

 1479 

 1480 

 1481 

 1482 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27538v1 | CC BY 4.0 Open Access | rec: 15 Feb 2019, publ: 15 Feb 2019



Table 2: Docking algorithms: Features. 1483 

 1484 

Algorithms Features Disadvantages Softwares 

● Evolutionary 

Programmin

g  

(EP) 

● It uses a heuristic 

search algorithm 

that combines 

differential 

evolution with a 

cavity prediction 

algorithm. 

● The docking 

accuracy has 

been evaluated by 

docking flexible 

ligands to 77 

protein targets. 

MolDock was 

able to identify 

the correct 

binding mode of 

87% of the 

complexes. 

 

● No explicit 

operator is used to 

maintain the 

spreading of 

solutions in the 

obtained non-

dominated set. 

● MolDock [Thomsen 

et al. 2006 ] 

● Fast Fourier 

Transform  

algorithm 

● Converts a signal 

from its original 

domain to a 

representation in 

the frequency 

domain and vice 

versa. 

● Enables a 

systematic global 

docking search 

on a 3D 

framework. 

 

● Very specific 

● Provides a limited 

view of frequency 

in the context of 

signal processing. 

● Frequencies are 

sensitive to noise. 

● ZDOCK server 

[Chen et al. 2003] 
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● Genetic 

algorithms 

● A stochastic 

genetic algorithm 

in which the 

variables to be 

optimized are 

referred to as 

genes and the 

string containing 

the genes known 

as chromosomes. 

● Ability to handle 

a diverse and 

large set of 

variables. 

 

● Protein motion is 

not modeled. 

● Large-scale protein 

conformational 

changes prediction 

is difficult. 

● Good at finding the 

regions where 

extremes are 

located but difficult 

to find the precise 

location. 

 

● AutoDock [Morris et 

al. 1998] 

● GOLD [Jonnes et al. 

1997] 

● DIVALI [Clark et al. 

1995] 

● DARWIN 

[Kruiskamp et al. 

1995] 

● Guided 

Differential 

Evolution 

● Uses the 

knowledge of 

cavities present in 

the target protein 

to restrict the 

search space. 

● It starts with the 

initial set of 

candidate 

solutions and the 

poses are then 

evaluated using a 

scoring function. 

● Unstable 

convergence. 

● The number of 

computations used 

for finding the 

minimum energy 

conformation is 

more since it is an 

iterative process. 

● MolDock [Sudha et 

al. 2018] 

 

 

 

 

 

 

 

 

 

 

 

● Incremental 

Construction 

 

● The method 

fragments the 

ligand and docks 

them separately 

on the receptor 

site. 

● Ineffective if 

ligands have 

greater than 17 

rotatable bonds. 

 

● DOCK 4.0 [Pagadala 

et al. 2017] 

● FlexX [Rajkhowa et 

al. 2017] 

● eHiTS [Zsoldos et al. 

2007] 

● LUDI ● Can be used to 

search large 

databases of 

three-dimensional 

structures for 

putative ligands 

● It may be difficult 

to find a template 

that connects the 

fragments in a 

stereo-chemically 

and a synthetically 

● FlexX [Kramer et al. 

1999] 

●  Pagadala et al. 2017 
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of proteins with 

known 3D 

structure. 

● The method holds 

promise to 

retrieve protein 

ligands from a 3D 

database 

automatically if 

the 3D structure 

of the target 

protein is known. 

● Utilizes the 

hydrogen bond 

formed between 

the ligand and 

proteins at the 

binding site. 

 

feasible way. 

● Multiple 

Copy 

Simultaneou

s Search 

(MCSS ) 

 

● Makes thousands 

of copies of a 

ligand functional 

group and places 

them in the 

receptor binding 

site. 

● It then obtains 

favorable ligand 

functional 

conformations by 

subjecting it to 

energy 

minimization. 

● Applicable to rigid 

receptors and not to 

flexible receptors. 

 

● HOOK [Eisen et al. 

1994] 

● FlexX [Zeng et al. 

2000] 

 

 

 

 

 

 

● Matching 

Algorithm 

 

● Chemical 

information and 

shape features are 

used to map a 

ligand into the 

active site of a 

protein. 

● Depends on the 

pharmacophoric 

pattern i.e., the 

geometric pattern 

of atoms 

responsible for the 

observed activity. 

● EUDOC [Pang et al. 

2001] 
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● Represents 

proteins and 

ligands as 

pharmacophores. 

● Molecular 

Dynamics 

● Each atom can be 

separately moved 

in the field of 

atoms in a state 

of rest. 

● The flexibility of 

protein and 

ligand is more 

effectively 

represented. 

● Local 

optimization can 

be done 

efficiently. 

● Progresses in very 

small steps and 

thus have 

difficulties in 

stepping over high 

energy 

conformational 

barriers. 

 

● AUTODOCK VINA 

[Trott et al. 2010] 

● Monte Carlo 

 

● Leads to the class 

of stochastic 

methods. 

● Bond rotation, 

rigid-body 

translation or 

rotation of the 

ligand is done to 

generate multiple 

poses. 

 

● Parameters for 

optimization have 

to be pre-defined. 

● Valid for small 

molecule 

conformations on 

receptor sites not 

for large molecules. 

● MCDOCK [Liu et al. 

1999] 

● ICM (Iterated 

Conditional Modes) 

[Winkler et al. 2012] 

 

● Simulated 

Annealing 

● Every docking 

conformation is 

simulated; in 

each cycle of 

simulation, the 

temperature 

gradually 

decreases in a 

fixed interval of 

time. 

● Considers the 

● The temperature 

keeps the algorithm 

from getting stuck 

by permitting 

uphill moves. 

● Needs to be 

combined with 

MC, GA, and LGA 

to give higher 

accuracy results. 

 

● MolDock [Thomsen 

and Christensen et al. 

2006] 

● AutoDock4 [Morris 

et al. 2009] 

● ROSETTA3 [Leaver-

Fay et al. 2011] 

● AutoDock Vina 

[Trott et al. 2010] 
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flexibility and 

conformational 

state of both the 

ligand and the 

protein. 

● Tabu Search ● It is a 

MetaHeuristic 

algorithm. 

● Uses a Tabu list 

that prevents 

revisiting of the 

previously 

considered 

solutions and 

enables the 

search for new 

solutions. 

● Regression model 

needs to be solved 

every time any of 

the first m(n+1) 

weights are 

changed in order to 

calculate the mean 

squared error. 

● Pro_leads [Fogel et 

al. 2008] 

●  SFDock [Fogel et al. 

2008] 

 1485 

 1486 

 1487 

 1488 

 1489 

 1490 

 1491 

 1492 

 1493 

 1494 

 1495 

 1496 

 1497 

 1498 

 1499 

 1500 

 1501 

 1502 

 1503 

 1504 
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 1506 

 1507 

 1508 

 1509 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27538v1 | CC BY 4.0 Open Access | rec: 15 Feb 2019, publ: 15 Feb 2019



Table 3: Examples of scoring functions (Also See Table 8). 1510 

 1511 

Force-Field Empirical Knowledge-Based 

● D-Score ● LUDI ● PMF 

● AutoDock ● F-Score ● Drug Score 

● DOCK ● Chem Score ● Smog 

● GOLD ● X-SCORE  

 1512 

 1513 

 1514 

 1515 

 1516 

 1517 

 1518 

 1519 

 1520 

 1521 

 1522 

 1523 

 1524 

 1525 

 1526 

 1527 

 1528 

 1529 

 1530 

 1531 

 1532 

 1533 

 1534 

 1535 

 1536 

 1537 

 1538 

 1539 

 1540 
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Table 4: Comparison of Rigid and Flexible Docking. 1541 

 1542 

 1543 

 1544 

 1545 

 1546 

 1547 

 1548 

 1549 

 1550 

 1551 

 1552 

 1553 

 1554 

 1555 

 1556 

 1557 

 1558 

 1559 

Parameter Rigid Flexible 

● Computation

al Hardware 

● Can work on standard systems. ● High-end 

computational 

power is needed in 

terms of RAM, 

processors etc. 

● When the 

number of 

ligands is 

more i.e. 

screening of 

thousands of 

compounds 

from a single 

database. 

● Performs well even if the numbers 

of ligands are large. 

● Not a good choice 

● Change in 

binding 

pocket shape 

during 

binding. 

● Does not work in situations where 

shape changes during the docking 

process. 

● Works without any 

problem. 
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Table 5: Widely used docking programs and their applications in large-scale 1560 

docking studies. 1561 

 1562 

 DOCKING 

TOOLS & 

VERSIONS 

FEATURES PERFO

RMANC

E 

PROTEIN 

DATASET 

BENCHMARKS REFERE

NCES 

 AADS 

(Automated 

Active Site 

Identificatio

n) 

● Can be 

accessed free 

on the internet.  

● The program 

detects a total 

of 10 possible 

binding sites 

within a target 

protein taking 

into 

consideration 

the 

physicochemic

al properties of 

the amino acid 

side chains 

around the 

possible protein 

cavities. 

85% ● 1A4K - 

Diels 

alderase 

catalytic 

antibody 

Performs rigid docking 

of an input 

ligand/candidate 

molecule at the 10 

predicted binding sites 

using an all-atom 

energy based Monte 

Carlo method. Based 

on BappI. 

[Singh 

et al. 

2011] 

 Autodock 

Vina 

 

Autodock 1 

 

Autodock 

2.4 

 

Autodock 3 

 

Autodock 4 

& 4.2 

●  Can be 

accessed free 

on the internet 

and is based on 

flexible ligand 

and flexible 

protein side 

chains docking.  

● It is used for 

docking of the 

ligand to a set 

of grids 

classifying the 

target proteins. 

> = 70

% 

●  Set of HIV-

1 Protease 

complex 

● Used eight 

protein-peptide 

complexes( 

PPeCs), with 

peptides up to 

four residue and 

12 rotatable 

bonds (RBs), 

introducing 

‘blind’ docking. 

 [Chang et 

al. 2010] 
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 BetaDock ● Can be 

accessed free 

on the internet. 

● Based on the 

use of Voronoi 

diagrams. 

● Uses theory of 

complexes, 

shape 

complementarit

y between a 

receptor and a 

ligand. 

Not 

available 

● Astex 

Diverse set 

of protein 

database 

● It was tested 

against 

AutoDock 4 ( 

ligand 

flexibility 

turned off) 

where 85 

protein-ligand 

complexes were 

taken from the 

Astex Diverse 

set database, 

gave better 

results, both in 

terms of the 

structural 

quality of the 

solutions 

obtained and 

also in terms of 

speed. 

[Kim et 

al. 2010] 

 CDOCKER ● A molecular 

dynamics (MD) 

simulated-

annealing-

based 

algorithm. 

● Used to 

compare the 

relative 

performance 

and accuracy of 

various grid-

based 

approximations 

to explicit all-

atom force field 

calculations 

 

74% ●  Penicillin 

binding 

protein 4 

●  For calculating 

the all-atom 

force field 

explicitly of 

various grid-

based 

estimation to 

compare the 

relative 

performance 

and accuracy. 

● In these 

docking studies, 

the proteins are 

rigid while the 

ligands are 

considered fully 

flexible and a 

terminating 

[Wu et al. 

 2002] 
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minimization 

step is used to 

refine the 

docked poses. 

 Dock 

 

Dock4 

 

Dock3 

● Can be 

accessed freely 

on the internet. 

● Search 

strategies used: 

- Incremental 

construction 

and random 

conformation 

search. It 

utilizes the 

Coulombic and 

Lennard-Jones-

grid based 

scoring 

function. 

30% ● In silico 

mutagenesis 

and docking 

in Ralstonia 

solanacearu

m lectin 

(RSL). 

 

● 15 

crystallographic 

test cases, 

created from 12 

unique 

complexes 

whose ligands 

vary in size and 

flexibility. For 

all test cases, at 

least one 

docked position 

is generated 

within 2 Å of 

the 

crystallographic 

position. 

● For 7 of 15 test 

cases, the top 

scoring position 

is also within 2 

Å of the 

crystallographic 

position. 

 [Ewing 

and Todd 

et al. 

2001] 

 DockoMatic 

 

 DockoMati

c 

10.0.4.2145 

● It is a free open 

source 

application and 

a Linux-based 

HTVS 

program, which 

uses a 

collaboration of 

front- end-

back-end 

processing 

tools for file 

   76% ● Conotoxins 

binding with 

neuronal 

nicotinic 

acetylcholin

e receptors 

(nAchRs). 

●  Ligands that 

accommodate 

 an open access 

domain  NMR 

solution 

structure, PDB 

file was 

analyzed in the 

bound state in 

the crystal 

structure, the 

peptide was 

 [Jacob et 

al. 2013] 
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preparation, 

parsing, and 

data analysis. 

DockoMatic 

can dock 

secondary 

ligands and 

may be used to 

assist inverse 

virtual 

screening. 

dissociated 

from the ligand 

binding 

domain, and 

hence it was 

used to redock 

the peptides. 

 EADock 

 

SWISS 

 

DOCK 

 

S3DB 

(Simple 

Sloppy 

Semantic 

Database) 

●  Free open 

source software 

and a graphical 

user nterface 

application that 

is pre-

determination 

of Auto Dock 

Jobs (creation 

& management, 

repose & 

automate) for 

high-

throughput 

screening of 

receptor/ligand 

interactions. 

77-

86% 

● The RGD 

cyclic pent 

peptide on 

the αVβ3 

integrin. 

● It has the ability 

to generate a 

good solution 

through 

sampling and 

recognize this 

solution as the 

correct one by 

its scoring 

function. 37 test 

cases using a 

realistic seeding 

ranging from 3 

to 10 A˚ RMSD 

to the crystal 

structure was 

performed. 

[Grosdidi

er et al. 

2011 ] 

 FDS ● The docking of 

flexible small 

molecule 

ligands to large 

flexible protein 

targets is 

addressed using 

a two‐stage 

simulation‐base

d method. 

● It is a hybrid 

approach where 

Not 

availa

ble 

●  Docking 

procedure is 

optimized 

for single 

complex of 

arabinose 

binding 

protein 

● 14 complexes 

were examined 

for fully 

 flexible ligand, 

both with or 

without protein 

side chain 

flexibility 

● 11  for the 

flexible 

docking, due to 

the presence of 

 [Taylor et 

al. 2003] 
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the first 

component is 

docking of the 

ligand to the 

protein binding 

site. It is based 

on sets of 

simultaneously 

satisfied 

intermolecular 

hydrogen bonds 

using graph 

theory and a 

recursive 

distance 

geometry 

algorithm. 

clusters of  low 

energy 

structures 

which shows 

the possibility 

of more than 

one binding 

conformation 

during ligand 

optimization. 

  FINDSITE-

LHM 

● Freely available 

to the academic 

community. FI

NDSITE-LHM 

is a hybrid 

evolutionary 

docking 

algorithm with 

two fitness 

functions. 

● Based on 

binding-site 

similarity 

across groups 

of weakly 

homologous 

template 

structures 

identified from 

threading. 

67-

71% 

● G protein-

coupled 

receptors 

(GPCRs) 

●  Ensures 

chemical 

diversity of 

ligands and 

maintains the 

physicochemica

l similarity 

between ligands 

and decoys. It 

also makes the 

decoys 

dissimilar in 

chemical 

topology to all 

ligands to avoid 

false negatives, 

and maximize 

spatial random 

distribution. 

 [Bryli

nski et 

al. 

2008] 
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 FLOG ● This docking 

program 

heavily prunes 

the matching 

search tree 

using a 

minimum-

residue search 

heuristic. 

● Examines all 

possible nodes 

(pairing of 

atom on 

particular site). 

79% ● Receptor 

structures 

from PDB 

are 

obtained. 

● DNA 

Dodecamer 

and 

Netrospin. 

● Purine 

nucleoside 

phosphoryla

se with 

guanine. 

● Study for single 

docking graph 

representation. 

[Meng et 

al. 2012 ] 

 FTDOCK ● Fourier-

transform rigid 

body docking. 

●  To speed up 

the surface 

complementarit

y calculations, 

Fourier 

transform is 

used to predict 

the correct 

binding 

geometry. 

Not 

availa

ble 

● Enzyme-

inhibitor 

● CHI, 

Human 

pancreatic 

trypsin 

inhibitor 

● Bovine 

pancreatic 

trypsin 

inhibitor 

● Antibody 

antigen 

system 

● FDL-D44.1 

Fab 

● MLC-D1.3 

Fv 

● 5 

enzyme‐inhibit

or and 2 

antibody‐antige

n complexes 

studied, where 

the antibody 

was from the 

bound 

crystallographic 

complex. 

 [Smith et 

al. 2002] 

 GASP 

(Genetic 

Algorithm 

Similarity 

Program) 

 

 GASP 

LAB7 

●  It is freely 

available for 

researchers up 

to 30 trials and 

is used to 

measure a 

ligand 

conformation 

92.5% ● On post-

operative 

implants 

●  User-specified 

one-sided 

communication 

operations into 

hardware-level 

communication 

operations. 

[Khan et 

al. 2015] 
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and orientation 

relative to the 

active site of 

the target 

protein. 

 GEMDOCK 

 

GemDock-

windows 

 

GemDock 

cent OS5 

 

GemDock 

linux 9 

●  It is based on 

Flexible ligand 

docking and is 

a GA-based 

docking 

program, which 

is freely 

available. It has 

a partial 

flexibility for 

protein. 

 79% ●  Dihydrofol

ate 

reductase 

and trypsin 

● 10 ligand-

receptor 

complexes were 

taken to 

evaluate 

GEMDOCK on 

a problem in 

which a protein 

structure is in 

small motion 

during docking 

processing. 

Experimental 

results indicate 

that 

GEMDOCK is 

robust and the 

empirical 

scoring 

function is 

simple and fast 

to recognize 

compounds. 

[Yang and 

Chen et 

al. 2004] 

 Glide 

 

Glide 1.8 

 

Glide 2 

 

Glide 2.5 

● A license 

purchase is 

required. 

● It is a 

homology 

modeling 

approach to 

dock ligands 

flexibly. By 

Examining the 

substructures of 

repeated 

82% ● Adenosine 

A2A receptor 

●  It is a special 

target-specific 

pose classifier 

trained to 

discriminate 

native-like from 

decoy poses. 

 [Kawatka

r et al. 

2009] 
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molecules 

domain in 

similarity-

based ligand 

binding pose 

prediction. It 

also ranks the 

docked 

compounds 

freely using a 

simple scoring 

function. 

 GOLD  

(Genetic 

optimization 

for Ligand 

Docking) 

 

The version 

on CSC's 

Servers 

 

 

Taito-shell: 

2018 

Discovery 

Studio 2018 

server 

● It is an 

exhaustive 

search-based 

docking 

program which 

is efficiently 

protein flexible. 

