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Lake trophic state classifications provide information about the condition of lentic

ecosystems and are indicative of both ecosystem services (e.g., clean water, recreational

opportunities, and aesthetics) and disservices (e.g., cyanobacteria blooms). The current

classification schemes have been criticized for developing indices that are single-variable

based (vs. a complex aggregate of multi-variables), discrete (vs. a continuum), and/or

deterministic (vs. an inherent randomness). We present an updated lake trophic

classification model using a Bayesian multilevel ordered categorical regression. The model

consists of a proportional odds logistic regression (POLR) that models ordered, categorical,

lake trophic state using Secchi disk depth, elevation, nitrogen concentration (N), and

phosphorus concentration (P). The overall accuracy, when compared to existing

classifications of trophic state index (TSI), for the POLR model was 0.68 and the balanced

accuracy ranged between 0.72 and 0.93. This work delivers an index that is multi-variable

based, continuous, and classifies lakes in probabilistic terms. While our model addresses

all the limitations of the current approach to lake trophic classification, the addition of

uncertainty quantification is important, because the trophic state response to predictors

varies among lakes. Our model successfully addresses concerns with the current approach

and performs well across trophic states in a large spatial extent.
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ABSTRACT15

Lake trophic state classifications provide information about the condition of lentic ecosystems and are

indicative of both ecosystem services (e.g., clean water, recreational opportunities, and aesthetics) and

disservices (e.g., cyanobacteria blooms). The current classification schemes have been criticized for

developing indices that are single-variable based (vs. a complex aggregate of multi-variables), discrete

(vs. a continuum), and/or deterministic (vs. an inherent randomness). We present an updated lake trophic

classification model using a Bayesian multilevel ordered categorical regression. The model consists

of a proportional odds logistic regression (POLR) that models ordered, categorical, lake trophic state

using Secchi disk depth, elevation, nitrogen concentration (N), and phosphorus concentration (P). The

overall accuracy, when compared to existing classifications of trophic state index (TSI), for the POLR

model was 0.68 and the balanced accuracy ranged between 0.72 and 0.93. This work delivers an

index that is multi-variable based, continuous, and classifies lakes in probabilistic terms. While our

model addresses all the limitations of the current approach to lake trophic classification, the addition of

uncertainty quantification is important, because the trophic state response to predictors varies among

lakes. Our model successfully addresses concerns with the current approach and performs well across

trophic states in a large spatial extent.
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INTRODUCTION31

Lake trophic state has become an invaluable tool for lake managers and researchers, and therefore demands32

due diligence to ensure that the statistical methods and results are robust. Lake trophic state is a proxy for33

lake productivity, water quality, biological integrity, and fulfillment of designated use criteria (Maloney,34

1979; USEPA, 1994). Recreation, habitat and species diversity, property and ecological values are closely35

related to lake water quality (Keeler et al., 2015; Leggett and Bockstael, 2000). Hence, monitoring water36

quality is integral to the management of the eutrophication and productivity of lakes. In fact, the Clean37

Water Act requires that all U.S. lakes be classified according to trophic status in order to provide insight38

about overall lake quality (USEPA, 1974). Trophic state can be used both as a communication tool with39

the public and a management tool to provide the scientific accord of eutrophication and character of the40

lake.41

Given its broad applicability and long history, it is important to periodically review and update the42

methods used to calculate trophic state. The concept of trophic state, originally proposed by Naumann43

