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Background. Choosing reference genes for RT-qPCR for the study of transcriptomic responses of target

genes is often done using “standard” reference genes (housekeeping genes) selected before the

genomic era. Now, published transcriptome data can be used to aid in this selection to avoid the

selection of a reference gene that varies and obscure results.

Methods. We use transcriptome data for the model pathogen fungus Fusarium graminearum to select

housekeeping genes for In Vitro and In Planta conditions. Transcriptome data was downloaded from a

publicly available database. We selected a database where transcriptome chip data from many

experiments using the same chip has been deposited divided the downloaded data into In Vitro and In

Planta conditions based on the information about the experiments.

Results. We ranked the genes with the least variation (relative difference between maximum and

minimum expression) across each dataset. Genes previously shown to perform well as reference genes

for In Vitro conditions in a similar analysis as ours also performed well for In Vitro conditions in our

dataset but worked less well for In Planta conditions. We found 5 reference genes that performed well

under both In Planta conditions and In Vitro conditions.

Discussion. Even if these 5 reference genes performed well, for other (new) target conditions we

recommend making a transcriptome analysis to select well performing reference genes for RT-qPCR if

possible. Alternatively, select 2 of the 5 genes that we show here performed well under both In Planta

and In Vitro conditions.
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21 Abstract

22 Background. Choosing reference genes for RT-qPCR for the study of transcriptomic responses 

23 of target genes is often done using “standard” reference genes (housekeeping genes) selected 

24 before the genomic era. Now, published transcriptome data can be used to aid in this selection to 

25 avoid the selection of a reference gene that varies and obscure results. 

26 Methods. We use transcriptome data for the model pathogen fungus Fusarium graminearum to 

27 select housekeeping genes for In Vitro and In Planta conditions. Transcriptome data was 

28 downloaded from a publicly available database. We selected a database where transcriptome 

29 chip data from many experiments using the same chip has been deposited divided the 

30 downloaded data into In Vitro and In Planta conditions based on the information about the 

31 experiments. 

32 Results. We ranked the genes with the least variation (relative difference between maximum and 

33 minimum expression) across each dataset. Genes previously shown to perform well as reference 

34 genes for In Vitro conditions in a similar analysis as ours also performed well for In Vitro 

35 conditions in our dataset but worked less well for In Planta conditions. We found 5 reference 

36 genes that performed well under both In Planta conditions and In Vitro conditions.

37 Discussion. Even if these 5 reference genes performed well, for other (new) target conditions we 

38 recommend making a transcriptome analysis to select well performing reference genes for RT-
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39 qPCR if possible. Alternatively, select 2 of the 5 genes that we show here performed well under 

40 both In Planta and In Vitro conditions. 

41

42 Introduction

43 To investigate a set of target genes expression during a set of target conditions there is a need for 

44 RT-qPCR reference genes (housekeeping genes) that are stably expressed under all investigated 

45 target conditions (Czechowski, 2005; Eisenberg & Levanon, 2013; Stanton et al., 2017; Carmona 

46 et al., 2017; Gao et al., 2018). Traditional reference genes selected before the genomic era has 

47 been shown to be far from stable under many conditions, and choosing them can obscure the 

48 results (Eisenberg & Levanon, 2013; Stanton et al., 2017). Methods for selecting good reference 

49 genes have been devised although these often relies on qPCR data which produces a recursive 

50 problem since the same method is used to evaluate if the reference genes are working well as 

51 references (Carmona et al., 2017). An alternative strategy using publicly deposited RNAseq data 

52 in SRA datafiles have been devised (Carmona et al., 2017) to select stably expressed reference 

53 genes under different conditions. In a relative recent study aiming to find stable and reliable 

54 reference genes for Fusarium graminearum (a model organism in plant pathology) under In 

55 Vitro conditions it was found that GzUBH (FGSG_01231) and EF1A (FGSG_08811) showed the 

56 best performance (Kim & Yun, 2011). 