It also provides 

free ligand 

docking. 

 59.8% ● Mycolyl 

transferase 

enzyme, 

Ag85C of 

M. 

tuberculosis 

●  Docking of 

phosphonate 

and trehalose 

analog 

inhibitors into 

the three-

dimensional 

structure of 

Mycolyl 

transferase 

enzyme, Ag85C 

of M. 

tuberculosis 

was done by the 

use of GOLD 

software. 

 [Annama

la et al. 

2007] 

[Dautin et 

al. 2017] 

 ICM-Dock 

 

ICM 2.8 

● Internal 

coordinate 

mechanics 

● Based on 

Monte Carlo 

methods 

● User can select 

whether protein 

is modeled 

rigidly on a 

grid or flexibly. 

●  Ligand is 

 76% ● Validation 

carried out 

on Astex 

and CCDC 

(protein 

coding) 

dataset. 

● Study on virtual 

ligand docking. 

● Selection of a 

surface model 

suggests a 

conformational 

search strategy, 

which then 

implies how to 

rank ligands to 

be pursued for 

further study. 

[Bursulay

a et al. 

2003] 

[de Graaf 

et al. 

2005] 
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explicitly 

modeled in 

torsion space. 

 iGEMDOC

K 

 

GemDock 

1.0 

 

GemDock 

2.0 

 

GemDock 

2.1 

● It is freely 

available and 

generates 

pharmacophore

s that utilize a 

genetic 

algorithm. 

 79% ● HER2 of 

oral cancer 

●  Docking 

studies were 

performed for 

natural 

compounds 

(ligands) from 

the plant 

Limonia 

acidissima with 

HER2 of oral 

cancer by using 

iGEMDOCK 

suite. 

[Hsu et al. 

2011] 

[Raj and 

Krishna 

2014] 

[Glaab 

2015] 

 Leadfinder 

 

Leadfinder 

2.3 3.8 

●  It is freely 

available on the 

internet but no. 

of leads is 

restricted after 

ten times. 

● It also provides 

correct energy-

ranking of 

docked ligands 

poses, accurate 

binding energy 

predictions, and 

correct rank-

ordering of 

active and 

inactive 

compounds in 

virtual 

screening 

experiments. 

80-

96% 

●  PPI 

inhibitor 

complex 

●  Binding 

energies for 330 

diverse 

protein−ligand 

complexes 

yielding rmsd 

of 1.50 

kcal/mol. The 

accuracy of 

ligand docking 

was assessed on 

a set of 407 

structures. 

 [Strogano

v et al. 

2008] 

[Smith et 

al. 2011] 
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 Ledock 

 

Ledock 

Mac/Windo

ws/Linux 

 

Leprosy-

Mac 

 

Lewater-

Mac 

●  It is freely 

accessible and 

provides a 

graphic 

environment 

for virtual 

screening, 

docking, and 

post-screening 

analysis. 

● LeDock is 

flexible small-

molecule 

docking 

software, which 

performs an 

exhaustive 

search of 

position, 

orientation and 

conformation 

of a ligand in 

the active site 

of a protein. 

80.8 % ● Anti-tumor 

protein 

● 2002 protein-

ligand 

complexes with 

high-resolution 

crystal 

structures and 

experimental 

binding affinity 

data were 

selected from 

the refined set 

of PDB bind. 

 

[Wang et 

al. 2016]  

[Chen et 

al. 2017] 

[Li et al. 

2018] 

  LigDockCS

A 

●  Freely 

available 

combines a 

highly efficient 

search method - 

Conformational 

Space 

Annealing 

(CSA) - with a 

scoring 

function based 

on the 

AutoDock 

energy function 

with a 

piecewise 

89.4% ● Astex 

diverse set 

● The 

performance of 

LigDockCSA 

was tested on 

the Astex 

diverse set 

which consist 

85 protein-

ligand 

complexes. 

Comparative 

study shows 

that 

LigDockCSA 

finds best 

scoring poses 

[Shin 

et al. 

2011] 
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linear potential 

(PLP) torsional 

energy. 

Conformational 

space annealing 

is designed to 

search over 

broad ranges of 

conformational 

space, 

generating 

numerous local 

minima before 

arriving at the 

global 

minimum free 

energy 

conformation. 

 

for native 

structure at 

84.7% where 

Autodock and 

gold has 81.7% 

and 80.5% 

respectively. 

 Ligin ●  This program 

uses surface 

complementarit

y approach for 

predicting the 

structure of 

ligand-receptor 

complex. 

Not 

availa

ble 

 

● Docking 

● Methyl a-D-

Arabinofura

noside to 

Concanavali

n A (T0013) 

● Pentamidine 

to Trypsin 

(T0033) 

● SBB 

Inhibitor to 

Pancreatic 

Elastase 

(T0036) 

● Protein 

residue- 

Tyr12 

Asn14 

Gly98 

● CASP2 tested 

for predicting 

the binding 

pocket location, 

ligand 

orientation and 

major 

interactions 

stabilizing the 

ligand-receptor 

complex. 

[Sobol

ev et 

al. 

1997] 

[Sable 

and 

Jois 

2015] 
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 MADAMM 

( 

 

 MADAMM

8 

● MADAMM 

considered 

protein 

flexibility 

initially using 

rotamer 

libraries to 

produce several 

combinations 

of conformers 

involving the 

most important 

● Allows 

flexibilization 

of both the 

receptor and 

the ligand 

during a multi-

staged docking 

with an 

automated 

molecular 

modeling 

protocol. 

● Amino acid 

residues at the 

active-site. 

 

90% ● Binding and 

recognition 

of 

polysacchari

des to the 

carbohydrat

e-binding 

modules 

(CBMs) 

also known 

as cellulose. 

● Protein 

residues- 

Asp99 

Arg126 

Asp128 

Asp146 

● 1000 target 

structures, 

implicitly 

accounting for 

protein 

flexibility. 

● The program 

then 

automatically 

docks the 

ligand against 

each of these 

target structures 

using a standard 

docking 

program that 

treats the ligand 

as flexible, with 

the current 

version using 

GOLD. 

 [Cerqueir

a et al. 

2009]  

 MolDock ●  Based on 

search 

algorithm that 

combines 

differential 

evolution with 

a cavity 

prediction 

algorithm. 

 

 87% ● HIV-1 

reverse 

transcriptase 

with 

phytochemi

cals 

● Used 77 

complexes for 

checking 

docking 

accuracy 

 [Tho

msen 

and 

Christ

ensen  

2006] 
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  MS-DOCK ● Multi 

conformation 

rigid body 

docking 

approach. 

● This program 

can be used as 

the first step of 

a multi-step 

docking/scorin

g protocol. 

  

75-90% ● Seven target 

proteins- 

Ribonucleas

e A (RNAs), 

Coagulation 

factor X 

(FX), 

Estrogen 

receptor 

(ER), CDK2 

(CDK), 

Thymidine 

kinase (TK), 

Carboxypep

tidase A 

(CBXpe) 

and 

Neuraminid

ase (NA) 

● With 

different 

binding site 

properties 

for its 

ability to 

retrieve 65 

known 

inhibitors in 

a library of 

37970 drug-

like 

compounds. 

● The 

performance of 

MS-DOCK was 

additionally 

validated 

through a 

comparison 

with the 

commercial 

program 

OMEGA for 

multi-

conformer 

generation and 

the program 

FRED for rigid-

body docking 

(i.e., in this 

study we used 

FRED as a 

shape 

complementarit

y filter not for a 

full screening 

procedure). 

[Sauto

n  et 

al. 

2008] 

[Paga

dala et 

al. 

2017] 

[Singh 

et al. 

2011] 

 PhDock ● Based on 

multiple copy 

simultaneous 

search(MCSS) 

●  To determine 

target‐based 

theoretical 

pharmacophore

87% ● 1(HIV1) 

Protease 

structure is 

used with 

PhDock to 

dock a set of 

HIV-1 

protease 

● Study on 

MCSS2SPTS to 

reproduce the 

three‐dimension

al 

pharmacophoric 

features of 

ligands from 

[Cross 

et al. 

2009] 

[Sastr

y et al. 

2013] 

[Li et 

al. 
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s. ligands 

●  The docked 

poses are 

compared to 

the 

correspondi

ng complex 

structures of 

the ligands. 

known ligand–

protein 

complex 

structures. 

2014] 

  PLANTS 

(Protein-

Ligand ANT 

System) 

● PLANTS is 

available free 

of charge for 

academic users. 

This program is 

based in Ant 

Colony 

Optimization 

(ACO), a 

methodological 

approach that 

protein-ligand 

Docking in the 

new 

millennium is 

based on the 

behavior of real 

ants on finding 

the shortest 

path between 

their nest and a 

food source. 

 84% ● Study Astex 

diverse set 

● The program 

has been used 

to generate 87% 

of astex diverse 

set complexes 

while 77% 

shown 

CCDC/Astex 

with RMSD 

deviations of 

less than 2 

angstrom with 

respect to the 

experimentally 

determined 

structures. 

[Korb et 

al. 2009] 

[Elokely 

and 

Doerksen 

2013] 

 

 PSI-DOCK 

(Pose-

Sensitive 

Inclined) 

● The program 

uses a tabu-

enhanced 

genetic 

algorithm 

(TEGA) with a 

shape 

complementary 

scoring 

74% ● 21 different 

conformatio

ns of HIV-1 

protease 

● The program 

was also shown 

to be able to 

reproduce the 

binding energy 

of a training set 

of 200 protein–

ligand 

complexes with 

 [Pei et al. 

2006] 

[Guedes 

et al. 

2014] 

[Li et al. 

2011] 
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function to 

explore in a 

first step the 

potential 

binding poses 

of the ligand. 

●  The predicted 

binding poses 

are then 

optimized 

through a 

competition 

genetic 

algorithm and 

evaluated 

through a 

specifically 

developed 

improved 

scoring 

function 

(SCORE) to 

determine the 

binding pose 

with the lowest 

docking 

energy. 

a correlation 

coefficient of 

0.788 and a 

standard error 

of 8.13 kJ/mol, 

while in a test 

 set of 64 

complexes a 

correlation 

coefficient of 

0.777 and 

standard error 

of 7.96 kJ/mol 

were obtained. 

●  All protein 

hydrogen atoms 

and the 

flexibility of the 

terminal protein 

atoms are 

intrinsically 

taken into 

account in PSI-

DOCK. 

 PSO@AUT

ODOCK 

(Particle 

Swarm 

Optimizatio

n) 

● Fast, efficient 

protein ligand 

docking 

program. 

● This program 

based on 

swarm 

optimisation. 

● It is designed 

for analysis of 

highly flexible 

ligands. 

● Particle Swarm 

66% ●   Study 21 

different 

conformatio

ns of  the 

HIV-1 

protease 

● 10-fold 

decrease in the 

number of steps 

required for 

identification of 

the local 

minimum in 

comparison 

with SODOCK, 

and a 60-fold 

decrease when 

comparing with 

AutoDock 3. 

 [Namasiv

ayam et 

al. 2007] 

[Bello et 

al. 2013] 

[Lin 

2011] 
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Optimization 

(PSO) 

algorithms 

varCPSO and 

varCPSO-ls are 

suited for rapid 

docking of 

highly flexible 

ligands. 

● These results 

make 

PSO@AUTOD

OCK a very 

promising 

alternative for 

flexible ligand 

docking, and 

enable the 

inclusion of 

ligand 

flexibility in 

virtual 

screening 

campaigns of 

reasonably 

sized libraries 

comprising 

several 

thousands of 

compounds. 

 PyMOL 

 

PyMOL 

2.1.1 

 

PyMOL 

1.4.1 

● It is freely 

available on the 

internet but no. 

of leads are 

restricted after 

the input is 

done ten times. 

●  PyMOL 

plugins give a 

GUI 

application 

incorporating 

individual 

academic 

package 

designed for 

protein 

preparation ( 

Reduce and 

 64.4

% 

● Not 

available 

● 5 InhA 

inhibitors were 

taken whose 

bioactive 

conformations 

are known, 

sequentially 

docked in the 

substrate cavity 

of each protein. 

 [Seeliger 

and de-

Groot 

2011] 

[Zhang et 

al. 2013] 

[Wilson 

and Lill 

2011] 
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AMBER 

Package), 

leading 

molecular 

mechanics 

applications 

(AMBER 

package), and 

docking and 

scoring (SLIDE 

and  AutoDock 

Vina). 

 PyRX 

 

PyRX 0.9.6 

● It is a free open 

source and is 

based on 

SBVS. PyRx 

includes an 

embedded 

Python 

Molecular 

Viewer 

(ePMV) for 

visual analysis 

of results, as 

well as a built-

in SQLite 

database for 

result storage. 

 

Not 

available 

● Aromatase 

inhibitor 

●  For studies 

output of PyRX 

compared to X-

ray structures to 

examine the 

binding mode 

prediction. 

 [Dallakya

n and 

Olson 

2015] 

[Saeed et 

al. 2017] 

[Prieto-

Martinez 

et al. 

2018] 

 PythDock ● Uses Python 

programming 

language with a 

simple scoring 

function and a 

population 

based search 

engine. 

Function 

includes 

electrostatic 

Not 

availa

ble 

● MECL-1 

binding with 

luteolin 

● Exploring the 

potential of 

herbal ligands 

toward 

multidrug-

resistant 

bacteria 

pathogens by 

computational 

drug discovery. 

  [Chung 

et al. 2011 

] 

[Pettinari 

et al. 

2006] 
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and 

dispersion/repu

lsion terms 

only, together 

with a search 

algorithm based 

on the particle 

swarm 

optimization 

method. The 

program is a 

rigid protein-

ligand docking 

program, in the 

sense that treats 

ligands and 

proteins with 

fixed 

conformations. 

 

 Q-Dock ● Low-resolution 

flexible ligand 

docking 

program with 

pocket-specific 

threading 

restraints 

models. Q-

Dock describes 

both the ligand 

and the protein 

in a reduced 

representation 

mode. 

Not 

availa

ble 

● Study 23 

protein 

ligand 

complexes 

for 

computation

. 

● 1aaq-psi 

● 1apt-iva 

● 1epo-mor 

●  1apu-iva 

● Ligand 

flexibility is 

accounted for 

through an 

ensemble 

docking of pre-

calculated 

discrete ligand 

conformations 

with Replica 

Exchange 

Monte Carlo 

(REMC).  

● A database of 

206 X-ray 

structures used 

for the 

experimentation 

on self-docking 

approach 

 [Brylinsk

i et al. 

2008] 
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commonly used 

for the 

standardization 

of protein-

ligand docking 

approach. 

 

 rDock 

 

rDock 3.0 

●  Can be 

accessed free 

on the internet 

but license 

purchase is 

required for the 

full version. It 

is 

computationall

y efficient and 

achieves 

optimal 

performance 

initially for 

RNA (nucleic 

acids) targets 

now for protein 

targets as well. 

 

 78% ● Viral 

structural 

proteins 

● The CCDC-

Astex diverse 

Set of 85 

complexes of 

protein-ligand 

specify for 

comparative 

study on 

binding mode 

prediction. 

[Ruiz-

Carmona 

et al. 

2014] 

[Li et al. 

2003 

 RosettaLiga

nd 

● It provides free 

accessibility 

but license 

purchase is 

required. 

● This tool 

leverages the 

Rosetta energy 

function and 

side chain 

repacking 

algorithm to 

account for 

flexibility of all 

64% ●  Membrane 

protein 

CASPIII 

●   It has been 

shown to 

successfully 

fold only small, 

soluble proteins 

(fewer than 150 

amino acids), 

and it performs 

best if the 

proteins are 

mainly 

composed of 

secondary 

structural 

[Meiler 

and Baker 

2006] 

[Davis 

and Baker 

2009] 

[Combs et 

al. 2013] 
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side chains in 

the binding site.  

elements (α-

helices and β-

strands).  

● Structures of 

helical 

membrane 

proteins 

between 51 and 

145 residues 

were predicted 

to within 4 Å of 

the native 

structure, but 

only very small 

proteins (up to 

80 residues) 

have been 

predicted to 

atomic-detail 

accuracy. 

 

 SANDOCK ● Uses point 

complementary 

method. 

● Based on shape 

and chemical 

complementarit

y between 

interacting 

molecules. 

● For shape 

recognition 

uses FFT 

algorithm. 

● Guided 

matching 

algorithm. 

74% ●  X-ray 

structure of 

thrombin-

ligand 

complex 

predicted 

●   Newly 

developed 

docking 

program can 

efficiently 

screen very 

large databases 

in a reasonable 

time and has 

been used to 

successfully 

identify novel 

ligands like the 

binding of a 

ligand to 

thrombin show 

RMSD of 0.7Å. 

 [Burkhar

d et al. 

1999] 

[Detering 

and 

Varani 

2004] 
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 SLIM 

SLIM21* 

SlimDrivers 

2.3.1.0 

●  It is freely 

accessible 

software and is 

used to predict 

binding poses 

in protein-small 

molecule 

complexes. It 

combines 

rotational and 

translational 

adjustments in 

a single step. 

 

Not 

availa

ble 

● Not 

available 

●  40 

proteins/ligands

. 

 [Lee et 

al. 2012 ] 

 SOFT 

Docking 

● A new 

approach that 

combines an 

ab-initio 

docking 

calculation and 

the mapping of 

an interaction 

site using 

chemical shift 

variation 

analysis. 

72 % ● Cytochrome 

c553-

ferrodin 

complex 

structural 

model is 

used for 

experimenta

l studies. 

● Study on T4 

lysozyme and 

aldose 

reductase for 

identifying 

conformation 

changes on 

ligand binding. 

● Soft docking 

calculation, 

were tested 

experimentally 

for enzyme 

inhibition and 

four of these six 

inhibited the 

enzyme, the 

best with an 

IC50 of 8 μM.  

 

  [Ferrari 

et al. 2004 

] 

 Surflex 

Dock 

● Surflex-Dock 

increases its 

robustness, 

particularly 

with respect to 

screening 

85-95 

% 

(Jain 

and 

Verte

x 

●  Receptor 

protein-

Deoxycytidi

ne kinase 

ligand –

gemcitabine

● A diverse set of 

85 protein-

ligand 

complexes and 

virtual 

screening 

[Jain 

et al. 

2007] 
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effectiveness. 

● Surflex-Dock 

allows sensitive 

control of the 

use of the 

placed 

molecular 

fragment. 

 

bench

mark)

;  

. performance is 

reported on the 

DUD 

(Directory of 

Useful Decoys) 

set of 40 

protein targets. 

 SYMMDOC

K 

● Available free 

to academics. 

● Used in the 

prediction of 

cyclically 

symmetric 

Homo 

multimers. 