(1919), is based on lake production and quantified by algal biomass due to their impacts on a lake’s44

biological structure. Naumann (1919) emphasized a regional approach to trophic state due to inter-regional45

variation in lake production. However, current lake trophic state models are one size fits all. Trophic46

state has been formulated using various indices, the most well known was created by Carlson (1977).47
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Building on his work, others have developed numerous classification schemes which vary considerably in48

their approach to classification, variable selection, and category counts. Single parameter indices have49

been developed using nutrient concentrations, nutrient loading, algal productivity, algal biomass, and50

hypolimnetic oxygen (for an extensive review see Carlson and Simpson (1996)).51

Multiparameter index approaches view trophic state as a complex response caused by interaction52

among various physical, chemical, and biological factors. These approaches use relevant combination53

of causal factors usually through definition of sub-indices and integrating the sub-indices to calculate a54

final index (Carlson and Simpson, 1996; Brezonik, 1984). Also, the definition of trophic state should be55

differentiated from its predictors (Carlson and Simpson, 1996). In other words, the trophic state is based56

on the biological condition of a lake. The goal of developing a trophic state indicator should be to link a57

lake’s trophic status to the main causes of eutrophication.58

Classification procedures also differ greatly; some indices are quantitative and continuous whereas59

others are qualitative and discrete. A continuous index accommodates trophic changes along a production60

gradient; however, these are often discretized for reasons of convenience and ease of communication.61

A discrete index classifies lakes into a small number of categories resulting in loss of information on62

position across the trophic continuum and lack of sensitivity to changes in predictor variables. Lakes have63

a large degree of variability in their response to a given variable, like nutrient concentrations, and this64

leads to uncertainty in the trophic response. Hence, trophic state should be formulated in probabilistic65

terms to quantify this uncertainty.66

This paper addresses the aforementioned critiques by developing a Bayesian ordered categorical67

regression model to classify lake trophic state. The proposed model builds upon the existing trophic status68

classification as a starting point and reassesses the trophic state index development and classification69

methods; hence, “rethinks” the lake trophic state classification and index. The model contributes to70

literature on trophic state in several ways. First, it generates an index that is multi-variable by using Secchi71

depth, elevation, total nitrogen concentration, and total phosphorus concentration. Second, the developed72

index is continuous and thus captures a given lakes position along the trophic continuum. Third, the index73

classifies lakes in probabilistic terms. Fourth, while it is critical to locate a lake across trophic continuum,74

it is not economically feasible to monitor all lakes by conventional sampling techniques. We extend the75

developed POLR model by linking easily accessible and universally available GIS variables to nitrogen76

and phosphorus; hence, allowing prediction of the trophic state of all lakes, even not extensively sampled77

ones. We present this extended application as one possible use case of the POLR model.78

MATERIAL AND METHODS79

Data and Study Area80

We used data from the United States Environmental Protection Agency’s 2007 National Lakes Assessment81

(NLA), the National Land Cover Dataset (NLCD), and lake morphometry modeled from the NHDPlus82

and National Elevation Data Set (USEPA, 2009; Homer et al., 2004; Xian et al., 2009; Hollister and83

Milstead, 2010; Hollister et al., 2011; Hollister, 2014; Hollister and Stachelek, 2017). Ancillary data,84

such as Wadeable Streams Assessment ecological regions, is also included in the NLA (Omernik, 1987;85

USEPA, 2006). The sampling population included all permanent non-saline lakes, reservoirs, and ponds86

within the 48 contiguous United States with a surface area greater than 4 hectares and a depth of greater87

than 1 meter, omitting the Great Lakes. A Generalized Random Tessellation Stratified (GRTS) survey88

design for a finite resource was used with stratification and unequal probability of selection, resulting89

in over 1000 lakes sampled across the continental United States during the summer of 2007 (Figure 1).90