57 As far as we know a similar analysis hass not been done for Fusarium graminearum for In 

58 Planta conditions and is thus the purpose of this study. It is also of interest to select 

59 housekeeping genes with a set of different relative expression so as to match these with the 

60 expression of the target genes under target conditions. Affymetrix chips for transcriptomic 

61 analysis were made for F. graminearum relatively early and many experiments by different labs 

62 were carried out with the same chip (FusariumPLEX 

63 http://www.plexdb.org/modules/PD_general/pathogens_list.php). This data is publicly available 

64 and is thus an alternative to RNAseq data for this fungus for evaluating stable expressed 

65 reference genes for In Vitro and In Planta conditions.

66

67 Materials & Methods

68

69 Transcriptome data download and preparation

70 Transcriptome data for Fusarium graminearum (Gibberella zeae

71 (Schwein.) Petch), strain Ph1 was downloaded from PLEX DB. We used the datasets 

72 FusariumPLEX (http://www.plexdb.org/modules/PD_general/pathogens_list.php). The probe 

73 id:s were translated to gene ID following the BROAD protein annotation 

74 (fusarium_graminearum_ph-1_3_proteins.fasta.gz downloaded from ftp.broadinstitute.org, path: 

75 /distribution/annotation/fungi/fusarium/genomes/fusarium_graminearum_ph-1). The translation 

76 of the probe-set to the BROAD database FGSG-codes is found in the Supplemental Data S1 

77 The chip experiment data (Supplemental Table S1 Showing a listing experiments) were split in 

78 two sets, In Planta related data and In Vitro related data and two Excel sheet matrixes with the 
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79 different transcriptome expression data were produced, In Planta expression (Supplemental Data 

80 S2) and In Vitro expression (Supplemental Data S3).

81

82 Finding genes with the least varying gene expression in the two datasets and handling of 

83 the results.

84 A simple method was used to find genes with least variation of relative expression in the two 

85 datasets. Since gene expression of a particular gene can be normally distributed or have many 

86 other distributions, we chose to look for genes with least relative difference between maximum 

87 and minimum expression. Thus, we calculated for the set of treatments maximum expression 

88 minus minimum gene expression divided by average gene expression ((Max-Min)/Average) and 

89 ranked the genes with the lowest values as the least varying genes. Plots illustrating the results 

90 were prepared in Excel or in the statistics freeware PAST (https://folk.uio.no/ohammer/past/).

91

92 Results

93

94 The transcriptomic responses of genes were evaluated for the In Planta and In Vitro datasets 

95 (Supplemental Data S2 and S3). The In Planta datasets contains 64 full transcriptome datasets 

96 and the In Vitro contains 98 datasets from different experiments. We used a simple method for 

97 detecting which genes showed least relative difference between maximum and minimum 

98 expression in respective datasets (see methods). We then ranked the genes for their suitability as 

99 reference genes for qPCR and compared the values for the found genes with the values found for 

100 commonly used reference genes for F. graminearum, gamma-actin (FGSG_07335)(Brown et al., 

101 2011), GAPDH (FGSG_06257)(Kim & Yun, 2011; Harris et al., 2016), EF1A 

102 (FGSG_08811)(Kim & Yun, 2011; Harris et al., 2016) and B-Tubulin (FGSG_09530)(Kim & 

103 Yun, 2011; Harris et al., 2016). We plotted the average expression level versus relative 

104 difference between maximum and minimum expression for all genes for both the In Planta and 

105 the In Vitro data (Supplemental Figures 1 and 2 and Supplemental Data S2 and S3). To highlight 

106 the genes of most interest Fig. 1 show the average expression level versus relative difference 

107 between maximum and minimum expression for the least varying genes at different levels of 

108 average expression for the In Planta experiments. A similar plot for the In Vitro experiments is 

109 shown in Fig. 2. In both plots we have inserted or marked commonly used reference genes. The 4 

110 common reference genes performed well for the In Vitro dataset (Fig. 2) but were not very good 

111 as reference genes for In Planta conditions (Fig. 1). To find genes that performed relatively well 

112 as housekeeping genes under both In Planta and In Vitro conditions we ranked the genes for 

113 their suitability as reference genes under the two conditions and plotted the found ranks for the 

114 genes (Fig. 3). As can be seen in Fig. 3 only five genes were performing well as reference genes 