 

85% ● C-5 

symmetric 

Shiga toxin 

● On a non-

redundant 

docking 

benchmark of 

213 Cn targets 

and 35 Dn 

targets. 

 [Schneid

man-

Duhovny 

et al. 

2005] 

[Yan et al. 

2018] 

  VoteDock ● It is a 

consensus 

docking 

method for 

prediction of 

protein-ligand 

interaction. 

Not 

availa

ble 

● Lymphoid 

specific 

tyrosine 

phosphatase 

inhibitors 

using 

multiple 

crystal 

structure. 

● Extensive 

benchmark 

dataset of 1300 

protein–ligands 

pairs were 

taken and 

compare its 

ability of 

scoring and 

posing. 

[Plewczyn

ski et al. 

2011] 

 VSDocker ● VSDocker 

provides 

automation of 

all virtual 

screening steps, 

as well as 

ligand and 

receptor 

preparation, 

docking and 

analysis of 

results. 

Not 

availa

ble 

● Not 

available  

● Not available  [Prakhov 

et al. 

2010] 
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 1563 

 1564 

 1565 

 1566 

 1567 

 1568 

 1569 

 1570 

 1571 

● VSDocker 

works both on 

multiprocessor 

computing 

clusters as well 

as 

multiprocessor 

workstations 

operated by 

Windows, thus 

makes 

execution of 

virtual 

screening tasks 

even on a 

single high-

performance 

multicore 

desktop that 

may be found 

nearly in each 

laboratory. 

 

  YUCCA ●  Based on an 

efficient 

heuristic for 

local search, for 

rigid protein–

small‐molecule 

docking. 

76% ● Not 

available  

● 100‐complex 

benchmark, 

using the 

conformer 

generator 

OMEGA to 

generate a set 

of low‐energy 

conformers. 

 [Choi et 

al. 2005] 
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 1572 

 1573 

 1574 

 1575 

 1576 

 1577 

Table 6: Different experimental studies (In vivo/In vitro) using docking strategies to find 1578 

the potent inhibitor (virtual screening). 1579 

 1580 

OBJECTIVE OF 

THE STUDY 

TARGET 

PROTEIN 

DOCKING 

APPROACH 

RESULTS IN VITRO 

VALIDATI

ON 

REFERENCES 

To find novel 

inhibitors of 

mycosin protease-

1, involved in the 

virulence of drug 

resistant 

Mycobacterium 

tuberculosis. 

Mycosin 

protease 1 of 

Mycobacterium 

tuberculosis. 

485,000 

ligands were 

subjected to 

LBVS 

(Ligand-

Based Virtual 

Screening) 

and SBVS 

(Structure-

Based Virtual 

Screening). 

2 compounds 

were found to 

inhibit the 

activity of the 

enzyme by 

more than 

40%. 

Yes [Hamza et al. 2014] 

To find an 

inhibitor which 

could stop 

anthrax? 

LF (lethal 

factor) protein 

of a Bacillus 

anthracis 

exotoxin. 

25,595 

screened 

compounds 

from 

DrugBank 

and vendor 

databases 

were docked 

using Surflex-

Dock. 

5 compounds 

were found 

with IC50 

values less 

than 100 

microM. 

Yes, by LF 

FRET assay 

[Vitale et al. 2000] 

To find the 

inhibitory activity 

of AchE, involved 

in nerve impulse 

transmission. 

Electric eel 

Acetylcholinest

erase (AchE) 

derived from 

Electrophorous 

electricus 

Virtually 

screened with 

157,000 

compounds 

using the 

docking 

35 

compounds 

showed 

inhibitory 

activities 

with IC50 

Yes [Pradelles et al.  

1985] 
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(Electric eel). algorithm, 

ADAM&EVE

. 

values of less 

than 100 

microM. 

To find proteins 

that could block 

the binding site of 

AI-2. 

Auto-inducer2 

(AI-2) of 

Vibrio harveyi, 

which binds to 

a receptor 

protein, LuxP. 

7 million 

compounds 

were virtually 

screened 

(through 

docking) 

using DOCK 

5.4 

5 compounds 

were found to 

show IC50 

values at 

micromolar 

concentration

s. 

Yes, using 

Quorum 

Sensing 

Assay 

[Li et al. 2007] 

To find inhibitors 

of PNP in order to 

combat 

lymphoproliferativ

e disorders, as 

well as to counter 

autoimmunity. 

Purine 

Nucleoside 

Phosphorylase 

(PNP) of calf 

spleen. 

30,000 

compounds. 

From Astex 

database were 

docked using 

GOLD 

6 compounds 

showed 

inhibitory 

activity 

against the 

protein PNP. 

Yes [Miles et al. 1998] 

To find AHAS 

inhibitors, 

involved in the 

biosynthesis of 

amino acids 

valine, leucine and 

isoleucine. 

Acetohydroxya

cid synthase 

(AHAS) of 

plant and yeast. 

164,000 

compounds 

were docked 

using DOCK 

4.0 

3 compounds 

were found to 

show 

inhibitory 

activity. 

Yes, using 

AHAS Assay 

[Pang et al. 2002] 

To find inhibitors 

of ADAM 12, 

involved in 

cardiovascular 

disease. 

ADAM 12 of 

humans. 

Virtual 

screening of 

compounds 

from a 

database of 

67, 062 

molecules. 

4 molecules 

showed IC50 

values less 

than 50 nm. 

Yes, through 

a cell-based 

activity 

assay. 

[Gilpin et al. 1998] 

To find out the 

inhibitors of 

histamine H4 

receptor. 

Human 

histamine H4 

receptor. 

8.7 million 

3D structures 

of ligands 

were docked. 

16 of them 

were found to 

possess 

significant 

activity, 

expressed in 

the term of 

‘displacemen

Yes, using 

binding 

assay tests. 

[Jablonowski et al. 

2003] 
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t’ values. 

To find to 

activators of 

hPXR, involved in 

the upregulation 

of drug-

metabolizing 

enzymes. 

Human 

pregnane X 

receptor 

(hPXR) 

496 

compounds 

were from 

ChemBridge 

database were 

docked using 

Surflex v1.27. 

4 molecules 

were found to 

be activators 

of the target 

protein. 

Yes [Urquhart et al. 

2007] 

To find molecules 

that can bind to 

Human PIM-1, a 

potential 

anticancer target. 

Human PIM-1 

(Proviral 

Integration site 

for MuLV 

(murine 

leukemia 

virus)) kinase. 

Docking of 7, 

00,000 

compounds 

using GLIDE. 

4 compounds 

were found to 

show 

noticeable 

activity. 

Yes [Pierce et al. 2008] 

To find inhibitors 

of enzymes 

involved in 

protein arginine 

methylation. 

Protein 

arginine 

methyltransfe

rases 

(PRMTs). 

 

Using GOLD, 

6,232 

molecules 

were docked 

into the 

binding 

pocket of 

hPRMT1. 

9 compounds 

showed IC50 

values < 50 

microM, 

while 4 

showed 

values less 

than 16 

microM. 

Yes [Zhang et al. 2000] 

To find active 

compounds, that 

have the ability to 

bind to FFAR-1, a 

receptor for 

medium and long 

chain frees fatty 

acids and may be 

involved in the 

metabolic 

regulation of 

insulin secretion. 

Free Fatty Acid 

Receptor-1 

(FFAR-1) 

70,477 

compounds 

with FFAR-1, 

using GLIDE. 

6 were found 

to be active 

compounds. 

Yes [Miyauchi et al. 

2010] 

To find molecules 

that can bind to 

CDC25 

phosphatases, a 

CDC25 

phosphatases 

Using FRED, 

Surflex, and 

LigandFit, the 

target protein 

99 

compounds 

were able to 

inhibit the 

Yes   [Montes et al.     

2008] 
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proposed target in 

anticancer 

treatments. 

was virtually 

screened with 

310,000 

molecules. 

CDC25B 

activity at 

100 microM. 

To find out the 

inhibitor of, Src 

kinase, this is 

associated with 

tumor growth and 

development. 

Src kinase 61,000 

molecules 

were docked 

using 

LIGANDFIT 

software. 

4 molecules 

were found to 

satisfy the 

condition at 

10 microM 

concentration

. 

Yes, using 

Src 

inhibition 

assay 

[Lee et al.,2009] 

To find out the 

inhibitor of LDH, 

an important 

enzyme in the 

parasite’s 

glycolytic 

machinery. 

Lactate 

dehydrogenase 

(LDH) 

50 analogs 

were docked 

with Molegro 

Virtual 

Docker. 

3 compounds 

with the best 

binding 

energies 

showed IC50 

values 

ranging from 

13 microM to 

2.6 microM. 

Yes, using 

ELISA 

[Gomez et al. 1997] 

To find out the 

inhibitor of FP-2. 

Plasmodium 

falciparum 

falcipain-2 

(FP-2) 

Docked 80 

000 

compounds in 

the SPECS 

database 

using GLIDE 

and 

GAsDock. 

28 were 

found to have 

IC50 values 

ranging from 

2.4 to 54.2 

microM. 

 

 

Yes [Hogg et al. 2006]. 

To find out the 

inhibitors of 

Alpha-

glucosidase, an 

effective 

inhibition target in 

the case of Type 2 

diabetes mellitus 

Alpha-

glucosidase 

Docked 40 

natural  

compounds 

3 were found 

to perform as 

effective 

inhibitors, 

each with 

IC50 values 

less than 100 

microM. 

Yes  [van de Laar et al. 

2005] 

Inhibition study 

on ALR2, having 

a role in diabetes 

mellitus. 

Aldose 

reductase 

(ALR2) 

1261 

compounds 

were docked 

using FlexX. 

9 compounds 

were selected 

for further 

characterizati

Yes   [Maeda et al. 1999] 
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on. 

To find the 

inhibitor of 17L 

core proteinase, 

involved in the 

replication of 

vaccinia, variola 

and monkeypox 

viruses. 

17L core 

proteinase 

Using ICM 

docking 

algorithm, 

around 

230,000 thio-

acyl 

intermediates 

were docked. 

6 were found 

to show IC50 

values less 

than 50 

microM. 

Yes, through 

a cleavage 

assay 

[Byrd et al. 2002] 

To find the anti-

HIV-1 RT 

inhibitor. 

HIV-RT 2800 

compounds 

were filtered 

using FILTER 

(version 2), = 

OMEGA 

(2.1.0) 

generated a 

minimum of 

23 conformers 

per molecule, 

which were 

then docked 

to the target 

protein. 

Out of the top 

20 binding 

poses, only 6 

were 

available. 

Yes [Ravindra et al. 

2005] 

To find new 

structural targets 

of DNA gyrase, 

involved in 

bacterial DNA 

replication. 

DNA gyrase 139,644 

compounds 

were docked 

using DOCK 

5.1.0. 

3 diverse 

compounds 

showed 

activity 

against the 

enzyme. 

Yes [Ostrov et al. 2007] 

To find molecules 

that can bind to 

EphB4. 

Human 

hepatocellular 

carcinoma 

receptor 

tyrosine kinase 

B4 (EphB4) 

728,202 

compounds 

were 

subjected to 

flexible ligand 

docking. 

2 compounds 

were found to 

be effective. 

Yes [Lafleur et al. 2009] 

To find the 

inhibitor of EF. 

Anthrax edema 

factor (EF). 

10,000 

compounds 

from the 

ZINC 

3 compounds 

were found to 

show 

inhibition of 

Yes [Klimpel et al. 1994] 
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database were 

docked using 

AutoDock 3. 

the protein in 

the ranges of 

1.7-9 microM 

(IC50 

values). 

To find the 

binding ligands of 

GPCRs, used as a 

drug target. 

G-Protein 

Coupled 

Receptors 

(GPCRs) 

The ICM 

docking 

software was 

used to dock 

187,084 

compounds. 

6 were found 

to show 

activity. 

 

Yes [Shoichet et al. 2012] 

To find the 

inhibitor of TRH-

R1 

TRH-R1 

(Thyrotropin 

Releasing 

Hormone 

receptor, 

isotype 1) 

10,000 

compounds 

were docked 

using FlexE. 

1 molecule 

was found to 

be the most 

potent 

inhibitor of 

TRH-R1 at a 

Ki of 0.29 

microM. 

Yes [Engel et al. 2008]. 

To find the 

inhibitors of DNA 

gyrase 

DNA gyrase of 

Mycobacterium 

tuberculosis 

Gatifloxacin 

analogs were 

docked using 

Molegro 

Virtual 

Docker. 

One 

compound 

was found to 

perform the 

best among 

the 8 studied 

 [Sriram et al. 2006] 

To find out 

ligands, that could 

bind to PPAR-γ, 

an important drug 

target for 

regulating glucose 

metabolism. 

Peroxisome 

proliferator 

activated 

receptor- γ 

(PPAR-γ) 

Used 2,4-

thiazolidinedi

ones (TZD) 

and chromone 

conjugates, a 

total 19 of 

them, and 

docked them 

with the 

PPAR- γ 

target using 

Schrodinger 

Glide 

software. 

 

7 

compounds, 

of the total 

19, showed 

the most 

promising 

docking 

scores. 

 

Yes [Ricote et al. 1998] 
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To search for 

inhibitors for these 

kinases, which 

regulate GPCRs. 

Kinases such 

as cAPK 

(cAMP-

dependent 

Protein Kinase) 

and GRK (G-

protein coupled 

receptor 

kinases). 

The search 

was 

performed 

using DOCK 

3.5, and a 

database of 

13,028 

compounds. 

With respect 

to GRK2 

inhibitors, 5 

had IC50 

values below 

100 microM 

while cAPK 

inhibitors had 

IC50 values 

of less than 

100 microM. 

Yes [Sugden et al.1995] 

 1581 

 1582 

 1583 

 1584 

 1585 

 1586 

 1587 

 1588 

 1589 

 1590 

 1591 

 1592 

 1593 

 1594 

 1595 

 1596 

 1597 

 1598 

 1599 

 1600 

 1601 

 1602 

 1603 

 1604 

 1605 

 1606 

 1607 

 1608 
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 1609 

 1610 

 1611 

 1612 

 1613 

 1614 

Table 7: List of molecular docking programs and their salient features. 1615 

 1616 

TOOLS FEATURES CITATI

ONS 

REFEREN

CES 

AutoDock Vina 

 

● AutoDock Vina is a program for molecular 

docking and virtual screening. AutoDock 

Vina achieves degree roughly two orders 

of magnitude speed-up compared with the 

Autodock-4. 

● AutoDock Vina utilizes an iterated local 

search global optimizer. It is free for 

academic use. The tool is maintained by 

the Molecular Graphics Laboratory, The 

Scripps Research Institute, La Jolla. 

Benchmark: 

● Top ranking tool: GOLD and LeDock had 

the best sampling power (GOLD: 59.8% 

accuracy for the top scored poses; LeDock: 

80.8% accuracy for the best poses) and 

AutoDock Vina had the best scoring stats 

(rp/rs of 0.564/0.580 and 0.569/0.584 for 

the top scored poses and best poses). 

 

118 

7565 

 

 

 

 

 

 

 

 

 

 

[Wang Z et 

al. 2016] 

[Trott et al. 

2010] 

 

AutoDockTools ● AutoDockTools facilitates formatting of 

input molecule files, with a set of methods 

that guide the user through protonation, 

calculating charges, and specifying 

rotatable bonds in the ligand and the 

protein.  

 

● To change the planning and preparation of 

6899 

 

[Morris et 

al. 2009] 
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docking experiments, it permits the user to 

identify the active site and determine 

visually the volume of space searched 

within the docking simulation. 

 

● It includes a range of novel ways for 

clustering, displaying, and analyzing the 

results of docking experiments. 

 

Benchmark: 

● Top ranking tools: Vina performs notably 

well within the docking power evaluation, 

that measures the ability of a scoring 

function to differentiate decoys from the 

native pose. 

PatchDock ● PatchDock performs structure prediction of 

protein–protein and protein–small 

molecule complexes. 

 

● The inputs given to the servers were either 

protein PDB codes or uploaded protein 

structures. The services are available 

at http://bioinfo3d.cs.tau.ac.il .  

 

● The strategies behind the servers were very 

efficient, allowing large-scale docking 

tests. 

● PatchDock is an efficient rigid docking 

method that maximizes geometric shape 

complementarity. 

1447 [Schneidma

n-Duhovny 

et al. 2005]  

 

 

 

 

SymmDock ● The SymmDock technique predicts the 

structure of a homomultimer with cyclic 

symmetry given the structure of the 

monomeric unit. 

 

● The methods behind the server were very 

efficient which allows large-scale docking 

experiments. 

1447 [Schneidma

n-Duhovny 

et al. 2005]  
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● The user interface of SymmDock 

(http://bioinfo3d.cs.tau.ac.il/SymmDock/) 

is even easier than that of PatchDock, since 

the input here consists of only one 

molecule and also the symmetry order. 

 

● If the arrangement of the input monomers 

in its native complex follows a different 

kind of symmetry, then SymmDock would 

not be appropriate for such a prediction. 

 

  

MolDock 

 

● MolDock is based on heuristic search 

algorithm that combines differential 

evolution with a cavity prediction 

algorithm. 

 

● Docking scoring function of MolDock is 

an extension of the piecewise linear 

potential (PLP) which include hydrogen 

bonds and electrostatic bonds. 

 

● To further improve docking accuracy, a re-

ranking scoring function was introduced, 

which identified the most promising 

docking solutions from the information 

provided by the docking algorithm. 

 

Benchmark: 

● MolDock has greater accuracy than 

surflex, glide, flexX and GOLD. 

● Dataset: the author utilized flexible ligands 

of 77 protein targets. 

1339 

 

[Thomsen et 

al. 2006]  

AutoDock ● AutoDock is a suite of C programs 

designed to predict the bound 

conformations of a small, flexible ligand to 

a macromolecular target of known 

structure. 

9042 

 

 

 

 

[Goodsell et 

al. 1998]  
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● The technique combines Monte Carlo 

simulated annealing, a traditional genetic 

algorithm and the Lamarckian Genetic 

Algorithm for conformation searching with 

rapid grid-based methods of energy 

evaluation. 

 

● The AutoDock scoring function is a subset 

of the AMBER force fields that evaluates 

molecules using the United Atom model. 

 

Benchmark: 

 

● EADock and ICM were better than 

AutoDock for information set of thirty 

seven crystallized protein–ligand 

complexes that features 11 different 

proteins. 

 

 

 

 

 

 

ZDOCK ● ZDOCK is a Fast Fourier Transform based 

docking algorithm 

 

● This tool performs a full rigid-body 

scanning of docking orientations between 

two proteins. The version, 3.0.2, includes 

performance optimization and a novel pair 

wise statistical energy potential. 