The source code for data pre-processing and the resultant data are available on GitHub repository91

https://github.com/usepa/rethinking_tsi (Nojavan A. et al., 2017).92

Statistical Methods93

We developed a proportional odds logistic regression (POLR) to predict lake trophic state using Secchi94

disk depth, elevation, nitrogen concentration (N), and phosphorus concentration (P). The predictors95

in the POLR model were selected from in situ and universally available GIS variables using random96

forest models. We then present an extended application of the developed POLR model using a Bayesian97

multilevel model. Our modeling work flow was as follows:98

1. Variable selection using Random Forest Model: Develop a random forest model, using R’s99
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randomForest package (Liaw and Wiener, 2002a), with 5000 trees using all variables (in100

situ and universally available GIS variables) to identify the best predictor variables for lake trophic101

state.102

2. Develop the POLR model using R function bayespolr from package arm (Gelman et al., 2013) and103

the outputs from previous step.104

3. Assess the performance of the POLR model using a hold-out validation method (90% training set,105

10% evaluation set).106

4. Extended Application107

• Develop a random forest model, using R’s randomForest package, with 5000 trees using108

only GIS variables to identify the best predictor variables for nitrogen and phosphorus.109

• Develop the extended application model (the Bayesian multilevel model) using R’s rjags110

package to run Just Another Gibbs Sampler (JAGS) from inside of R.111

• Assess the performance of the extended application model using a hold-out validation method112

(90% training set, 10% evaluation set).113

Variable Selection114

The goal of variable selection is to identify an optimal reduced subset of predictor variables. Here we used115

the results from random forest modeling as a means of variable selection. Random forest modeling is a116

machine learning algorithm that builds numerous statistical decision trees in order to attain a consensus117

predictor model (Breiman, 2001). Each tree is based on recursively bootstrapped data, and the out-of-bag118

(OOB) data, cases left out of the sample, provides an unbiased estimation of model error and measure119

of predictor variable importance. Random forest modeling was conducted in randomForest package120

in R (Liaw and Wiener, 2002b; R Core Team, 2016). We developed random forest models to select121

predictor variables to model trophic state. The random forest model for trophic state included in situ water122

quality data and universally available GIS data, e.g. landscape data (see Hollister et al. (2016) for detailed123

methods). We used percent increase in mean squared error to examine variable importance. We selected124

the variables that were above 0.1 percent increase in mean squared error.125

Variable Transformation126

Using the central limit theorem, Ott (1995) demonstrates that environmental concentration variables are127

log-normally distributed. As such, we log-transformed total nitrogen concentration, total phosphorus128

concentration, and secchi disk depth data prior to our statistical analyses. Additionally, we note that the129

interpretation of regression model coefficients are different when log-transformed (Qian, 2010). Further,130

all predictors in the POLR model (discussed in the following section) were standardized based on the131

discussion of Gelman and Hill (2007) and Gelman (2008) on centering and scaling predictors to simplify132

the interpretation of the intercept when predictors cannot be set equal to zero. Scaling also improves133

the interpretation of coefficients in models with interacting terms, and coefficients can be interpreted on134

approximately a common scale. Weisberg (2005) also demonstrates that centered predictors would result135

in uncorrelated regression model coefficients.136

Proportional Odds Logistic Regression Model137

The response variable, lake trophic status, is a categorical variable that can take on four values, i.e.138

oligotrophic (1), mesotrophic (2), eutrophic (3), and hypereutrophic (4). Further, the categories are139

ordered across the trophic continuum. The proportional odds logistic regression (POLR) model, a140

generalized linear modeling technique, has been used to account for the ordered categories of the response141

variable (Gelman and Hill, 2006).142

The ordered categorical response variable, lake trophic status, can be described with a series of logistic143

regressions in its simplest form as follows:144



















Pr(lake trophic status > oligotrophic) = logit−1(trophic state index)

Pr(lake trophic status > mesotrophic) = logit−1(trophic state index− cutpoint 1)

Pr(lake trophic status > eutrophic) = logit−1(trophic state index− cutpoint 2)

Pr(lake trophic status > hypereutrophic) = logit−1(trophic state index− cutpoint 3)