115 under both In Planta and In Vitro conditions. To further illustrate the difference between In 

116 Planta and In Vitro conditions we investigated how much overlap it was among the 100 top 

117 ranked genes under both conditions and found that only 20 genes were found on both lists (Fig. 4 

118 and Supplemental Table S2). Table 1 lists the 10 best reference genes for each condition as well 
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119 as their rank under the other condition and a list of the 5 genes that performed well under both 

120 conditions (Se also Figure 3). Table 1 also shows that the genes with least varying gene 

121 expression for the In Planta conditions were more likely to perform well also under the In Vitro 

122 conditions than the reverse, and most interestingly EF1A (FGSG_08811) that varied least in 

123 expression in the In Vitro dataset did not perform well In Planta.

124

125 Discussion 
126 As often found, the transcription of genes involved in transcription, translation, and protein 

127 quality control are often among the ones that are most stably related to general transcription level 

128 and thus perform well as reference genes (Eisenberg & Levanon, 2013; Carmona et al., 2017; 

129 Gao et al., 2018). The two reference genes previously found to be most reliable for F. 

130 graminearum In Vitro conditions (Kim & Yun, 2011) also performed very well in our In Vitro 

131 dataset, thus giving support to our approach. In our In Vitro datasets and EF1A was also a top 

132 performing reference gene with little variation between treatments. 

133

134

135 However, EF1A was not a top performing gene under In Planta conditions (Table 1) illustrating 

136 that although many conditions were used in the In Vitro dataset, In Vitro growth only shows a 

137 limited repertoire of gene expression variation. Interestingly, we found that genes performing 

138 well as reference genes under In Planta conditions more frequently performed well also under In 

139 Vitro conditions than the reverse. This could indicate that In Vitro conditions are more likely to 

140 expose only a limited repertoire of gene expression regulations. Thus, In Vivo the pathogen 

141 appears to display more variable gene expression for most genes than In Vitro (see conceptual 

142 model in Fig. 5) and that most In Vitro patterns of expression are found also In Vivo.

143

144 Conclusions

145 Our results can be summarized in the following conclusions concerning selection of reference 

146 genes for F. graminearum RT-qPCR-studies.

147 i. Use published transcriptome data to find reference genes if this data is available for the 

148 target conditions and use simple techniques similar to what is used here or techniques for more 

149 advanced and automatic analysis (Carmona et al., 2017).

150 ii. If no published suitable transcriptome data is available for your conditions of interest, 

151 generate such data and analyze it as in (i).

152 iii. If no published data is available for the conditions of interest and b. is not possible due to 

153 time and money constrains, choose at least two reference genes from the five that are here shown 

154 to perform well both In Planta and In Vitro. Then choose genes involved in different processes. 

155 Hopefully, analysis of gene expression of target genes in relation to both these reference genes 

156 will give similar conclusions.

157
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191 Figure legends
192

193 Figure 1. Plot showing genes with low relative difference between maximum and minimum 

194 expression for different average expression levels in the In Planta dataset. Red dots indicate the 

195 four standard reference genes (Table 1). X-axis=Log2 for average expression of each gene for 

196 the In Planta data. Y-axis= Log scale for Log2 variation values as Log2 maximum relative 

197 difference in expression times 100.

198

199 Figure 2. Plot showing genes with low relative difference between maximum and minimum 

200 expression for different average expression levels in the In Vitro dataset. Red dots indicate the 

201 four standard reference genes (Table 1). X-axis=Log2 for average expression of each gene for 

202 the In Vitro data. Y-axis= Log scale for Log2 variation values as Log2 maximum relative 

203 difference in expression times 100

204

205 Figure 3. Plot showing rank for the relative difference between maximum and minimum 

206 expression for the best performing reference genes in the In Planta dataset versus the rank in 

207 the In Vitro dataset. The 5 genes in the lower left corner are the genes that performs best in 

208 both datasets (see also Table1).