● Since its initial implementation, the 

ZDOCK Server has experienced major 

changes to improve its docking 

performance, functionality and user 

interface. These include upgrading the 

docking algorithm from ZDOCK 2.3 to 

ZDOCK 3.0.2, resulting in more prominent 

accuracy and highly efficient searching.  

Benchmark: 

● ZDOCK 3.0 showed vast upgrades in its 

predictive ability versus the previous 

version when tested on a protein-protein 

1143 

448 

 

 

 

 

 

 

 

[Chen et al. 

2003] 

[Brian G. 

Piercem 

2014] 
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docking benchmark. 

● ZDOCK 2.3 has a faster (almost thrice) 

average running time on the docking 

benchmark versus ZDOCK 3.0; ZDOCK 

2.3.2 was twice as fast as ZDOCK 3.0.2 

during the evaluation tests. 

ClusPro ● ClusPro is a fast algorithm for filtering 

docked conformations with good surface 

complementarity, and rank them based on 

their clustering properties.  

 

● The free energy filters select complexes 

with minimal desolvation and electrostatic 

energies. 

 

● Clustering has been used to smooth the 

local minima and to choose the ones with 

the broadest energy wells—a property 

related with the free energy at the binding 

site.  

Benchmark: 

● SwarmDock demonstrated better 

performance than that of ClusPro. 

791 

 

 

 

 

 

 

 

[Comeau et 

al. 2004]  

 

EADock ● EADock DSS engine is combined with 

setup scripts for curating common 

problems and for preparing the target 

protein and the ligand input files. 

 

● EADock was able to identify binding 

modes with high accuracy. The accuracy is 

necessary to compute the binding free 

energy of the ligand. 

 

Benchmark: 

 

● Dataset used: 37 crystallized protein–

ligand complexes featuring 11 different 

proteins 

547 

 

 

 

 

 

 

 

 

[Grosdidier 

et al. 2011] 
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● The average RMSD between the best 

clusters was predicted by EADock and 

crystal structures was 0.75 A˚. This was 

significantly better than what was reported 

for ICM (1.04 A˚), AutoDock (2.46 A˚), 

GOLD (3.31 A˚), FlexX (3.85 A˚), and 

DOCK. 

SwissDock ●  SwissDock is a web-server program 

dedicated to the docking of small 

molecules on target proteins. 

 

● It is based on the EADock DSS engine, 

combined with setup scripts for curating 

common issues and for preparing both the 

target protein and the ligand input files. 

● The structure of the target protein, as well 

as that of the ligand, could be 

automatically prepared for docking using 

SwissDock 

Benchmark: 

● SwissDock shows higher performance than 

AutoDock4 and has a greater binding 

affinity. 

550 

 

[Grosdidier 

et al. 2011]  

 

 

 

 

GEMDOCK ● GEMDOCK utilizes a Generic 

Evolutionary Method for molecular 

docking and an empirical scoring function. 

The former combined both discrete and 

continuous global search strategies with 

local search strategies to speed up 

convergence, whereas the latter result in 

rapid recognition of potential ligands. 

 

● GEMDOCK was experimented on a 

diverse dataset of 100 protein–ligand 

complexes from the Protein Data Bank. 

 

● GEMDOCK had been a useful tool for 

molecular recognition and may be used to 

392 [Yang et al. 

2004]  
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systematically assess and thus improve 

scoring functions. 

 

Benchmark: 

 

● Average RMSD value ranged from 4.74Å 

to 12.63Å. GEMDOCK displayed better 

performance than GOLD. 

RosettaDock ● The RosettaDock server identifies low-

energy conformations of a protein–protein 

interaction near a given starting 

configuration by optimizing rigid-body 

orientation and side-chain conformations. 

 

● It can generates 1000 independent 

structures, and the server returns pictures, 

coordinate files and detailed scoring 

information for the 10 top-scoring models. 

 

● RosettaDock was approved on the docking 

benchmark set and through the Critical 

Assessment of Predicted Interactions blind 

prediction challenge. 

Benchmark: 

● The benchmark consisted of a diverse set 

of 116 docking targets including 22 

antibody-antigen complexes, 33 enzyme-

inhibitor complexes, and 60 ‘other’ 

complexes. 

● The tool performed better in comparison to 

Docking Benchmark 3.0.  

363 [Lyskov et 

al. 2008]  

 

FireDock ● The FireDock web server is used for 

flexible refinement and scoring of protein–

protein docking solutions. It includes 

optimization of side-chain conformations, 

rigid-body orientation and permits a high-

throughput refinement.  

● The server provides a user-friendly 

335 [Mashiach 

et al. 2008]  
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interface and a 3D visualization of the 

results. A docking protocol comprise of a 

global search by PatchDock and a 

refinement by FireDock was extensively 

tested.  

 

● The protocol was successful in screening 

and scoring docking solution candidates 

for cases taken from docking benchmarks. 

 

● They provide an alternate for using this 

protocol by automatic redirection of 

PatchDock candidate solutions to the 

FireDock web server for refinement. 

Benchmark: 

● It permits a high-throughput refinement of 

up to 1000 solution candidates. The 

technique simultaneously targets the 

problem of flexibility and scoring of 

solutions produced by fast rigid-body 

docking algorithms. 

● FireDock succeeded in positioning a near-

native solution in the top 15 predictions for 

83% of the 30 enzyme–inhibitor test cases 

and for 78% of the 18 semi-unbound 

antibody–antigen test cases. 

INVDOCK ● Inverse-docking approach (INVDOCK) 

can be used for finding potential protein 

targets of a small molecule by the 

computer-automated docking search of a 

protein cavity database. 

 

● Results on two therapeutic agents, 4H-

tamoxifen and vitamin E, demonstrated 

that 50% of the computer-identified 

potential protein targets were confirmed by 

experiments.  

 

318 
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● The application of this methodology may 

facilitate the prediction of unknown and 

secondary therapeutic target proteins and 

those related to the side effects and toxicity 

of a drug or drug candidate.  

● INVDOCK have been developed as a tool 

for searching putative protein and nucleic 

acid targets of a drug 

● Results for a number of therapeutic drugs 

demonstrated the applicability of 

INVDOCK. 

● INVDOCK has potential application in 

probing molecular mechanism of bioactive 

Chinese natural products(CNP) as well as 

in facilitating the prediction of unknown 

therapeutic and side effect and toxicity 

targets of drugs and drug candidates 

protein targets of several active CNPs was 

used. 

 

 

RDOCK ●  The main component of RDOCK is a 

three-stage energy minimization scheme, 

followed by the assessment of electrostatic 

and desolvation energies. 

 

● Ionic side chains were kept neutral in the 

initial two stages of minimization, and 

reverted to their full charge states in the 

last stage of brief minimization. 

  

● Without side chain conformational search 

or filtering/clustering of resulting 

structures, RDOCK represents the simplest 

methodology toward refining unbound 

docking predictions. 

● RDOCK is a molecular docking program 

that was developed at Vernalis for high-

throughput VS (HTVS) applications. This 

288  
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program was evolved from RiboDock and 

could be used against proteins and nucleic 

acids. It was designed to be 

computationally very efficient and allows 

the user to incorporate additional 

constraints and information as a bias to 

guide docking.  

TarFisDock ● TarFisDock is a web-based tool for 

automating the procedure of searching for 

small molecule–protein interactions over a 

large collection of protein structures. 

 

● It offered PDTD (Potential Drug Target 

Database), a target database containing 698 

protein structures covering 15 therapeutic 

zones and a reverse ligand–protein docking 

program. 

 

● It is a useful tool for target identification, 

mechanism study of old drugs and probes 

discovered from natural products. 

● TarFisDock is a web server that identifies 

drug targets using a reverse docking 

strategy to seek all possible binding 

proteins for a given small molecule.  

● TarFisDock identifies potential targets for 

a compound with known biological 

activity, a newly isolated natural product 

or an existing drug whose pharmacological 

mechanism was unclear. In addition, this 

platform was also able to find potential 

targets that could be responsible for the 

toxicity and side effects of a drug, which 

could allow for the prediction of the side 

effects of a drug candidate. 

Benchmark: 

● The effectiveness of different docking 

strategies in multiple targets identification 

280 
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is unclear.  

● Five inverse docking schemes were 

evaluated to find out the most effective 

method in multiple targets identification. A 

target database containing a highly 

qualified dataset that  composed of 1714 

entries from 1594 known drug targets 

covering 18 biochemical functions was 

gathered as a testing pool for inverse 

docking.  

● The inverse docking engines including 

GOLD, FlexX, Tarfisdock and two in-

house target search schemes TarSearch-X 

and TarSearch-M were assessed by eight 

multiple target systems in the dataset.  

● Their resulted demonstrated that 

TarSearch-X was the most effective 

method in multiple targets identification 

and validation in a given situation. 

pyDock ● pyDOCK is a program which was 

implemented in order to check the scoring 

of rigid-body docking poses. 

 

● The scheme is based on Coulomb 

electrostatics with distance dependent 

dielectric constant, and implicit 

desolvation energy with atomic solvation 

parameters previously adjusted for rigid-

body protein–protein docking. This scoring 

function was not highly dependent on 

specific geometry of the docking poses and 

therefore could be used in rigid-body 

docking sets generated by a variety of 

method. 

● pyDockWEB server is a web application 

for the use of the protein–protein docking 

and scoring program pyDock. Users can 

87 
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easily send pyDock jobs to be executed in 

a five-step process via a user friendly 

front-end.  

FlexPepDock ● Using the Rosetta fragments library and a 

coarse-grained structural representation of 

the peptide and the receptor, FlexPepDock 

ab-initio samples efficiently and 

simultaneously the space of possible 

peptide backbone conformations and rigid-

body orientations over the receptor surface 

of a given binding site.  

● The subsequent all-atom refinement of the 

coarse-grained models includes full side-

chain modeling of both the receptor and 

the peptide, resulting in high-resolution 

models in which key side-chain 

interactions were recapitulated. 

Benchmark: 

● The validation on a representative 

benchmark set of crystallographically 

solved high-resolution peptide-protein 

complexes demonstrates significantly 

improved performance over all existing 

docking protocols. This opened up the way 

to the modeling of many more peptide-

protein interactions, and to a more detailed 

study of peptide-protein association in 

general. 

●  Rosetta FlexPepDock web server provides 

an interface to a high-resolution peptide 

docking (refinement) protocol for the 

modeling of peptide–protein complexes, 

implemented within the Rosetta 

framework.  

● Given a protein receptor structure and an 

approximate, possibly inaccurate model of 

the peptide within the receptor binding 

212 
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site, the FlexPepDock server refines the 

peptide to high resolution, allowing full 

flexibility to the peptide backbone and to 

all side chains.  

FlexDock ● The flexible docking algorithm, FlexDock, 

is unique in its ability to handle any 

number of hinges in the flexible molecule, 

without degradation in run-time 

performance, as compared to rigid 

docking.  

 

● The algorithm for reconstruction of 

cyclically symmetric complexes 

successfully assembles multimolecular 

complexes satisfying Cn symmetry for 

any n in a matter of minutes on a desktop 

PC. 

190 [Schneidma

n-Duhovny 

et al. 2005]  

DOCK Blaster ● The method requires a PDB code, 

sometimes with a ligand structure, and 

from that alone could launch a full screen 

of large libraries.  

 

● A critical feature of this program was self-

assessment, which estimated the 

anticipated reliability of the automated 

screening results using pose fidelity and 

enrichment.  

 

199 [Irwin et al. 

2009] 

Misdocked ● Proteins are misdocked because water 

molecules or ions are not included in the 

receptor model. Uncertainty in the 

ionization state of the ligand or the 

receptor, due to receptor-induced (ligand-

induced) pKa changes in the ligand 

(receptor). They are also misdocked 

because of insufficient sampling or they 

are docked correctly, but they do not score 

properly because of failures in the scoring 

function. The first two reasons are related 

230 
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to rearrangements of the binding pocket 

upon ligand binding.   

● Misdocked predictions in ligand-protein 

docking were classified as `soft' and `hard' 

failures. While a soft failure arises when 

the search algorithm is unable to find the 

global energy minimum corresponding to 

the crystal structure, a hard failure resulted 

from a flaw of the energy function to 

qualify the crystal structure as the 

predicted lowest energy conformation in 

docking simulations. 

MCDOCK ● MCDOCK was developed to carry out the 

molecular docking operation 

automatically.  

 

● The particular version of the MCDOCK 

program (version 1.0) allows for the full 

flexibility of ligands in the docking 

calculations.  

 

● The scoring function used in MCDOCK is 

the sum of the interaction energy between 

the ligand and its receptor, and the 

conformational energy of the ligand.  

● MCDOCK can be used to predict the 

precise binding mode of ligands in lead 

optimization and to discover novel lead 

compounds through structure-based 

database searching. 

● MCDOCK applies a multiple stage 

strategy to dock a flexible ligand to a rigid 

receptor.  

266 

 

 

 

 

 

 

 

 

 

[Liu et al. 

1999]  

[R. D. 

Taylor et al. 

2002]  

FiberDock ● FiberDock models backbone flexibility by 

an unlimited number of normal modes 

 

● The method iteratively minimizes the 

147 
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structure of the flexible protein along the 

most relevant modes. The relevance of a 

mode was calculated according to the 

correlation between the chemical forces, 

applied on each atom, and the translation 

vector of each atom, according to the 

normal mode. 

 

● The FiberDock server can refine up to 100 

rigid-docking solution candidates. The user 

can upload PDB (Protein Data Bank) files, 

receptor and ligand, and provides a list of 

up to 100 transformations. 

● For side-chain flexibility, Fiberdock uses a 

rotamer library and finds optimum 

combination of rotamers with the lowest 

total energy.  

 

Benchmark:  

 

● FiberDock calculates several binding 

energy scores, including attractive and 

repulsive van der Waals forces, the atomic 

contact energy, partial electrostatics, 

hydrogen and disulfide bonds, π stacking, 

and aliphatic interactions. These scores 

were used as a feature vector to train a 

Random Forest Classifier (RFC) returning 

a single probabilistic score to assess 

whether two interacting proteins are 

biologically relevant.  

 

● eRankPPI rearranged dimer models. In 

addition, FiberDock also produced 

accurate results. Further refinement 

procedure used by FiberDock   yielded 

improvements for eRankPPI as compared 

to ZDOCK.  
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PRODOCK ● PRODOCK is used for protein modeling 

and flexible docking. 

 

● It was based on a residue data dictionary 

that makes the programming easier and the 

definition of molecular flexibility more 

straight forward.  

135 [Trosset et 

al. 1999]  

iGemdock ● For post-screening analysis, iGEMDOCK 

provides biological insights by deriving the 

pharmacological interactions from 

screening compounds without relying on 

the experimental data of active 

compounds. 

 

● The pharmacological interactions represent 

conserved interacting residues, which often 

form binding pockets with specific 

physico-chemical properties, to play the 

essential functions of a target protein. The 

experimental results show that the 

pharmacological interactions derived by 

iGEMDOCK are often hotspots involving 

in the biological functions. 

Benchmark: Parameters such as 

Population size: 200, Number of 

generations: 70 and Number of solutions: 3 

were selected. The anti-tumor compounds 

were sorted at the end of docking process 

based on their interaction energies and 

fitness values produced by the docking via 

iGemdock software.  

● Total 29 plant anti-tumor compounds were 

screened against the structure of FAT10 

protein via iGemdock. 

134 
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LibDock ● LibDock had been applied to the GSK 

validation data set. LibDock is based on 

the algorithm developed by Diller and 

Merzand. It is one of the commercially 

126 
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available docking programs that use 

protein binding site features to guide 

docking. 

 

● The LibDock methodology was originally 

developed to handle the rapid docking of 

combinatorial libraries of compounds with 

the goal of prioritizing the selection of 

libraries rather than rank ordering the 

compounds themselves. 

 

● The algorithm has four functional aspects:  

conformation generation of the ligands, 

creating a binding site image (hot spot 

identification), matching the binding site 

image and the ligand, and a final 

optimization stage and scoring. The 

binding site image consists of lists of polar 

and non-polar hot spots. These were 

generated by laying a grid in the binding 

site volume and then scoring a non-polar 

and polar probe at each grid point. 

Benchmark:  

● Evaluated the performance of MM-PBSA 

and MM-GBSA scoring functions, 

implemented in post-docking procedure 

BEAR, in rescoring docking solutions. For 

the first time, the performance of this post-

docking procedure was evaluated on six 

different biological targets (namely 

estrogen receptor, thymidine kinase, factor 

Xa, adenosine deaminase, aldose 

reductase, and enoyl ACP reductase) by 

using i) both a single and a multiple 

protein conformation approach, and ii) two 

different software, namely AutoDock and 

LibDock. The assessment was carried out 

on two of the most important criteria for 

the evaluation of docking methods, i.e., the 

ability of known ligands to enrich the top 
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positions of a ranked database with respect 

to molecular decoys, and the consistency 

of the docking poses with crystallographic 

binding modes. It was found, in many 

cases, that MM-PBSA and MM-GBSA 

were able to yield higher enrichment 

factors compared to those obtained with 

the docking scoring functions alone. 

However, for only a minority of the cases, 

the enrichment factors obtained by using 

multiple protein conformations were 

higher than those obtained by using only 

one protein conformation.  

ASEDock ● ASEDock is a docking program based on a 

shape similarity evaluation between a 

concave portion (i.e., concavity) on a 

protein and the ligand.  

 

● Two concepts were introduced into 

ASEDock. One was an ASE model, which 

was characterized by the combination of 

alpha spheres produced at a concavity in a 

protein and the excluded volumes around 

the concavity. The other was an ASE 

score, which assesses the shape similarity 

between the ligand and the ASE model.  

 

● The ASE score chooses and refines the 

initial pose by maximizing the overlap 

between the alpha spheres and the ligand, 

and minimizing the overlap between the 

excluded volume and the ligand. 

 

● ASE score makes great utilization of the 

Gaussian-type function for assessing and 

optimizing the overlap between the ligand 

and the site model, it can pose a ligand 

onto the docking site moderately quicker 

and more effectively than using potential 

energy functions. The posing stage using 

128 
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the ASE score was followed by full 

atomistic energy minimization.  

 

● The posing algorithm of ASEDock is free 

from any predisposition with the exception 

of shape; it is an exceptionally powerful 

docking technique. 

 

Benchmark: 

 

● Datasets used:  

● A validation study has demonstrated that 

ASEDock can faithfully reproduce 

experimentally determined docking modes 

of various drug-like molecules in their 

target proteins. 

 

● Almost 80% of the structures were 

reconstructed within the estimated 

experimental error. The success rate of 

approximately 98% was accomplished 

based on the docking criterion of the root-

mean-square deviation (RMSD) of non-

hydrogen atoms (< or = 2.0 A).  