(1)
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The probability of a lake’s trophic status being, for example eutrophic, is calculated by Pr(lake trophic status>145

mesotrophic)−Pr(lake trophic status> eutrophic). The trophic status is eutrophic when the Pr(lake trophic status>146

eutrophic) is the highest in comparison to the probability of other trophic categories, which happens147

when cMeso|Eu < trophic state index < cEu|Hyper.148

Figure 2 depicts all the elements of the POLR model. Secchi disk depth (SDD), elevation, nitrogen,

and phosphorus are the four predictors of the trophic state index. Associated with each predictor is a

coefficient α . There are three cutpoints or thresholds for the four categories of the response variable. The

uncertainty of the trophic state index is shown in figure 2 by τ2. Mathematically, the POLR model was

set up as follows:

yi =



















Oligotrophic if zi < cOligo|Meso

Mesotrophic if zi ∈ (cOligo|Meso,cMeso|Eu)

Eutrophic if zi ∈ (cMeso|Eu,cEu|Hyper)

Hypereutrophic if zi > cEu|Hyper

(2)

zi ∼ logistic(XA,τ2)

where trophic state index (XA) is equal to Secchi Disk Depthi × αSDD + Phosphorusi × αPhosphorus +149

Nitrogeni × αNitrogen + Elevationi × αElevation; with the coefficients A: {αSDD,αphospurous,αNitrogen,αElevation,}150

and ck|k+1 (known as cutpoints or thresholds), the design matrix of predictors X , and scale parameter of151

τ2 . The two adjacent cutpoints and XA are used to classify the response variable. The cutpoints and152

coefficients are estimated simultaneously using maximum likelihood.153

Model Evaluation154

The NLA 2007 includes trophic state classification based on chlorophyll a, nitrogen, and phosphorus.155

There is discrepancy in the results of classification based on chlorophyll a, nitrogen, and phosphorus. The156

reasons behind the lack of agreement between the common classification methods is discussed in detail157

by Carlson and Havens (2005). We used a hold-out validation method where we divided the data into158

two subsets: a training set, used to develop the predictive model, and a validation set, used to assess the159

performance of the developed model. However, we avoided deviations in our evaluation data by only160

using 10% of the consistently classified lakes across the three trophic state classification methods as161

our validation set. We developed the model using the rest of the data. This is similar to the concept of162

“posterior predictive model checking” described by Gelman et al. (2014), where the model predictions163

are being compared to the observed data looking for any discrepancies. We decided to use validation as164

opposed to validating the model with a new data set as a comparable dataset was not available during165

the model development process. We evaluated the model using balanced accuracy, the average of the166

proportion of correct predictions within each class individually, and overall accuracy, the proportion of167

the total number of correct prediction.168

RESULTS169

Variable Selection: Random Forest170

The random forest models provided estimates of variable importance for trophic state and the results are171

reported in figure 4. The number of variables for each response variable was decided using the variable172

selection plots (Figure ??) which show percent increase in mean squared error as a function of the number173

of variables. We used seventy predictor variables in the random forest model for trophic state and it174

indicated the best representation of trophic state classification could be achieved using four variables,175

adding more than four variables had incremental (< 0.1) impact on root mean square error. The four most176

important variables were turbidity, total phosphorus, total nitrogen, and elevation. The NLA uses secchi177

disk depth as a measure of water clarity and, hence, we used it as a proxy for turbidity, as it is cheaper to178

measure and readily available for most lakes.179
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Proportional Odds Logistic Regression Model180

The trophic state index is calculated as: T SI = −1.69 × Secchi Disk Depthi + 0.69 × Nitrogeni + 0.55181

× Phosphorusi −0.56 × Elevationi. The classification rules, based on cutpoints, are described below:182

yi =



















Oligotrophic if zi <−3.36

Mesotrophic if zi ∈ (−3.36,−0.18)

Eutrophic if zi ∈ (−0.18,2.62)

Hypereutrophic if zi > 2.62

(3)

zi ∼ logistic(T SI,1)