209

210 Figure 4. Illustrates how much overlap (red) it is among the 100 best reference genes in the In 

211 Planta (green) dataset and The In Vitro dataset (blue).

212

213 Figure 5. Thought model of number of conditions F. graminearum can grow under in relation to 

214 the two datasets. Black= Number of conditions F. graminearum can grow under. Green= 

215 Number of conditions F. graminearum is exposed to in the In Planta dataset. Red=Number of 

216 conditions F. graminearum is exposed to in the In Vitro dataset. 

217
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Table 1(on next page)

Genes with least varying gene expression for 3 different set of conditions. In Planta, In

Vitro, In Planta AND In Vitro.
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1 Table 1. Genes with least varying gene expression for 3 different set of conditions. In Planta, In 

2 Vitro, In Planta AND In Vitro

3

4

5

Id Rank in Vitro Rank in Planta Annotation     

FGSG_08811 1 207  elongation factor-1  

FGSG_04289 2 5 probable histone H4  

FGSG_10733 3 16 probable ribosomal protein S28  

FGSG_11627 4 629 probable HTA2 - histone H2A.2  

FGSG_08743 5 89 conserved hypothetical protein  

FGSG_02523 6 4804 probable IgE-dependent histamine-releasing factor  

FGSG_01425 7 2530 probable H+-transporting ATPase  

FGSG_10089 8 1026 related to sporulation-specific gene SPS2  

FGSG_01504 9 913 probable ribosomal protein L31.e.A cytosolic  

FGSG_10235 10 4650 related to rasp f 7 allergen  

 Rank in Planta Rank in Vitro       

FGSG_09733 1 19 related to 20S proteasome maturation factor  

FGSG_00656 2 62 related to F1F0-ATP synthase subunit G  

FGSG_06921 3 23 probable RPL39 - 60S large subunit ribosomal protein L39.e

FGSG_10001 4 214 probable 13 kD U4/U6.U5 snRNP associate protein Snu13

FGSG_04289 5 2 probable histone H4  

FGSG_02461 6 142 probable MDH1 - malate dehydrogenase precursor mitochondrial

FGSG_09667 7 17 ubiquinol cytochrome c reductase 8.5 kDa subunit  

FGSG_09545 8 75 conserved hypothetical protein  

FGSG_01897 9 1793 related to microsomal glutathione S-transferase 3  

FGSG_06021 10 13 ADP/ATP carrier  

 Top 5 among top 20 found within top 100 of both in Planta and in Vitro   

 Rank 

Rank in Vitro ×

rank in Planta     

FGSG_04289 1 10 probable histone H4  

FGSG_09733 2 19 related to 20S proteasome maturation factor  

FGSG_10733 3 48 probable ribosomal protein S28  

FGSG_06921 4 69 probable RPL39 - 60S large subunit ribosomal protein L39.e

FGSG_06021 5 130 ADP/ATP carrier     
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Figure 1(on next page)

Plot showing genes with low relative difference between maximum and minimum

expression for different average expression levels in the In Planta dataset.

Red dots indicate the four standard reference genes (Table 1). X-axis=Log2 for Average

expression of each gene for the In Planta data. Y-axis= Log scale for Log2 variation values as

Log2 maximum relative difference in expression times 100.
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Figure 2(on next page)

Plot showing genes with low relative difference between maximum and minimum

expression for different average expression levels in the In Vitro dataset.

Red dots indicate the four standard reference genes (Table 1). X-axis=Log2 for Average

expression of each gene for the In Vitro data. Y-axis= Log scale for Log2 variation values as

Log2 maximum relative difference in expression times 100.
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Figure 3(on next page)

Plot showing rank for the relative difference between maximum and minimum

expression for the best performing reference genes in the In Planta dataset versus the

rank in the In Vitro dataset.

The 5 genes in the lower left corner are the genes that performs best in both datasets (see

also Table1).
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Figure 4(on next page)

Illustrates how much overlap (red) it is among the 100 best reference genes in the In

Planta (green) dataset and The In Vitro dataset (blue).
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Figure 5(on next page)

Thought model of number of conditions F. graminearum can grow under in relation to

the two datasets.

Black= Number of conditions F. graminearum can grow under. Green= Number of conditions

F. graminearum is exposed to in the In Planta dataset. Red=Number of conditions F.

graminearum is exposed to in the In Vitro dataset.
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