 

● The uniquely high success of ASEDock in 

redocking experiments plainly 

demonstrated that the most important 

factor governing the docking process was 

shape complementarity. 

 

 

ConsDock ● ConsDock is a consensus docking 

approach that takes advantage of three 

widely used docking tools (Dock, FlexX, 

and Gold). 

 

● The consensus analysis of all possible 

poses was generated by several docking 

tools was performed consecutively in four 

steps: (i) hierarchical clustering of all 

poses produced by a docking tool into 

125 

 

 

 

 

 

 

 

 

 

[Paul et al. 

2002] 

  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27538v1 | CC BY 4.0 Open Access | rec: 15 Feb 2019, publ: 15 Feb 2019



families represented by a leading molecule 

(leaders); (ii) definition of all consensus 

pairs from leaders generated by various 

docking programs; (iii) clustering of 

consensus pairs into classes, represented 

by a mean structure; and (iv) positioning 

the different means beginning from the 

most populated class of consensus pairs.  

Benchmark: 

● When applied to a test set of 100 protein–

ligand complexes from the Protein Data 

Bank, ConsDock altogether outperformed 

single docking with respect to the docking 

accuracy of the top-ranked pose.  

● In 60% of the cases, ConsDock was able to 

rank as top solution a pose within 2 Å 

RMSD of the X-ray structure.  

● It can be applied as a post processing filter 

to either single- or multiple-docking 

programs to prioritize three-dimensional 

guided lead optimization from the most 

likely docking solution. 

 

● Three different database docking programs 

(Dock, FlexX, Gold) have been utilized in 

combination with seven scoring functions 

(Chemscore, Dock, FlexX, Fresno, Gold, 

Pmf, Score) to survey the accuracy of 

virtual screening methods against two 

protein targets (thymidine kinase, estrogen 

receptor) of known 3-D structures. For 

both targets, it was generally possible to 

separate about 7 out of 10 true hits from a 

random database of 990 ligands. The use 

of consensus lists common to two or three 

scoring capacities clearly enhances hit 

rates among the top 5% scorers from 10% 

(single scoring) to 25-40% (double 
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scoring) and up to 65-70% (triple scoring). 

However, in all tested cases, no clear 

connections could be found between 

docking and ranking accuracies. Moreover, 

predicting the absolute binding free energy 

of true hits was impractical whatever 

docking accuracy was achieved and 

scoring function used.  

SODOCK  

● SODOCK was developed to improve 

efficiency and robustness of particle 

swarm optimization (PSO).  

 

● This tool works as an optimization 

algorithm based on particle swarm 

optimization (PSO) for solving flexible 

protein-ligand docking problems.  

 

● PSO is a population-based search 

algorithm. It is very simple and efficient. 

SODOCK works cooperatively with the 

environment of AutoDock 3.05 as per the 

reports. 

 

Benchmark: 

● Benchmarking studies’ outcomes revealed 

that SODOCK was superior to the 

Lamarckian genetic algorithm (LGA) of 

AutoDock, in terms of convergence 

performance, power, and obtained energy, 

especially for highly flexible ligands.  

● The outcomes also revealed that PSO was 

more suitable than the conventional GA in 

dealing with flexible docking problems 

with high correlations among parameters. 

● This experimentation also compared 

SODOCK with four state-of-the-art 

docking methods, namely GOLD 1.2, 

132 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[Chen et al.  

2007]  

 

 

 

 

 

 

 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27538v1 | CC BY 4.0 Open Access | rec: 15 Feb 2019, publ: 15 Feb 2019



DOCK 4.0, FlexX 1.8, and LGA of 

AutoDock 3.05. It was revealed that 

SODOCK obtained the least RMSD value 

in 19 of 37 cases. The average (2.29 Å) of 

the 37 RMSD values of SODOCK, was 

reported to be better than those of other 

docking programs, which were all above 

3.0 Å. 

DynaDock 

 

● DynaDock is a docking tool that was used 

for docking peptides into flexible 

receptors. 

 

● For this purpose a two step procedure was 

created: first, the protein–peptide 

conformational space was scanned and 

approximate ligand poses were identified 

and second, the identified ligand poses 

were refined by a molecular dynamics 

based strategy: optimized potential 

molecular dynamics (OPMD).  

 

● The OPMD approach utilized soft-core 

possibilities for the protein–peptide 

interactions and applied an optimization 

scheme to the soft-core potential.  

 

● Comparison with refinement results 

obtained by conventional molecular 

dynamics and a soft-core scaling approach 

demonstrated significant upgrades in the 

sampling capability for the OPMD method. 

● The DynaDock method uses a soft-core 

molecular dynamics-based refinement. 

Benchmark: 

● Eight docking programs (DOCK, FLEXX, 

FRED, GLIDE, GOLD, SLIDE, 

SURFLEX, and QXP) that can be utilized 

for either single-ligand docking or 
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database screening have been compared 

for their propensity to recover the X-ray 

pose of 100 small-molecular-weight 

ligands, and for their capacity to 

differentiate known inhibitors of an 

enzyme (thymidine kinase) from randomly 

chosen “drug-like” molecules. 

Interestingly, both properties were found to 

be correlated, since the tools showing the 

best docking accuracy (GLIDE, GOLD, 

and SURFLEX) are considered to be the 

most successful in positioning known 

inhibitors in a virtual screening 

experiment.  

RiboDock ● RiboDock® is a virtual screening system 

for automated flexible docking. Building 

on well-known protein-ligand scoring 

function establishments, features were 

added to describe the interactions of 

common RNA-binding functional groups 

that were not taken care adequately by 

conventional terms, to disfavour non-

reciprocal polar contacts, and to control 

non-specific charged interactions. 

● rDock is a fast, versatile and open source 

program for docking ligands to proteins 

and nucleic acids. 

● It was intended for High Throughput 

Virtual Screening (HTVS) campaigns and 

binding mode prediction studies. 

Benchmark: 

● RiboDock found solution with RMSD<=3 

in 5 cases out of 7, the original DrugScore 

RNA potential in 7 out of 9 cases, and 

MORDOR  generated near-native poses in 

11 out of 12 cases. 

101 [Morley et 

al.  2004]  

 

 

 

SwarmDock ● This server was validated in the CAPRI 113 [Torchała et 
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blind docking experiment, against the last 

docking benchmark, and against the 

ClusPro docking server, the highest 

performing server which was available at 

that time. 

 

● Subsequent to uploading PDB files of the 

binding partners, the server produces low 

energy conformations and returns a ranked 

list of clustered docking poses and their 

corresponding structures.  

 

● The user can perform full global docking, 

or focus on particular residues that were 

involved in binding.  

● The authors reported the mathematical 

model which intends to reduce the total 

cost of operations subjected to a set of 

constraints. Due to high complexity of 

model, the problem was solved by utilizing 

a variation of Particle Swarm Optimization 

(PSO) with a Self-Learning strategy, 

namely SLPSO.  

Benchmark:  

● The previously published docking and 

affinity structural benchmarks were 

updated, increasing the number of cases by 

31% and 24%, respectively. An updated 

and integrated version of their widely 

utilized protein–protein docking was 

presented and binding affinity benchmarks. 

Fifty-five new complexes were added to 

the docking benchmark, out of which 35 

have experimentally measured binding 

affinities. These updated docking and 

affinity benchmarks contain 230 and 179 

entries. Considering only the top 10 

docking predictions per benchmark case, a 

prediction accuracy of 38% was achieved 
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on all 55 cases and up to 50% for the 32 

rigid-body cases only.  

FLIPDock ● FLIPDock (Flexible LIgand–Protein 

Docking) is protein-ligand docking 

software which allows the automated 

docking of flexible ligand molecules into 

active sites of flexible receptor molecules. 

 

● In FLIPDock, conformational spaces of 

molecules are encoded using a data 

structure that was developed recently 

known as the Flexibility Tree (FT). 

● Conformational changes of biological 

macromolecules when binding with 

ligands have long been observed and 

remain a challenge for automated docking 

techniques. 

● While the Flexibility Tree can represent 

fully flexible ligands, it was initially 

designed as a hierarchical and multi-

resolution data structure for the selective 

encoding of conformational subspaces of 

large biological macromolecules. 

● These conformational sub-spaces can be 

built to span a range of conformations that 

are important for the biological activity of 

a protein.  

97 

 

 

 

 

 

 

 

 

[Zhao et al. 

2007]  

 

 

FRODOCK ● FRODOCK (Fast ROtational DOCKing) is 

a novel docking methodology based on 

FRM (Fast Rotational Method) to perform 

protein-protein docking. 

● In contrast to other approaches, 

FRODOCK has the advantage of 

combining the capability to express the 

interaction terms into 3D grid-based 

potentials with the efficiency of a 
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Spherical Harmonics-based rotational 

search. 

●  The binding energy upon complex 

formation was approximated by a sum of 

three types of possibilities: van der Waals, 

electrostatics and desolvation, each of 

which can be composed as a correlation 

function.  

● A parallel version of FRODOCK can 

perform the docking search in a short time 

period, and the competitive docking 

accuracy achieved on standard protein–

protein benchmarks demonstrates its 

applicability and robustness. 

 

 

 

MEDock ● The MEDock web server incorporates a 

worldwide search strategy that exploits the 

maximum entropy property of the 

Gaussian probability distribution in the 

context of information theory. 

 

● As a result of the global search strategy, 

the optimization algorithm incorporated in 

MEDock was found to be significantly 

superior when dealing with very harsh 

energy landscapes, which usually have 

insurmountable obstructions. 

89 [Chang et 

al. 2005]  

DOCKovalent ● DOCKovalent is used for screening large 

virtual libraries of electrophilic small 

molecules. 

 

● It can discover reversible covalent 

fragments that target distinct protein 

nucleophiles, including the catalytic serine 

of AmpC β-lactamase and non-catalytic 

cysteines in RSK2, MSK1 and JAK3 

kinases. 

81 [London et 

al. 2014]  

TreeDock ● TreeDock is a docking tool that is able to 75 [Fahmy et 
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explore all clash-free orientations at very 

fine resolution in a reasonable amount of 

time. Due to the speed of the program, 

many contact pairs can be mobility of the 

docking surfaces and structural 

rearrangements upon interaction. A novel 

algorithm, TreeDock, which addresses the 

enumeration problem in a rigid-body 

docking search.  

 

● By representing molecules as multi-

dimensional binary search trees and by 

investing an adequate number of docking 

orientations such that two chosen atoms, 

one from each molecule, are always in 

contact, TreeDock was able to explore all 

clash-free orientations at very fine 

resolution in a short amount of time.  

al. 2002] 

SnugDock ● SnugDock had been used to predict high-

resolution antibody-antigen complex 

structures by simultaneously structurally 

optimizing the antibody-antigen rigid-body 

positions, the relative orientation of the 

antibody light and heavy chains, and the 

conformations of the six complementarity 

determining region loops. 

 

● The approach is especially useful when the 

crystal structure of the antibody is not 

available. 

 

● Local docking using SnugDock has shown 

to produce more accurate predictions than 

standard rigid-body docking. 

75 [Sircar et al. 

2010]  

pyDockWEB ● pyDockWEB is a web server for the rigid-

body docking forecast of protein–protein 

complex structures using an updated 

version of the pyDock scoring algorithm. 

 

82 [Jiménez-

García et al. 

2013 ] 
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● If the 3D coordinates of two interacting 

proteins were given, pyDockWEB returned 

the best docking orientations as scored 

mainly by electrostatics and desolvation 

energy. 

SANDOCK ● SANDOCK is a docking tool that is 

primarily developed for the automated 

docking of small ligands to a target 

protein.  

 

● It utilizes a guided matching algorithm to 

fit ligand atoms into the protein 

binding pocket. The protein was described 

by a modified Lee-Richard’s dotted 

surface with each dot coded by chemical 

property and availability.  

 

● Orientations of the ligand in the active 

site are generated such that a chemical and 

a shape complementary between the ligand 

and the active site cavity must be satisfied. 

71 [Burkhard 

et al. 1998]  

DOCKGROUN

D 

 

● DOCKGROUND is a comprehensive 

database of co-crystallized (bound) 

protein–protein complexes in a relational 

database of annotated structures. 

 

● This database contained comprehensive 

sets of complexes suitable for large scale 

benchmarking of docking algorithms. 

● The authors reported the important features 

to the set of bound structures, such as 

regularly updated downloadable datasets: 

automatically generated non-redundant set, 

built according to most common criteria, 

and a manually curated set that includes 

only biological non-obligate complexes 

along with a number of additional useful 

characteristics. Complexes from the bound 

70 
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 [Hwang et 

al. 2008] 
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dataset were utilized to identify the 

crystallized unbound analogs. If such 

analogs were nowhere to be found, the 

unbound structures were simulated by 

rotamer library optimization. 

Benchmark- 

● The version was reported by the authors 

was 3.0. This included 40 experimental 

cases, representing a 48% increase from 

Benchmark 2.0. For majority of the new 

cases, the crystal structures of both binding 

partners were available. As with 

Benchmark 2.0, Structural Classification of 

Proteins (Murzin et al., J Mol Biol 1995; 

247:536–540) was utilized to expel 

redundant test cases. The 124 unbound-

unbound test cases in Benchmark 3.0 were 

characterized into 88 rigid-body cases, 19 

medium-difficulty cases, and 17 difficult 

cases, based on the degree of 

conformational change at the interface 

upon complex formation. In addition to 

providing the community with more test 

cases for evaluating docking methods, the 

expansion of Benchmark 3.0 would 

facilitate the advancement of updated 

algorithms that would require a large 

number of training examples.  

DockDE ● DockDE program was compared to the 

Lamarckian GA (LGA) provided with 

AutoDock, and the DockEA previously 

found to outperform the LGA.  

 

● The comparison was performed on a suite 

of six commonly used docking problems. 

DockDE outperformed the other 

algorithms on all problems. 

 

● Further, the DockDE demonstrated 

64 [Thomsen et 

al. 2003]   
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remarkable performance in terms of 

convergence speed and robustness 

regarding the found solution. 

Benchmark- 

● DockDE outperformed the DockEA and 

the LGA algorithm on all test cases 

regarding the test and mean energy values 

obtained. The convergence graphs and the 

low standard deviations also indicated that 

the DockDE was fast and robust (in terms 

of reproducing the docking results). 

Moreover, the two termination criteria 

introduced makes the search performance 

of the DockDE even better by lowering the 

number of evaluations needed by a factor 

of 2-40 without losing much accuracy. 

These findings are important and show 

great promise for applying the DockDE to 

virtual screening applications, i.e., 

searching huge ligand databases for 

promising drug candidates.  

CovalentDock ● CovalentDock is a computational 

algorithm built on the top of the source 

code of Autodock to model the 

phenomenon of chemical bonding and 

extended it to the server, known as the 

CovalentDock Cloud to make it accessible 

directly online without any local 

installation and configuration. 

 

● It is an empirical model of free energy 

change estimation for covalent linkage 

formation, which is compatible with 

existing scoring functions used in docking, 

while handling the molecular geometry 

constraints of the covalent linkage with 

special atom types and directional grid 

maps. 
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● Integrated preparation scripts were also 

mentioned for the automation of the whole 

covalent docking workflow. 

● This tool accepts the structures of both the 

ligand and the receptor uploaded by the 

user or retrieved from online databases 

with valid access id. It identifies the 

potential covalent binding patterns, carries 

out the covalent docking experiments and 

provides visualization of the outcomes for 

user analysis. 

Benchmark : 

● The prediction and quantification of 

covalent linkage formation in molecular 

docking is of great interest and potential to 

the systematic discovery of covalent drugs. 

The CovalentDock Cloud gives a user-

friendly portal to carry out covalent 

docking experiments and to examine the 

outcomes online via web browser. With 

the powerful backend docking engine, it 

was believed that CovalentDock web 

server would offer a more accessible way 

for simulation and prediction of more 

accurate covalent docking. 

● The website was fine tuned for better user-

experience and to continuously develop 

and enhance the Covalent Dock package. It 

gave more responses adopting covalent 

binding mechanism available and enabled 

users to specify the covalent linking 

pattern by themselves. 

GAsDock 

 

● GAsDock is a fast flexible docking 

program which is based on an improved 

multi-population genetic algorithm. 

 

●  It is an accurate and remarkably faster 

docking program in comparison with other 

58 
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docking programs, which is advantageous 

in the application of virtual screening. 

Benchmark-  

● In comparison with the optimization 

algorithms of other docking methods, 

information entropy was employed in the 

genetic algorithm of GAsDock and 

contracted space was used as the 

convergence criterion, which effectively 

controls the convergence of the algorithm, 

ensuring that GAsDock could converge 

rapidly and steadily. That is why GAsDock 

could bring better results in accuracy and 

higher speed than other programs. 

 

 

BDOCK ● BDOCK is an FFT-based docking 

algorithm system which includes specific 

scoring functions for different types of 

complexes. 

● BDOCK uses family-based residue 

interface propensities as a scoring function 

and obtains improvement factors of 4-30 

for enzyme-inhibitor and 4-11 for 

antibody-antigen complexes in two 

specific SCOP families. 

Benchmark- 

● The Meta method improves the prediction 

success rates of individual prediction 

approaches. The tightness of fit scoring 

function based on these correctly predicted 

interface residues effectively discriminates 

between near-native complex structures 

and non-native ones. This approach was 

implemented in BDOCK and was 

applicable to all types of complexes.  

● Adding further background for special 

classes of complexes, such as enzyme– 

inhibitor complexes, these results could be 

56 
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improvised.  

NPDock ● NPDock (Nucleic acid–Protein Docking) is 

a web server for predicting complexes of 

protein–nucleic acid structures which 

implements a computational workflow that 

includes docking, scoring of poses, 

clustering of the best-scored models and 

sorting of the most promising solutions. 

 

● The NPDock server provides a user-

friendly interface and 3D visualization of 

the outcomes. The smallest set of input 

data consists of a protein structure and a 

nucleic acid structure (DNA or RNA) in 

PDB format. 

Benchmark-  

● NPDock is a web server developed for 

protein–nucleic acid docking that utilizes 

specific protein–nucleic acid statistical 

possibilities for scoring and selection of 

modeled complexes. NPDock implements 

a unique workflow based on a combination 

of computational strategies that have been 

published and offers a user-compatible 

web interface to enter PDB structures and 

view their results. 

● The automation of the entire procedure 

makes the protein–nucleic acid docking 

accessible to users who would otherwise 

become tripped up installing many 

complex programs locally and then 

carrying out numerous manual advances; 

each requiring an assortment of manual 

format conversions that are highly prone to 

human error. Therefore, it can help users 

save even more than ten times the time 

required to run diverse strategies 

separately and sequentially. 