The resulting POLR model has three cutpoints and four slope coefficients (Table 1). Figures 7 and 8183

summarize the model uncertainty. The POLR model returns four probabilities associated with each184

trophic state as opposed to one fixed classification (Figure 8). The off-diagonal elements in table 1 are185

the mis-classified lakes. There are management implications with misclassification of lakes. However,186

unlike previous classification schemes, the proposed model keeps the continuous index as well as the187

discretized classes. Further, each class has a probability. For management applications one needs to pay188

attention to where the lake is along the continuum (continuous index) and how confident we are about the189

assigned classification (uncertainty quantification). Figures 7 and 8 illustrate that the proposed trophic190

index and classification method are now a continuum with quantified probability, hence suggesting a191

modified eutrophication scale that captures the inherit variability of eutrophication.192

193

The overall accuracy is 0.68 and the balanced accuracies are 0.93, 0.83, 0.72, 0,73 for oligotrophic,194

mesotrophic, eutrophic, and hypereutrophic classes, respectively. Table 2 shows the confusion matrix for195

the POLR model. Each element of the confusion matrix is the number of cases for which the actual state196

is the row and the predicted state is the column.197

EXTENDED APPLICATION198

The drawback of the POLR model is the cost of monitoring multiple predictor variables (e.g., nutrients).199

This is addressed in our extended application by linking nitrogen and phosphorus to universally available200

GIS variables. We link nitrogen and phosphorus in the POLR model to a separate nutrient model built201

from universally available GIS data. Thereby, avoiding the need for nitrogen and phosphorus data, costly202

variables to measure for all lakes. Figure 3 represents the regression models. The model is grouped into203

two blocks (gray shaded rectangles). The trophic state classification regression, the POLR model in the204

lower block, includes nitrogen, phosphorus, secchi disk, and elevation as predictors. The nutrient model,205

in the upper block, estimates the means of nitrogen and phosphorus based on ecoregion, % evergreen206

forest, and latitude. The predictor variables for the second level models were selected with a random207

forest modeling approach (see subsection on Variable Selection). The two blocks are connected through208

the estimated means of nitrogen (µNitrogen) and phosphorus (µPhosphorus) to form the combined model209

which enables trophic state classification for all lakes without the costly sampling requirement. The210

relationship between nitrogen, phosphorus, and their predictors was examined using multilevel linear211

regression models. The standard deviation of the normal distribution, as well as each parameter in the212

regression model, were then assigned non-informative prior distributions (uniform, or nearly so, to allow213

the information from the likelihood to be interpreted probabilistically). The extended application model214

and its results are described in detail in the supplementary material.215

Random forest modeling, see subsection on variable selection, selected latitude, eco-region, and216

percent evergreen forest as the top predictor variables of total nitrogen and phosphorus. These selected217

variables appear to be capturing patterns of total nutrient concentration at three different spatial scales.218

The partial dependency plot for latitude (Figure ?? & ??) depicts high concentrations in the northern219

and southern extremes of the continental US. The lowest predicted concentrations correspond to the220

mid-latitudes. The ecoregion variable represents an intermediate scale among these three variables221

and represents the variation between the regions. Finally, the percent evergreen variable is presumably222

capturing how total nutrients in lakes respond to the land use decisions immediately adjacent to lakes. The223

percent evergreen forest variable is a measure of forest within a 3 kilometer buffer around each lake. It is224
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striking that total nutrient concentration in lakes across the continental US is most successfully modeled225

when using predictors summarizing three discrete spatial scales.226

As mentioned, the extension of our POLR model uses eco-region, latitude, and watershed level227

percent evergreen forest as predictors for nitrogen and phosphorus. This contrasts with prior trophic228

state classification models that are applied to all lakes, regardless of the differences across scale. Lake229

trophic index, and hence lake trophic classes, should be calculated differently in different eco-regions to230

accommodate variation in landform and climate characteristics and our proposed model and extension231

bares this out by identifying and including and eco-regional approach to quantifying trophic state.232