73 [Tuszynska 

et al. 2015]  
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ScoreDock ● An empirical protein-ligand binding 

affinity estimation technique, SCORE, was 

incorporated into a popular docking 

program, DOCK4. The consolidated 

program was named as ScoreDock. 

 

● It had been used to reconstruct the 200 

protein-ligand complex structures and 

found to give good results for the 

complexes with high binding affinities. 

Benchmark: 

● Using existing drugs for new indications 

(drug repurposing) is a compelling 

technique not only to reduce drug 

development time and costs but also to 

develop treatments for new disease 

including those that were rare. In order to 

discover novel indications, potential target 

identification is an essential step. One 

broadly utilized method to identify 

potential targets was through molecule 

docking.  

● It requires no prior data except structure 

inputs from both the drug and the target, 

and can identify potential targets for a 

given drug, or recognize potential drugs 

for a specific target. Despite the fact that 

molecular docking is popular for drug 

development and repurposing, challenges 

remain for the method. In order to improve 

the prediction accuracy, optimizing the 

target conformation, considering the 

solvents and adding co-binders to the 

system are conceivable arrangements. 

56 [Luo et al. 

2016]  

SDOCKER ● The primary objective of SDOCKER is 

docking accuracy improvement. In this 

paradigm, simulated annealing molecular 

55 [Wu et al. 

2004]  
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dynamics was utilized for conformational 

sampling and optimization and an 

additional similarity force is applied on the 

basis of the positions of ligands from X-

ray information that focus the sampling on 

relevant regions of the active site. 

 

Benchmark: 

● Genomic pipelines comprise of several 

pieces of third party software and, because 

of their experimental nature, frequent 

changes and updates were commonly 

necessary thus raising serious deployment 

and reproducibility issues. Docker 

containers are emerging as a possible 

solution for a large number of these issues, 

as they allow the packaging of pipelines in 

an isolated and self-contained manner.  

 

● This makes it simple to distribute and 

execute pipelines in a portable manner 

across a wide range of computing 

platforms. Thus, the question that arises is 

to what degree the utilization of Docker 

containers might affect the performance of 

these pipelines.  

pyDockRST ● pyDockRST software uses the percentage 

of satisfied distance restraints, together 

with the electrostatics and 

desolvation binding energy, to identify 

correct docking orientations.  

 

● This technique drastically improved the 

docking results when compared to the use 

of energy criteria alone, and was able to 

find the correct orientation within the top 

20 docking solutions in 80% of the cases. 

Benchmark-  

● pyDockWEB is a web server for the rigid-

body docking prediction of protein–protein 

48 
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complex structures utilizing another 

version of the pyDock scoring algorithm. 

A custom parallel FTDock implementation 

was used, with adjusted grid size for 

optimal FFT calculations, and an updated 

version of pyDock, which dramatically 

speeds up calculations while keeping the 

same predictive accuracy.  

● Given the 3D coordinates of two 

interacting proteins, pyDockWEB returns 

the best docking orientations as scored 

fundamentally by electrostatics and 

desolvation energy. 

GalaxyPepDock 

 

● GalaxyPepDock web server, which is 

freely accessible at 

http://galaxy.seoklab.org/pepdock, 

performs similarity-based docking by 

finding templates from the database of 

experimentally determined structures and 

building models using energy-based 

optimization that allows for structural 

flexibility.  

 

● The server can therefore effectively create 

the structural differences between the 

template and target protein–peptide 

complexes. 

 

● The performance of GalaxyPepDock is 

better than those of the other available web 

servers when tested on the PeptiDB set and 

on several complex structures. 

● When tested on the CAPRI target 67, 

GalaxyPepDock generates models that are 

more precise than the best server models 

submitted during the CAPRI blind 

prediction experiment. 

● GalaxyPepDock is a similarity-based 

58 
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protein–peptide docking web-server that 

performs additional flexible-structure 

energy-based optimization. The effective 

combination of database search and 

physics-based optimization allows for a 

superior performance compared with the 

existing methods when complexes 

involving similar proteins could be found 

in the database. 

● GalaxyWEB provides the following web 

services:  

● Protein Structure Prediction 

● GalaxyTBM: Protein structure prediction 

from sequence by template-based 

modeling 

● GalaxyLoop: Modeling of loop and/or 

terminus regions specified by user 

● GalaxyDom: Protein modeling unit 

detection for protein structure predictions 

● Protein Structure Refinement 

● GalaxyRefine: Refinement of model 

structure provided by user 

● GalaxyRefineComplex: Refinement of 

protein-protein complex model structure 

provided by user 

● Protein Interaction Prediction 

● GalaxySite: Ligand binding site prediction 

from a given protein structure 

(experimental or model) 

● GalaxyPepDock: Protein-peptide docking 

based on interaction similarity 

● GalaxyHomomer: Protein homo-oligomer 

structure prediction from a monomer 
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sequence or structure 

● GalaxyGemini: Protein homomer structure 

prediction from a given protein monomer 

structure based on similarity 

● GalaxyTongDock: Symmetric and 

asymmetric protein-protein docking. 

● GPCR Applications 

● Galaxy7TM: Flexible GPCR-ligand 

docking by structure refinement with a 

GPCR and a ligand structure provided by 

user. 

● GalaxyGPCRloop: Structure prediction of 

the second extracellular loop of GPCR. 

 

CombDock 

 

 

 

 

 

 

● CombDock is a combinatorial docking 

algorithm for the structural units’ assembly 

problem which also gives a heuristic 

solution to a computationally hard problem 

(NPC). 

 

● CombDock is also used for the automated 

assembly of protein substructures. This 

application can anticipate near-native 

assemblies for various examples of both 

domains and to build blocks with different 

levels of distortion. It can also be utilized 

in protein structure prediction if the local 

structural units are given and assisted in 

obtaining a structural model. 

 

● It is used for protein-ligand binding. 

 

● CombDock can be operated only on Linux 

Operating System. 

46 

 

 

[Inbar et al. 

2005]  

 

FastDock ● FastDock engine which uses a Lamarckian 

genetic algorithm (LGA) so that 

46 [Yadav et 

al. 2010]  
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individuals adapt to the surrounding 

environment. The best fits are continued 

through analyzing the PMF scores of each 

chromosome and assigning more 

reproductive opportunities to the 

chromosomes having lower scores. This 

procedure rehashes for almost 3,000 

generations with 500 individuals and 

100,000 energy evaluations. Other 

parameters were left to their default values.  

● Structure-based screening includes 

docking of candidate ligands into protein 

targets, followed by applying a PMF 

scoring function to assess the probability 

that the ligand will bind to the protein with 

high affinity or not. 

● Now called as SWISSDOCK TOOL. 

● Targets can be uploaded by the user and 

also through PDB id. It is used for protein 

ligand interaction. 

 

GlamDock ● GlamDock tool is based on a Monte-Carlo 

with minimization search in a hybrid 

interaction matching or an internal 

coordinate search space.  

 

● The main features of the method are (1) the 

energy function, which is a continuously 

differentiable empirical potential and (2) 

the definition of the search space, which 

combines internal coordinates for the 

adaptation of the ligand, with a mapping-

based portrayal of the rigid body 

translation and rotation. 

Benchmark: 

A set of 100 protein-ligand complexes, 

which enables comparative evaluation to 
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existing docking tools. The outcomes on 

the given benchmark demonstrated that 

GlamDock is at least comparable in 

efficiency and accuracy to the best existing 

docking tools. The primary focal point of 

this work was the validation on the scPDB 

database of protein-ligand complexes. The 

size of this dataset allowed a thorough 

analysis of the dependencies of docking 

accuracy on features of the protein-ligand 

system. Specifically, it allowed a two-

dimensional analysis of the outcomes, 

which identifies a number of interesting 

dependencies that are generally lost or 

even misinterpreted in the one-dimensional 

approach. The overall outcome was that 

GlamDock correctly predicted the complex 

structure in practically half of the cases in 

the scPDB is critical not just to screen 

ligands against a specific protein but even 

more so for opposite screening, i.e., the 

identification of the correct targets for a 

particular ligand. 

PostDOCK ● PostDOCK distinguishes true binding 

ligand−protein complexes from docking 

artifacts (that were created by DOCK 

4.0.1).  

 

● It is a pattern recognition system that relies 

on (1) a database of complexes, (2) 

biochemical descriptors of those 

complexes, and (3) machine learning tools. 

Protein databank (PDB) was used as the 

structural database of complexes and 

create diverse training and validation sets 

from it based on the “families of 

structurally similar proteins” (FSSP) 

hierarchy. 

● Allows analyzing and comparing 

molecular docking results. PostDock helps 
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in visualization of docking results. It 

displays an interactive pseudo-3D snapshot 

of multiple docked ligand poses such that 

both the docking poses and docking scores 

are encoded visually for rapid assessment. 

The software possesses a full complement 

of display options to tailor the visual 

examination of any molecular design task. 

It is proficient for the rapid visual 

examination of molecular docking results. 

 

ParaDockS 

 

● ParaDockS is software designed to hold 

different optimization algorithms and 

objective functions. 

 

● The functions of ParaDockS that were 

available are as follows (i) the empirical 

objective function p-Score and (ii) an 

adapted version of the knowledge-based 

potential PMF04.  

● Accurate prediction of protein–DNA 

complexes could give a critical stepping 

stone towards an exhaustive appreciation 

of vital intracellular processes. 

● ParaDock is an ab initio protein–DNA 

docking algorithm that combines short 

DNA fragments, which have been rigidly 

docked to the protein based on geometric 

complementarity, to create bent planar 

DNA molecules of arbitrary sequence. 

44 [Meier et al. 

2010]  

AUDocker LE ● AUDocker LE was structured with a plan 

to develop a software tool as a front end 

graphical interface with C- language to 

perform docking experiments in Windows 

based PCs. It encourages users to perform 

automated continuous docking of 

expansive ligand databases into a set of 

predefined protein targets. 

44 [Sandeep et 

al. 2011]  
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● It would likewise assist the user with 

analyzing the results to select promising 

lead molecules. 

GAPDOCK 

 

● GAPDOCK is a genetic algorithm based 

docking tool used to predict the structure 

of two protein-protein complexes in 

combination with surface 

complementarity, buried surface area, 

biochemical information, and human 

intervention.   

 

Benchmark:  

● Among the five models submitted for 

target 1, HP phospho carrier protein (B. 

subtilis) and the hexameric HPr kinase (L. 

lactis), the best accurately predicts 17 of 

52 interprotein contacts, though for target 

2, bovine rotavirus VP6 protein-

monoclonal antibody, the best model 

predicts 27 of 52 correct contacts. 

37 [Gardiner et 

al. 2003]  

FIPSDock 

 

● FIPSDock is a docking tool which 

implements a variant of the Fully Informed 

Particle Swarm (FIPS) optimization 

method and adopts the highly developed 

energy function of AutoDock 4.2 suite for 

solving flexible protein–ligand docking 

problems.  

 

● The search capacity and docking precision 

of FIPSDock were first assessed by 

multiple docking tests. In a benchmarking 

test for 77 protein/ligand complex 

structures generated from GOLD 

benchmark set, FIPSDock has acquired a 

successful predicting rate of 93.5% and 

outperformed a few docking programs. 

● FIPSDock is based on a variant of Particle 

43 [Liu et al. 

2013]  
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Swarm Optimization (PSO) known as 

Fully Informed Particle Swarm (FIPS) and 

the semi-empirical free energy force field 

in AutoDock 4.0, an updated approach to 

flexible docking. FIPSDock is much better 

than AutoDock and SODOCK which was 

also proposed by improving AutoDock 

with PSO in term of obtaining a lower 

binding energy, a better docked 

conformation, convergence speed and 

robustness. Compared with the four 

currently widely used methods, i.e., 

GOLD, DOCK, FlexX and AutoDock, 

FIPSDock is more accurate. Thus, 

FIPSDock is an efficient and accurate 

docking method and its promising 

prospects can be relied upon in the 

application to virtual screening. 

GriDock 

 

● GriDock is a parallelized tool based on the 

AutoDock4.0 engine which can perform 

efficient and easy virtual screening 

analyses of large molecular databases 

exploiting multi-core architectures. 

36 [Vistoli et 

al. 2010]  

RPDOCK ● RPDOCK is a novel docking procedure 

specific to RNA-protein complexes. 

 

● RPDOCK incorporates the features 

specific to RNA-protein interfaces 

(including looser atom packing at 

interface, preference of positively charged 

amino acid residues at RNA-protein 

interfaces and stacking interactions 

between the bases of nucleotides and 

aromatic rings of charged amino acids). 

 

● RPDOCK is an FFT-based algorithm that 

takes into account of RNA–protein 

interactions into consideration, and 

RPRANK is a knowledge-based potential 

using root-mean-square deviation as a 

56 

 

 

 

 

 

 

 

 

[Huang et 

al. 2008]  
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measure. 

pDOCK ● pDOCK is a computational technique for 

rapid and accurate docking of flexible 

peptides to MHC receptors and primarily 

apply it on a non-redundant dataset of 186 

pMHC (MHC-I and MHC-II) complexes 

with X-ray crystal structures. 

34 [Khan et al. 

2010]  

MedusaDock ● In the molecular docking suite 

MedusaDock, both ligand and 

receptor side chain flexibilities were 

modeled simultaneously with sets of 

discrete rotamers, where the ligand rotamer 

library was generated “on the fly” in a 

stochastic manner.  

 

● Backbone flexibility was introduced into 

MedusaDock by implementing ensemble 

docking in a sequential manner for a set of 

distinct receptor backbone conformations. 

39 [Ding et al. 

2012]  

LigDockCSA 

 

● LigDockCSA was developed by using a 

powerful global optimization technique, 

conformational space annealing (CSA), 

and a scoring function that combines the 

AutoDock energy and the piecewise linear 

potential (PLP) torsion energy.  

 

● It was found that the CSA search method 

can discover the lower energy binding 

poses than the Lamarckian genetic 

algorithm of AutoDock.  

 

● LigDockCSA finds the best scoring poses 

within 2 Å root-mean-square deviations 

(RMSD) from the native structures for 

84.7% of the test cases, compared to 

81.7% for AutoDock and 80.5% for 

GOLD. 

● Scoring function of LigDockCSA is a 

32 [Shin et al. 

2011]  
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modification of AutoDock3 scoring 

function (Morris et al., 1999) with adding 

torsion part of piecewise linear potential 

(PLP) (Gehlharr et al., 1995). 

● When CSA searches ligand binding mode 

with AutoDock3 scoring function, it can 

find lower energy conformation when 

compared to Lamarkian Genetic Algorithm 

(LGA).  

pyDockTET ● pyDockTET is a tethered-docking program 

which uses rigid-body docking system to 

generate domain-domain poses that are 

further scored by binding energy and a 

pseudo-energy term based on restraints 

derived from linker end-to-end distances. 

 

● The method had been benchmarked on a 

set of 77 non-repetitive pairs of domains 

with accessible X-ray structure. 

● pyDockTET, an advanced scoring function 

incorporated in pyDock, to model 

specifically the conformation of domain-

domain assemblies. 

29 [Cheng et 

al. 2008]  

SDOCK ● SDOCK approach performs global docking 

based on force-field potentials; one of its 

advantages is that it provides global 

binding free energy surface profiles for 

further analysis. The efficiency of the 

program is also comparable with that of 

other FFT based protein-protein docking 

programs. 

● It suggests the robustness of FFT-based 

docking sampling algorithm along with the 

importance of electrostatics. 

31 [Zhang et 

al. 2011]  

ASPDock ● ASPDock is an FFT-based algorithm 

which is used to calculate Atomic 

35 [Li et al. 

2011]   
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Solvation Parameters (ASP) scores of 

protein complexes. 

 

● As compared to other state-of-the-art 

docking algorithms, it was found that the 

ASP score produced a higher success rate 

than the pure shape complementarity score 

of FTDock but lower success rate than 

ZDOCK 3.0.  

 

● The ASP-based docking method performs 

well in CAPRI rounds 18 and 19. 

● The softly restricting method (SRM) is 

based on the ASPDock algorithm, which 

uses atomic solvation parameters (ASP) 

rather than geometric complementary. 

MEGADOCK 

 

● MEGADOCK is a Protein-protein docking 

software package which samples an 

extremely large number of protein 

dockings at high speed.  

 

● MEGADOCK decreased the calculation 

time required for docking by using 

multiple techniques, one of which was a 

scoring function called the real Pairwise 

Shape Complementarity (rPSC) score.  

 

● It is capable of exhaustive PPI screening 

by completing docking calculations 7.5 

times faster than the conventional docking 

software, ZDOCK, while maintaining an 

acceptable level of accuracy. 

● MEGADOCK can be applied to a large-

scale protein-protein interaction-screening 

issue with accuracy superior to arbitrary. 

34 [Ohue et al. 

2014]  

BetaDock ● BetaDock is a docking tool based on the 

theory of the β-complex. If the Voronoi 

diagram of the receptor, whose topology is 

28 [Kim et al. 

2011] 
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stored in the quasi-triangulation, is given, 

the β-complex corresponding to water 

molecule is calculated. At that point, the 

boundary of the β-complex characterizes 

the β-shape which has the complete 

proximity data among all atoms on the 

receptor boundary. 

● The performance of the algorithm was 

tested through a benchmark test and it was 

found that BetaDock is better than the 

popular docking software AutoDock 4. 

 

DOCKTITE ● DOCKTITE is a highly versatile workflow 

for covalent docking in the Molecular 

Operating Environment (MOE) combining 

automated warhead screening, nucleophilic 

side chain attachment, pharmacophore-

based docking, and a novel consensus 

scoring approach which combines the 

knowledge-based scoring function drug 

score extended (DSX) and the empirical 

scoring functions implemented in MOE.  

● DOCKTITE software can differentiate 

binders from non binders and rank active 

compounds regarding their experimentally 

determined binding affinity values in a 

congeneric series of ligands.  

41 [Scholz et 

al. 2015]  

MTiOpenScree

n 

 

● MTiOpenScreen is dedicated to docking of 

small molecules and also for virtual 

screening purposes. There are two services 

which are available, namely- 

MTiAutoDock and MTiOpenScreen. This 

tool uses AutoDock 4.2 and AutoDock 

Vina for processing. 

● There is a valuable resource known as 

MTiOpenScreen which provide drug-like 

chemical libraries containing 150000 

PubChem compounds: the Diverse-lib 

36 [Labbé et al. 

2015]  
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containing diverse molecules and the iPPI-

lib enriched in molecules likely to inhibit 

protein–protein interactions. 

TCRFlexDock 

 

● TCR FlexDock improved predictive 

success over the fixed backbone protocol, 

leading to near-native predictions for 80% 

of the TCR/pMHC cases among the top 10 

models, and 100% of the cases in the top 

30 models 

● Flexible docking simulations can give 

precise models and atomic-level insights 

into TCR acknowledgement of MHC-like 

molecules displaying lipid and other small 

molecule antigens. 

27 [Pierce et al.  

2013]  

mtsslDock ● mtsslDock is a docking tool which is used 

for translation of experimental distance 

distributions into structural information.  

 

● It is based on the mtsslWizard program 

for in silico spin labeling.  

 

● It has improved docking performances and 

also includes additional types of spin labels 

and contains applications for the 

trilateration of paramagnetic centres in 

biomolecules for rigid-body docking of 

sub-domains of macromolecular 

complexes.  

26 [Hagelueke

n et al. 

2013]  

AnchorDock ● AnchorDock is a peptide docking approach 

which naturally focuses on the docking 

pursuit to the most applicable parts of the 

conformational space. 

● This is performed by pre-computing the 

free peptides structure and by 

automatically identifying anchoring spots 

on the protein surface. After that, a free 

peptide conformation undergoes anchor-

driven simulated annealing molecular 

27 [Ben-

Shimon et 

al. 2015] 
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dynamics simulations around the predicted 

anchoring spots. 

 

● AnchorDock produced exceptionally good 

results (backbone root-mean-square 

deviation ≤ 2.2Å, rank ≤15) in the 

challenging task of a completely blind 

docking test, for 10 of 13 unbound cases 

tested. pepATTRACT is a docking 

protocol that is fully blind, i.e. it does not 

require any information about the binding 

site. 

 

● Its performance was either similar to or 

better than state-of-the-art local docking 

protocols that do require binding site data. 

 

● Since it is fully blind, the short running 

time makes the pepATTRACT web server 

suitable for large-scale in silico protein–

peptide docking experiments, and the 

performances in the identification of the 

receptor interacting residues can provide a 

useful starting point to justify the design of 

further experiments in the wet lab. 

AutoDockFR ● AutoDock for Flexible Receptors 

(AutoDockFR) is based on 

AutoDock4 scoring function. 

 

● It addresses challenges such as exponential 

growth of the search space and false 

positive results. 

 

●  AutoDockFR reports more correctly 

cross-docked ligands than AutoDock 

Vina on both datasets with solutions found 

for 70.6% vs. 35.3% systems on SEQ17, 

and 76.9% vs. 61.5% on CDK2. 

● AutoDockFR, simulates partial receptor 

flexibility by allowing a large number of 

36 [Ravindrana

th et al. 

2015]  

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27538v1 | CC BY 4.0 Open Access | rec: 15 Feb 2019, publ: 15 Feb 2019



explicitly specified receptor side-chains to 

explore their conformational space, while 

searching for energetically favorable 

binding poses for a given ligand. 

● Previous approaches have so far been 

limited to a small number of flexible 

protein side-chains (2–5), thus requiring 

prior knowledge of receptor side-chains 

undergoing conformational change upon 

binding of a given ligand. The 

demonstrated capability of AutoDockFR in 

identifying right answers for issues with up 

to 14 flexible receptor side-chains reduces 

this requirement. 

eSimDock 

 

● eSimDock is an approach to ligand 

docking and binding affinity prediction.  

● It employs nonlinear machine learning-

based scoring functions to improve the 

accuracy of ligand ranking and similarity-

based binding pose prediction, and to 

increase the tolerance to structural 

imperfections in the target structures. 

 

● The performance of eSimDock is greatly 

unaffected by the deformations of ligand 

binding sites, thus it represents a practical 

technique for across-proteome virtual 

screening using protein models. eSimDock 

uses non-linear statistical model. 

 

25 

 

 

 

 

 

 

 

 

 

[Brylinski et 

al.  2013]  

 

 

PharmDock ● PharmDock is a pharmacophore-based 

docking program that combines pose 

sampling and ranking based on optimized 

protein-based pharmacophore models with 

local optimization using an experimental 

scoring function. 

● Protein-based pharmacophore models were 

improved with the data of potential 

27 

 

 

 

 

 

 

[Hu et al. 

2014]  
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interactions between ligands and the 

protein target. 

● A protein pharmacophore-based docking 

program, PharmDock, was made 

accessible with a PyMOL module. 

PharmDock and the PyMOL module are 

freely available at 

http://people.pharmacy.purdue.edu/~mlill/

programming/pharmdock. 

ArgusLab ● ArgusLab is free docking software used for 

virtual screening and calculating the 

weight of van der Waals interactions 

unimportant for binding free energy 

calculations. 

● The main advantage of this software is in 

terms of accuracy and short computational 

time as compared to other systems. 

19 

 

 

 

 

[Oda et al. 

2009]  

DockingApp 

 

● DockingApp is a freely accessible, easy to 

use, platform-independent application for 

performing docking simulations and virtual 

screening tasks using AutoDock Vina. 

● DockingApp sports a natural graphical 

user interface which greatly encourages 

both the input phase and result analysis, 

which can be visualized in graphical form 

using the embedded JMol applet. 

● DockingApp is a user-friendly software 

application meant to allow a variety of 

differently-skilled users to perform 

docking simulations, with high confidence 

on the results produced and minimal effort 

for setup and configuration.  

● AutoDock Vina, which is the “engine” 

used by DockingApp to carry out the 

actual docking simulation. 

17 [Di Muzio 

et al.  2017]  

KinDock ● KinDOCK is a web server for the analysis 18 [Martin et 
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of ATP-binding sites of protein kinases. 

This characterization depends on the 

docking of ligands already co-crystallized 

with other protein kinases. 

● A structural library of protein kinase– 

ligand complexes was extracted from the 

Protein Data Bank (PDB). This library can 

give both potential ligands and their 

putative binding orientation for a given 

protein kinase. 

● The server and its documentation are freely 

accessible at 

http://abcis.cbs.cnrs.fr/kindock/. 

● It combines structural comparisons, 

immediate transfer of known ligands from 

the template structure into the target 

structure, visualization of the deduced 

protein–ligand complexes and evaluation 

of protein–ligand interactions. 

 al. 2006]  

OptiDock ● The OptiDock strategy portrayed in this 

involves choosing a different but 

representative subset of compounds that 

span the structural space incorporated by 

the full library. These compounds were 

docked individually using the FlexX 

program. 

19 [Sprous et 

al. 2004]  

ParaDock 

 

● ParaDock is an ab initio protein–DNA 

docking algorithm. which joins short DNA 

fragments, which have been rigidly docked 

to the protein based on geometric 

complementarity, to make bent planar 

DNA molecules of discretionary sequence. 

 

● The algorithm was tested on the bound and 

unbound targets of a protein– DNA 

benchmark consisting of 47 complexes. In 

terms of benchmarking, CAPRI acceptable 

solutions were obtained among the 10 top 

21 

 

 

 

 

 

 

 

 

 

 

 

[Banitt et al. 

2011]  
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ranked structures in 83% of the bound 

complexes and 70% of the unbound 

complexes. Without requiring prior 

information of DNA length and sequence 

and within less than 2h per target on a 

standard 2.0 GHz single processor CPU, 

ParaDock gives a fast ab initio docking 

solution. 

● ParaDock algorithm is independent of 

DNA sequence and length. 

 

DockRank ● DockRank is an approach for scoring 

docked conformations based on the degree 

to which the interface residues of the 

docked conformation match a set of 

predicted interface residues. 

● DockRank utilizes interface residues 

predicted by partner-specific sequence 

homology-based protein– protein interface 

indicator (PS-HomPPI), which predicts the 

interface deposits of an inquiry protein 

with a particular association accomplice. 

● Variations of DockRank that use predicted 

interface residues obtained from a few 

protein interface predictors that don't 

consider the binding partner in making 

interface predictions. 

● DockRank is accessible as a server at 

http://einstein.cs.iastate.edu/DockRank/. 

21 

 

 

 

 

 

 

 

 

[Xue et al. 

2014]  

ASPDock 

 

● Atomic Solvation Parameters (ASP) model 

had turned out to be an exceptionally 

successful technique for calculating the 

binding free energy of protein complexes. 

This recommends incorporating it into 

docking algorithms so that the prediction 

accuracy gets improved. In this paper an 

FFT-based calculation was proposed to 

figure ASP scores of protein complexes 

30 

 

 

 

 

 

 

 

 

[Li et al. 

2011]  
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and build up an ASP-based protein-protein 

docking strategy (ASPDock). 

● ASPDock is a docking algorithm based on 

FFT method. Traditional FFT docking 

methods consider the shape 

complementarity as a crucial criterion to 

rank the predicted complex structures 

whereas ASPDock implements atomic 

solvation parameters in traditional FFT 

method to rank the predicted complex 

structures. 

● ASPDock performs better than the shape 

complementarity docking method on 

benchmark 3.0. 

 

 

DockBench ● DockBench 1.0 is a freely accessible 

platform. 

● It automates the entire procedure, from 

docking benchmark to Virtual Screening 

(VS) setup. 

● It offers the possibility to test up to 

seventeen distinct protocols. 

● DockBench 1.0 handles seven docking 

programming bundles and offers the 

likelihood to test up to seventeen unique 

conventions. 

● All functionalities were embedded in a 

graphical user interface (GUI) and are 

composed into five main tabs, 

corresponding to the tasks required to do a 

complete pipeline, from docking 

benchmark studies to VS tests: (1) Input 

Settings; (2) Docking Protocols Settings; 

(3) Results Visualization; (4) Plots 

Visualization; (5) Virtual Screening 

Settings. 

20 [Cuzzolin et 

al. 2015]  

InterEvDock ● InterEvDock is a server for protein 24 [Yu et al.  
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docking based on a free rigid body docking 

procedure. An orderly rigid body docking 

search was performed utilizing the 

FRODOCK program and the resulting 

models were re-scored with InterEvScore 

and SOAP-PP statistical potentials. 

● The InterEvScore potential was 

specifically designed to integrate co-

evolutionary data in the docking 

procedure. 

● InterEvDock web server is the free 

docking server allowing to directly 

predicting the structure of protein–protein 

interactions using co-evolutionary 

information. 

2016]  

MDockPeP ● MDockPeP docks the all-molecule, 

flexible peptide onto the entire protein. 

● It requires only the peptide sequence and 

the protein structure. 

● MDockPeP achieves significantly better 

performance than other existing docking 

methods and is suitable for large-scale 

applications 

23 

 

[Yan et al. 

2016]  

SOFTDOCK ● SOFTDOCK is one of the first molecular 

docking methods developed for protein–

protein docking. 

● It has the ability to represent the molecular 

surface with different shapes and 

properties and to dock a variety of 

molecular complexes with certain 

conformational changes. 

● The SOFTDOCK package utilizes a 

coarse-grained docking strategy to sample 

all possible conformations of complexes. 

SOFTDOCK utilizes Voronoi molecular 

surface and figures several grid-based 

scores. It was shown by the leave-one-out 

test that three geometry scores and an 

17 [Jiang et al. 

2002]   
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FTDOCK-like electrostatics score 

contribute the most to the discrimination of 

near-native conformations. 

HybridDock ● HybridDock is a general hybrid docking 

protocol that utilizes both the protein 

structures and known ligands by 

combining the molecular docking program 

MDock and the ligand-based similarity 

search method SHAFTS 

● Hybrid docking protocol significantly 

improves the performance in both binding 

affinity and binding mode predictions, 

compared to the sole MDock program.  

● It can act as an alternative docking 

approach for modern drug 

design/discovery. 

● Hybrid docking protocol significantly 

enhanced the performance in both binding 

affinity and binding mode predictions, 

compared with the sole MDock program. 

21 

 

 

 

 

 

 

 

[Huang et al 

2015]  

MpSDockZn 

 

● MpSDockZn automatically extrapolate the 

binding poses, i.e., Best Dock (BD), Best 

Cluster (BC) and Best Fit (BF) poses as 

well as to perform consistent cluster and 

docking accuracy analyses. 

16 [Ballante et 

al 2016]  

EpiDOCK ● EpiDOCK is the structure-based server for 

MHC class II binding prediction. 

EpiDOCK predicts binding to the 23 most 

successive human MHC class II proteins. 

● It had identified 90% of true binders and 

76% of non-true binders, with a total 

accuracy of 83%. 

● EpiDOCK is freely accessible at 

http://epidock.ddg-pharmfac.net. 

● EpiDOCK converts the input sequence into 

a collection of overlapping nonamers, 

because the peptide binding core consists 

of nine contiguous residues. Every 

19 [Atanasova 

et al. 2013]  
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nonamer is evaluated by a docking score-

based quantitative matrix (DS-QM) 

derived for the selected HLA class II 

protein and assigned a score. 

pyDockCG 

 

● pyDockCG is another coarse-grained 

potential for protein– protein docking 

scoring and refinement, in view of the 

known UNRES model for polypeptide 

chains. 

 

● The main feature was the inclusion of two 

terms accounting for the Coulomb 

electrostatics and the solvation energy. 

● It is suitable for the treatment of flexibility 

amid docking. 

● The coarse-grained potential yielded 

highly similar values to the full-atom 

scoring function pyDock when connected 

to the rigid body docking sets, however at 

much lower computational cost. 

15 [Solernou et 

al. 2011]  

bhDock 

 

● The bhDock technique uses two-step 

algorithm. First, a comprehensive 

arrangement of low-resolution binding 

sites is determined by analyzing whole 

protein surface and ranked by a simple 

score function. Second, ligand position is 

determined by means of a molecular 

dynamics-based method of global 

optimization beginning from a small set of 

high ranked low-resolution binding sites. 

● Appraisal of the bhDock strategy on the set 

of 37 protein– ligand complexes has shown 

the success rate of forecasts of 78%, which 

is superior to the rate reported for the most 

cited docking techniques, for example, 

AutoDock, DOCK, GOLD, and FlexX, on 

similar sets of complexes. 

● The main developments in docking in this 

17 

 

 

 

 

 

 

 

 

 

[Vorobjev 

et al. 2010]  
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period, covered in this review, are receptor 

flexibility, solvation, fragment docking, 

post-processing, docking into homology 

models, and docking comparisons. 

DockTrina ● DockTrina is a protein docking technique 

for demonstrating the 3D structures of non-

symmetrical triangular trimers.  

● The strategy takes as input pair-wise 

contact predictions from a rigid body 

docking program. It then scans and scores 

all possible combinations of pairs of 

monomers utilizing a very fast root mean 

square deviation test. 

● It ranks the predictions by the use of 

scoring functions which combines triples 

of pair-wise contact terms and a geometric 

clash penalty term. 

● The method takes under 2 min for each 

complex on a modern desktop computer. 

● The method was tested and approved 

utilizing a benchmark set of 220 bound and 

seven unbound protein trimer structures. 

 

13 

 

 

 

 

 

 

 

 

 

 

 

 

[Popov et 

al. 2013] 

 

 

 

 

 

 

 

MacDOCK ● MacDOCK is a similarity-driven docking 

program based on DOCK 4.0.  

 

● It is able to generate orientations consistent 

with the known covalent binding mode of 

the complexes, with a performance similar 

to that of other docking programs. 

 

● It can be used efficiently for the virtual 

screening of covalently bound ligands. 

● Various molecular docking techniques 

have been maximally exploiting all 

accessible structural and chemical 

information that can be obtained from 

proteins, from ligands, and from protein-

62 
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al. 2004]  
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ligand complexes. In this regard, the term 

'guided docking' was introduced to refer to 

docking approaches that incorporate some 

degree of chemical information to actively 

guide the orientation of the ligand into the 

binding site. 

● Accelerating the drug discovery process 

requires predictive computational 

protocols fit for reducing or simplifying 

the synthetic as well as combinatorial 

challenge. Docking-based virtual screening 

strategies have been developed and 

successfully applied to various 

pharmaceutical targets. 

KBDOCK 

 

 

● It is a database system that combines the 

Pfam domain characterization with 

coordinate data from the PDB to analyse 

and display 3D domain– domain 

interactions (DDIs). 

● For a given query domain or pair of 

domains, KBDOCK retrieves and shows a 

non-redundant list of homologous DDIs or 

domain– peptide interactions in a common 

coordinate frame. 

● It may also be utilized to search for and 

visualize interactions involving different, 

but structurally similar Pfam families. 

● The current KBDOCK database was built 

from the June 2013 snapshot of the PDB 

and the latest version of Pfam (release 

27.0). 

● It gathers and classifies hetero and homo 

DDIs, just as all domain– peptide 

connections (DPIs). 

15 [Ghoorah et 

al.  2013]  

ReplicaDock ● Replica exchange Metropolis-Monte Carlo 

method for the low-resolution stage of 

protein-protein docking, which was 

14 [Zhang et 

al. 2013]  
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implemented within the RosettaDock 

program. 

 

● ReplicaDock, uses temperature replica 

exchange to switch between bound and 

unbound thermodynamic states, and 

benchmarked its performance for sampling 

the low-resolution stage of protein-protein 

docking in RosettaDock. 

WinDock ● To make HTD more accessible to a broad 

community, WinDock, an integrated 

application was designed to help 

researchers perform structure-based drug 

discovery tasks under a uniform, user 

friendly graphical interface for Windows-

based PCs.  

 

● WinDock combines existing small 

molecules accessible three-dimensional 

(3D) libraries, homology modeling tools, 

and ligand-protein docking programs in a 

semi-automatic, intelligent way, which 

guides the user through the use of each 

integrated software component. 

11 [Hu et al. 

2007] 

DockScore ● DockScore is a target scoring scheme that 

can be utilized to rank protein-protein 

docked poses. It considers several interface 

parameters, namely, surface area, 

evolutionary conservation, hydrophobicity, 

short contacts and spatial clustering at the 

interface for scoring. 

● DockScore web server can be employed, 

subsequent to docking, to perform scoring 

of the docked solutions, starting from 

multiple poses as inputs. 

● The web server for DockScore can be 

freely accessed at: 

http://caps.ncbs.res.in/dockscore/. 

12 

 

 

 

 

[Malhotra et 

al. 2015]  
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HDOCK ● HDOCK is a web server of the hybrid 

docking algorithms of template-based 

modeling and free docking, in which cases 

with deceiving templates can be protected 

by the free docking protocol. The server 

supports protein– protein and protein– 

DNA/RNA docking and acknowledges 

both sequence and structure inputs for 

proteins. The docking process is quick and 

expends about 10– 20 min for a docking 

run. Tested on the cases with weak 

homologous complexes of less than 30% 

sequence identity from five docking 

benchmarks. 

● The HDOCK pipeline tied with template-

based modeling on the protein– protein and 

protein– DNA benchmarks and performed 

superior than template-based modeling 

with respect to the three protein– RNA 

benchmarks when the best 10 predictions 

were considered. 

● The performance of HDOCK turned out to 

be better when more predictions were 

considered. Combining the outcomes of 

HDOCK and template-based modeling by 

ranking first of the template based model 

additionally enhanced the predictive power 

of the server. 