Furthremore, the developed multilevel model structure can be further expanded to lake-specific trophic233

state index, upon availability of multiple measurements for each lake.234

DISCUSSION235

Modeling Approach236

The modeling approach presented here uses a Bayesian ordered categorical regression model (i.e. the237

POLR model). The benefits of this approach are that it uses multiple variables to predict lake trophic238

state and creates a continuous trophic index. A multi-variable predictor model accounts for chemical,239

biological, and physical aspects of trophic state and quantifies lake trophic state across a continuum.240

This is important because lake trophic state is a variable that changes gradually across a gradient, yet it241

is important to predict where across the trophic continuum a lake falls, especially for lake restoration242

and management projects. The continuous trophic index helps us capture lake trophic sensitivity to243

changes in nitrogen and phosphorus. Additionally, the proposed model quantifies the uncertainty of lake244

trophic response to changes in nutrients, as the response varies from lake to lake. Lastly, the lake trophic245

index may also be presented as a classification (e.g., oligotrophic, mesotrophic, etc.) which facilitates246

organization and communication.247

Management Implications248

Eutrophication has constituted a serious problem for aquatic ecosystems during the past decades, largely249

due to excess nutrients associated with anthropogenic activities. Lake restoration projects aim to shift250

water quality of lakes to or closer to their undisturbed conditions. It is critical to quantitatively plan251

and assess the recovery of lakes in restoration projects. Our model has potential as a tool for nutrient252

management scenario analysis as we can quantify how altering nutrients can move a lake across the253

trophic continuum. Further, updating the developed model, described in the following, evaluates the254

efficacy of restoration plans. Ecosystem managers and policy makers need tools that can help them learn255

from experience and enable them to manage the ecosystem as new knowledge becomes available. Several256

studies have called for adaptive management of eutrophication (Rabalais et al., 2002; Stow et al., 2003).257

Bayesian Updating and Model Accuracy258

Bayesian model updating is based on the repeated use of the Bayes theorem, whereby the posterior of259

the model developed with non-informative priors and the NLA 2007 data can be used as the prior for the260

Bayesian model updating step. The model can also be used for new sets of lakes not included in the NLA261

2007 data and/or without costly sampling data.262

The spatial model updating steps and procedure are similar to temporal model updating. The presented263

model quantifies lake trophic state and the uncertainty around it. The trophic state quantification can264

help in assessing lake ecological state before and after restoration. Additionally, a key symptom of265

eutrophication is cyanobacteria dominance in lakes (Conley et al., 2009; Hollister and Kreakie, 2016;266

Przytulska et al., 2017). The trophic state can be used as a gauge to evaluate how prone lakes are to,267

often toxic, cyanobacteria blooms. The uncertainty quantification helps express the resisting response of268

cyanobacteria to variation of phosphorus and nitrogen.269

The POLR model has an overall accuracy of 0.68, yet this measure of performance fails to capture270

whether our stated goals were satisfactorily achieved. The accuracy measure requires that we use previous271

categorization of lakes based on single parameter trophic state. Somewhat circular to our goals, we are272

relying on discretized classifications to measure the performance of our continuous probabilistic predic-273

tions. We partially addressed this problem by using only lakes that were consistently categorized using the274

three common classification methods (i.e., chlorophyll a, nitrogen, and phosphorus) for evaluation data.275

A continuous scale better summarizes uncertainty, represented in the probability of being in a certain276
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class (i.e. oligotrophic, mesotrophic, and etc.). In an attempt to circumvent this issue, we introduce277

balanced accuracy to measure performance of each trophic state. Balanced accuracy (as well as the278

confusion matrix) illustrates that misclassifications are more likely to be in adjacent trophic states. This279

phenomenon is also graphically illustrated in Figures 7 and 8. To be clear, the intent of our model is not280

to accurately predict how lakes are classified currently, rather we show, that our model, while improving281

upon the statistical foundation for classification, will be comparable to existing trophic state classifications.282

Although we are presenting a novel method, the results are consistent with our intuitive and historical283

understanding of lake trophic state.284
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Table 1. Estimated POLR model coefficients and standard errors

Mean Std. Error

Slope Coefficients

αSecchi Disk Depth -1.69 0.13

αNitrogen 0.69 0.13

αPhosphorus 0.56 0.14

αElevation -0.56 0.08

Cutpoints

COligo|Meso -3.36 0.15

CMeso|Eu -0.18 0.09

CEu|Hyper 2.62 0.13

Table 2. Confusion matrix for POLR model. Each element of the matrix is the number of cases for

which the actual state is the row and the predicted state is the column.

Oligo Meso Eu Hyper

Oligo 7 1 0 0

Meso 1 14 9 2

Eu 0 0 16 8

Hyper 0 1 4 10
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Figure 1. Map of the distribution of National Lakes Assessment sampling locations. Also Wadeable

Stream Assessment (WSA) ecoregions are depicted in the map. Areas in an ecoregion have similar

landform and climate characteristics.
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Figure 2. Directed Acyclic Graphical (DAG) model. The figure depicts the developed POLR model

with its four predictors of secchi disk depth (SDD), elevation, nitrogen, and phosphorus.

11/17

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27536v1 | CC BY 4.0 Open Access | rec: 14 Feb 2019, publ: 14 Feb 2019



σ2
Nitrogenσ2

Phosphorus

Latitude

βLatitude/γLatitude

% Evergreen

β%Evergreen/γ%Evergreen

Eco-Region

βEco−Region/γEco−Region

µNitrogen τ2Nitrogen

Nitrogen

µPhosphorusτ2Phosphorus

Phosphorus

Nutrients
¯

σ2
Trophic State

SDD

αSDD αNitrogen

Elevation

αElevationαPhosphorus

µTrophic State

Trophic State Index

cEu|HypercMeso|EucOligo|Meso

Trophic State
¯

τ2Trophic State Index

Trophic State

Figure 3. Directed Acyclic Graphical (DAG) model. The lower box depicts the POLR model with its

four predictors of secchi disk depth (SDD), elevation, nitrogen, and phosphorus. The upper box is the

extension to the POLR model to predict nitrogen and phosphorus using universally available GIS

variables.
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Figure 4. Random Forest model’s output for POLR model predictors. Importance plot for all variables.

Shows percent increase in mean squared error. Higher values of percent increase in mean squared error

indicates higher importance.
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Figure 5. Random Forest model’s output for nitrogen predictors. Importance plot for GIS variables.

Shows percent increase in mean squared error. Higher values of percent increase in mean squared error

indicates higher importance.
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Figure 6. Random Forest model’s output for phosphorus predictors. Importance plot for GIS variables.

Shows percent increase in mean squared error. Higher values of percent increase in mean squared error

indicates higher importance.
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Figure 7. Graphical presentation of the POLR model. The x-axis is the trophic state index, the y-axis is

each lake’s trophic state, vertical lines show estimated cutpoints, and curve shows expected trophic state

as estimated using ordered logistic regression.
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Figure 8. Graphical presentation of the POLR model. The x-axis is the trophic state index, the y-axis is

the probability of being classified into one of the 4 trophic state classes, and the vertical lines and blue

bars are the cutpoints ± one standard error.
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Supplementary Material for “Rethinking the Lake

Trophic State Index”

The models were set up as follows:

Nitrogenij ∼ N (µNitrogenij
, σ2

Nitrogen) (S1)

where µNitrogenij
= XNitrogenB, XNitrogen is the matrix of predictors, and B

is the vector of coefficients. Nitrogenij is the ith nitrogen observation in the
jth ecoregion.

Phosphorusij ∼ N (µPhosphorusij
, σ2

Phosphorus) (S2)

where µPhosphorusij
= XPhosphorusΓ, XPhosphorus is the matrix of predictors,

and Γ is the vector of coefficients. Phosphorusij is the ith phosphorus observa-
tion in the jth ecoregion.