26 [Yan et al. 

2017] 

 

HiPCDock 

 

● A High-Performance Computing (HPC)-

based molecular docking scheme, termed 

HiPCDock was used for drug discovery 

and development.  

 

● It had been implemented to be used by 

both computational experts and 

experimental scientists.  

 

● Thus it is an automated, user-friendly and 

11 [Zhang et 

al. 2009]   
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efficient package for molecular docking 

based high throughput virtual screening in 

drug discovery. 

MoDock ● MoDock adopts an aggregate function to 

approximate the real solution of the 

original multi-objective and multi-

constraint problem, which smooth the 

energy surface of the combined scoring 

functions.  

● At that point, method of centers and 

genetic algorithms are used to find the 

optimal solution. 

● Trial of MoDock against the GOLD test 

dataset reveals the multi-objective 

procedure improves the docking accuracy 

over the individual scoring functions. 

11 [Gu et al. 

2015]  

LiGendock ● LiGenDock is based on pharmacophore 

models of binding sites, including a non-

enumerative docking calculation.  

● It shows accompanying module 

LiGenPocket, aimed at the binding site 

analysis and at the structure-based 

pharmacophore definition. 

● The optimization procedure was reported 

that was carried out to improve the cognate 

docking and virtual screening performance 

of LiGenDock. 

12 [Beato et al. 

2013]  

mPockDock 

 

● mPockDock is a multi-conformational 

docking approach which reduces the rate 

of false-negatives in activity   prediction. 

 

● mPockDock provide the AUC of 83.8%. 

 

●  It has proved to be efficient for scaffold 

hopping. 

10 [Chen et al. 

2014] 

CRDOCK ● CRDOCK is an ultrafast docking and 

virtual screening program that contains (1) 

14 [Cabrera et 
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a search engine that can use a variety of 

sampling methods and an initial energy 

evaluation function, (2) several energy 

minimization calculations for calibrating 

the binding poses, and (3) distinctive 

scoring functions. 

 

● Testing CRDOCK on two broadly utilized 

benchmarks, the ASTEX diverse set and 

the Directory of Useful Decoys, yielded a 

success rate of ~75% in pose prediction 

and an average AUC of 0.66. 

al. 2012] 

DockQ ● DockQ is a continuous protein-protein 

docking model quality measure derived by 

combining Fnat, LRMS, and iRMS to a 

single score in the range that can be used 

to assess the quality of protein docking 

models. 

 

● Utilizing DockQ on CAPRI models it is 

possible to almost give the original CAPRI 

classification into Incorrect, Acceptable, 

Medium and High quality. 

10 [Basu et al. 

2016]  

 

ELMDOCK 

 

● ELMDOCK is a tool which evaluates a 

rigid-body. It is a deterministic molecular 

docking method which relies solely on the 

three-dimensional structure of the 

individual components and the overall 

rotational diffusion tensor of the complex, 

obtained from nuclear spin-relaxation 

measurements.  

 

● A docking technique, called 

ELMPATIDOCK, is based on the idea of 

combining the shape-related limitations 

from rotational diffusion with those from 

residual dipolar couplings, along with 

ambiguous contact/interface-related 

restrictions obtained from chemical shift 

9 [Berlin et al. 

2011]   
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perturbations. 

FlexGAsDock ● In this method, the optimization of 

molecular docking was divided into two 

sub-problems based on the different effects 

on the protein–ligand interaction energy. 

● An adaptive genetic algorithm was created 

to solve the optimization issue and an 

updated docking program (FlexGAsDock) 

based on the hierarchical docking strategy 

was developed.  

 

● The docking results demonstrated that this 

strategy could be helpfully utilized for the 

efficient molecular drug designing. 

8 

 

 

 

 

 

 

[Kang et al. 

2012]  

 

MEGADOCK-

GPU 

● MEGADOCK is fast protein-protein 

docking programming yet more speed is 

needed for an interactome prediction, 

which is composed of millions of protein 

pairs. 

 

● Ultra-fast protein-protein docking software 

named MEGADOCK-GPU was developed 

by using general purpose GPU computing 

techniques.  

 

● A system was implemented that utilizes all 

CPU cores and GPUs in a computation 

node.  

 

● MEGADOCK-GPU on 12 CPU centers 

and 3 GPUs accomplished a figuring speed 

that was 37.0 occasions quicker than 

MEGADOCK on 1 CPU center.  

 

● The novel docking programming facilitates 

the utilization of docking techniques to 

help large-scale protein interaction 

network analyses. 

8 

 

 

 

 

[Shimoda et 

al. 2013] 
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● MEGADOCK-GPU is openly accessible at 

http://www.bi.cs.titech.ac.jp/megadock/gp

u/. 

DockAFM ● The DockAFM tool sets up a connection 

between topographic images from AFM 

and the molecular dynamics of single 

proteins. 

 

● DockAFM computes the fit of input 

conformations of a given molecule with 

the topographic surface of AFM images. 

Thus, DockAFM can be utilized to 

benchmark protein 3D structures or models 

against an experimental data obtained by 

atomic force microscopy. 

4 [Chaves et 

al. 2013] 

 

HSYMDOCK ● HSYMDOCK is a web server of 

progressive symmetric docking algorithm 

that supports both Cn and Dn symmetry. 

 

● The HSYMDOCK server was broadly 

assessed on three benchmarks of 

symmetric protein complexes, including 

the 20 CASP11–CAPRI30 homo-oligomer 

targets, the symmetric docking benchmark 

of 213 Cn targets and 35 Dn targets, and a 

non-repetitive test set of 55 transmembrane 

proteins. 

 

● It was demonstrated that HSYMDOCK 

obtained a significantly better performance 

than other similar docking algorithms.  

 

● The server supports both sequence and 

structure inputs for the monomer/subunit. 

1 [Yan et al. 

2018]  

MemDock 

 

● MemDock is software for docking α-

helical membrane proteins which takes 

into consideration the lipid bilayer 

environment for docking just as for 

8 [Hurwitz et 

al. 2016]  
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refining and positioning the docking 

candidates. 

UDock ● In UDock, the users can tackle simplified 

representations of protein structures and 

explore protein-protein interfaces' 

conformational space using a gamified 

interactive docking system with on the fly 

scoring. 

 

● It makes use of users' cognitive capabilities 

to provide relevant data for (1) the 

prediction of correct interfaces in binary 

protein complexes and (2) the 

identification of the experimental partner 

in interaction among a set of decoys. 

8 [Levieux et 

al. 2014]  

MpSDock ● MpSDock is software that runs on a 

scheme similar to consensus scoring that 

consists of a force-field-based scoring 

function and a knowledge-based scoring 

function. 

 

● This optimization technique can 

dynamically sample and regenerate decoy 

poses utilized in each iteration step of 

refining the scoring function, hence 

significantly improving both the 

effectiveness of the exploration of the 

binding conformational space and the 

sensitivity of the positioning of the native 

binding poses. 

 

● MpSDock can be used successfully in 

structure-based studies on novel designed 

simplified largazole analogues (SLAs) and 

benzodiazepine derivatives (BZDs) as 

human lysine deacetylase (hKDAC)-

isoform-selective inhibitors. The tool is 

written in Bash code (available over the 

Internet) to be used in Linux operating 

systems. 

7 

 

 

 

 

 

 

 

[Bai et al. 

2015] 
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DockAnalyse ● DockAnalyse is an unsupervised and 

programmed clustering application which 

is based on the DBscan clustering 

technique, which searches for continuities 

among the clusters generated by the 

docking output data representation. 

● The DBscan clustering method is 

extremely powerful and, also, solves some 

of the inconsistency problems of the 

classical clustering methods like, for 

instance, the treatment of outliers and the 

dependence of the previously characterized 

number of clusters. 

● To extract the significant solutions from 

the docking output datafile, an 

unsupervised and programmed clustering 

program called DockAnalyse, was created 

with the R software environment.  

● DockAnalyse was applied to choose the 

best docking solutions and, therefore, to 

model the dynamic protein-interaction 

mechanism among the given proteins. 

Tridimensional structure studies and 

representations were made using the 

following tools: - UCSF Chimera, PyMOL 

and RasMol. 

Benchmark:  

● In comparison to the crystallographic 

protein complex structure, which was 

obtained from the benchmark set, all of 

these satisfactory solutions showed a very 

low RMS (Root Mean Square) deviation. 

This means that only through 

DockAnalyse outputs could it be seen in 

these cases that the dockings were credible 

before realizing that the RMS deviation 

was so low. 

 

14 [Amela et 

al. 2010]   

 

 

 

 

. 

iMOLSDOCK ● MOLSDOCK is a docking tool that 

performs operation on rigid 

4 [Paul  et al. 

2017] 
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receptor/flexible ligand docking. 

iMOLSDOCK utilizes mutual orthogonal 

Latin squares (MOLS) to sample the 

conformation and the docking pose of the 

ligand and also the flexible residues of the 

receptor protein. 

  

● The method then uses a variant of the 

mean field technique to analyze the sample 

to arrive at the optimum. It was 

benchmarked and approved that 

iMOLSDOCK with a dataset of 44 

peptide-protein complexes with peptides. 

LightDock ● LightDock is a multi-scale protein–protein 

docking procedure fit for accommodating 

conformational flexibility and an 

assortment of scoring functions at various 

resolution levels. 

 

● Implicit use of normal modes during the 

search and atomic/coarse-grained 

combined scoring functions yielded 

improved predictive outcomes with respect 

to state-of-the-art rigid-body docking, 

especially in flexible cases. 

3 [Jiménez-

García et al. 

2017]  

DarwinDock 

 

● DarwinDock represents is a strategy for 

small-molecule docking that isolates pose 

generation and scoring into separate stages, 

which allow complete binding site 

sampling followed by efficient, 

hierarchical sampling.  

 

● Their union criterion for complete 

sampling allows for various systems to be 

studied without earlier knowledge of how 

big a set of poses needs to be to span a 

given binding site, making the procedure 

more automatic. The bulky, nonpolar 

residues with alanine were replaced and 

1 [Griffith et 

al. 2017]  
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this process is called "alanization". 

 

● This allows the ligand to interact more 

closely with polar side chains, which help 

to orient the ligand. 

LeDock ● LeDock is better than that using AutoDock 

Vina. Overall, reverse docking is a quick 

and efficient computational method to 

recognize the probable target of the 

compounds with anti-tumor activities, and 

it can be complementary to the biological 

testing strategies. 

2 [Chen et al. 

2017]  

ProQDock ● ProQPred use the machine learning 

method Random Forest trained on 

previously calculated features from the 

programs ProQDock and InterPred. By 

combining some of ProQDock’s features 

and the InterPred score from InterPred the 

ProQpred method generated a higher 

performance than both ProQDock and 

InterPred. 

● This work also tried to predict the quality 

of the PPI model after refinement and the 

chance for a coarse PPI model to succeed 

at refinement. The result illustrated that the 

predicted quality of a coarse PPI model 

also was a relatively good prediction of the 

quality the coarse PPI model would get 

after refinement. 

1 [Rörbrink et 

al. 2016]  

Snapdock ● SnapDock is a highly efficient template-

based protein– protein docking calculation 

which utilizes a Geometric Hashing-based 

structural arrangement plan to align the 

target proteins to the interfaces of non-

redundant protein– protein interface 

libraries. 

 

● Docking of a couple of proteins using the 

2 [Estrin et al. 

2017]  
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22600 interface PIFACE library is 

performed in less than 2 minutes on the 

average. An adaptable version of the 

algorithm permitting hinge movement in 

one of the proteins is exhibited as well. 

TagDock 

 

● TagDock was used to compute all 

geometrically possible docking poses 

between the domains and evaluated those 

compatible with experimental distance 

constraints. The docking represents that 

were reliable with the limitations were then 

additionally refined. 

 

● In TagDock approaches, an ensemble of 

solutions with RMSD 2.8 and 1.6 Å, 

respectively, were obtained. In addition, 

the average of the ensemble solutions 

obtained using the two approaches have an 

RMS deviation of 2.4 Å. The final 

averaged solution obtained by TagDock-

based modeling. 

7 [Smith et al. 

2013]  

 

evERdock ● It is used for the evaluation of protein-

protein complex model structures 

generated by protein docking prediction 

(decoys). 

1 [Takemura 

et al. 2018]  

PATIDOCK ● PATIDOCK is used for efficiently docking 

a two domain complex based solely on the 

novel idea of using the difference between 

the experimental alignment tensor and the 

predicted alignment tensor computed by 

Prediction of Alignment Tensor using 

Integration (PATI).  

 

● The alignment tensor fundamentally 

contains enough information to accurately 

dock a two-domain complex, and the two 

domains can be docked very quickly by 

pre-computing the right set of data. 

22 [Berlin et al. 

2010] 
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ZDOCKpro ● ZDOCKpro is a unique protein-protein 

docking program that depends on the 

ZDOCK and RDOCK programs created at 

Boston University by Professor Zhiping 

Weng.  

 

● It is a valuable tool for protein modelers 

and structural biologists who need to 

perform protein-protein docking, just as for 

bioinformaticians who study protein 

pathways and computational chemists who 

inspect protein or peptide ligand docking.  

21 [Gay et al. 

2007] 
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          Table 8: Comprehensive List of Scoring Functions.  1643 

 1644 

S.No. Scoring Function- Name PubMed ID 

1 DrugScore 30513206 

2 CAII-specific fingerprint-based (IFP) 29937490 

3 CASF-based scoring function 29517771 

4 DITScoreRR 29506237 

5 HawkRank 29282565 

6 PLANTS 29165067 

7 ITScore2 29127582 

8 Graph-approach Scoring Function 28921375 

9 Template-based Scoring function 28905425 

10 GalaxyDock BP2 Scoring Function 28623486 

11 RpveScore 28120375 

12 AutoDock-GIST 27886114 

13 GOLD-based scoring function 27879015 

14 DeltaVina RF20 27859414 

15 HADDOCK Score 27802573 

16 PocketScore 27549813 

17 GRIM 27480696 

18 GBSA score 27618247 

19 QSAR score 27762146 

20 SAnDReS 27686428 

21 HADDOCK Score 27630991 

22 D(3)DOCKxb 27501852 

23 XBSF 27195023 

24 Vinardo 27171006 

25 Glide-Schrodinger Scoring Function 27035259 

26 AutoDock4-based scoring function 26629955 

27 PMF-based Score 26418299 

28 ITScore 26389744 

29 

AutoDock and AutoDock-Vina based 

scoring function 26302746 

30 Mscomplex 26252196 

31 GeauxDock 26250822 

32 DARC-scoring function 26181386 

33 XBScore 25957658 

34 GOLD-based scoring function 28706666 

35 SAXS-based scoring function 25897115 

36 NMR-based scoring function 25877959 

37 Force-field based scoring function 25753725 
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38 Knowledge-based scoring functions 25746437 

39 SCC-DFTB 25296988 

40 HWK 25229183 

41 Surflex-Dock scoring function 25207678 

42 STScore 24623011 

43 Wilma-SIE 24474162 

44 FFT-based scoring function 24227686 

45 PLANS Scoring Function 24163807 

46 XBPMF 24072554 

47 London dG 23975271 

48 SFCscore 23705795 

49 SAXS-based scoring function 23633577 

50 AuPosSOM 23055752 

51 MM-ISMSA 26605745 

52 Evolutionary Trace (ET)-based scores 22809378 

53 SPIDER 22581643 

54 ChemPLP 22371207 

55 

Scoring function based on weighted 

residue network 22272103 

56 The HYDE 22203423 

57 Cscore 22144250 

58 eHiTS 22076470 

59 MedusaScore 22017385 

60 NNScore 22017367 

61 ZRANK 21739500 

62 S1 and S2 scoring 21644546 

63 dG prediction 21612285 

64 FACTS 21541955 

65 RPScore 21432933 

66 

Interaction-motif based scoring 

function 20525216 

67 PM6-DH2 21286784 

68 RF-Score 20236947 

69 MM-GB/SA 20180264 

70 AutoDock4-based scoring function 20150996 

71 

ZDOCK 3.0, ZRANK, ITScore-PP, 

EMPIRE, and RosettaDock 19938153 

72 Glide XP 19421721 

73 AMBER 19320460 

74 KBSF 19255647 

75 EON Scoring 19235177 

76 MOSFOM 19210777 
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77 POLSCORE 19128216 

78 Nscore 19066998 

79 ROTA 18704939 

80 MedusaScore 18672869 

81 

bootstrap-based consensus scoring 

(BBCS) 18426197 

82 GoldScore 18410085 

83 HPNet 18329160 

84 ITScore-PP 18247354 

85 ChemScore 18041758 

86 LigScore2 17985863 

87 F-Score 17685604 

88 HINT 17346861 

89 Thr184 17257425 

90 Glide 4.0 XP 17034125 

91 Surflex-Dock scoring function 17004701 

92 MolDock-PP 16722650 

93 DQ3.2beta 16510499 

94 RPScore 14635126 

95 X-Cscore 12197663 

96 GOLD-based Cscore 11858637 

97 PMF-Scoring 10896316 

98 DOCK-based PMF Score 10411471 

99 ITScorePEP 30368849 

100 Glide SP 30347931 

101 Molegro 30245350 

102 CNN 29992528 

103 3dRPC-Score 29186336 

104 RF-NA-Score 29137330 

105 Convex-PL 28921375 

106 NMRScore 28406291 

107 Wscore 25395044 

108 Smog 10072678 

109 LUDI (Böhm's score) 10072678 

 1645 

 1646 

 1647 

 1648 
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Figure 1: We outline two modules used to achieve the stated goals of this review paper. The 1651 

first module is designed using Perl and Python based text mining scripts which were 1652 

developed as in-house system. This module is supported by SVM based system which find 1653 

relationships between two entities in a given text data using the training datasets. This 1654 

module delivers important information for processing of human expert. This hybrid 1655 

approach helps in completing the literature mining task in much less time (of the order of 10 1656 

fold reduction). 1657 

The next module is designed to capture feedbacks from the users at three levels using web 1658 

based forms. The first level of feedback is obtained from the domain experts cited in the 1659 

review paper. The second level of feedback is obtained from experts who have been invited 1660 

by the journal’s editor during the peer review process phase. The third level of feedbacks is 1661 

obtained from the potential end users or general readers. The data from each level is 1662 

combined to produce final output to determine ranking of the given research manuscript. 1663 

Individual weights are also assigned to each level of feedback so as to adjust the relative 1664 

importance. Intuitively, highest weights are assigned to feedback obtained from level 2, 1665 

followed by level 1 and level 3.  The final output or rank of the given manuscript is 1666 

computed as weighted sum of all levels. This ranking is dynamic in nature and could vary 1667 

over a period depending upon the continuous feedback obtained from the users (level 3).  1668 

  1669 
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