The overall accuracy of the extension model was 0.6 and the balanced accu-
racies were 0.78, 0.77, 0.69, 0.68 for oligotrophic, mesotrophic, eutrophic, and
hypereutrophic classes, respectively (Table S1). Table S2 shows the confusion
matrix for the POLR model.

The extension model calculates lake trophic index and classes differently for
different eco-regions. Please refer to Table S1 for varying coefficients in different
eco-regions. For example, eco-regions 3, 6, and 5, corresponding to Northern
Plains, Temperate Plains, and Southern Plains, have the highest positive coeffi-
cients for nitrogen. Hence, nitrogen plays a significant role in moving the trophic
state index and class toward the eutrophic/hypereutrophic side of the trophic
continuum. As another example, in eco-regions 3, 6, and 5, corresponding to
Northern Plains, Temperate Plains, and Southern Plains phosphorus plays a
significant role in moving the trophic state index and class toward the eutroph-
ic/hypereutrophic side of the trophic continuum. Further Table S1 shows the
coefficients for latitude and percent evergreen. We included these predictors
even though they were not statistically significant. Based on the discussions in
gelman2007data it is generally fine to keep a statistically insignificant predictor
with the correct sign in. It may not help predictions dramatically but is also
probably not hurting them.
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Figure S1: Random Forest model’s output for POLR model. Shows percent
increase in mean squared error as a function of the number of variables.
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Figure S2: Random Forest model’s output for nitrogen with GIS only variables
as predictors. Shows percent increase in mean squared error as a function of
the number of variables.
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Figure S3: Random Forest model’s output for phosphorus with GIS only vari-
ables as predictors. Shows percent increase in mean squared error as a function
of the number of variables.
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Figure S4: Partial dependency plot for total nitrogen versus latitude: the effect
of latitude on total nitrogen when the rest of the predictors are held constant.
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Figure S5: Partial dependency plot for total phosphorus versus latitude: the
effect of latitude on total phosphorus when the rest of the predictors are held
constant.
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Table S1: Coefficients for the multilevel model.

Mean Standard Deviation

Cutoff points/Thresholds
COligo|Meso -156.60 44.04
CMeso|Eu -6.18 8.29
CEu|Hyper 121.32 35.04

POLR model coefficients

αElevation -40.20 12.86
αNitrogen -44.33 29.29
αPhosphorus 165.90 46.96
αSecchiDiskDepth 0.18 5.23

Multilevel model coefficients for nitrogen

β%Evergreen 0.00 0.01
βEcoregion1

0.34 0.13
βEcoregion2

-0.78 0.12
βEcoregion3

0.96 0.15
βEcoregion4

-0.37 0.10
βEcoregion5

0.59 0.10
βEcoregion6

0.68 0.09
βEcoregion7

-0.01 0.10
βEcoregion8

-1.00 0.10
βEcoregion9

0.11 0.12
βLatitude 0.11 0.05

Multilevel model coefficients for phosphorus

γ%Evergreen -0.00 0.01
γEcoregion1

0.40 0.09
γEcoregion2

-0.90 0.09
γEcoregion3

0.73 0.11
γEcoregion4

-0.38 0.08
γEcoregion5

0.53 0.08
γEcoregion6

0.71 0.07
γEcoregion7

-0.32 0.08
γEcoregion8

-0.69 0.08
γEcoregion9

0.07 0.09
γLatitude -0.03 0.03

Logistic distribution’s scale parameter σ 75.64 21.27

Table S2: Confusion matrix for multilevel POLR model. Each element of the
matrix is the number of cases for which the actual state is the row and the
predicted state is the column.

Oligo Meso Eu Hyper
Oligo 5 3 0 0
Meso 3 12 7 1
Eu 0 0 16 10
Hyper 0 1 3 9
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