
 

A peer-reviewed version of this preprint was published in PeerJ
on 26 July 2019.

View the peer-reviewed version (peerj.com/articles/7359), which is the
preferred citable publication unless you specifically need to cite this
preprint.

Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, Wang Z. 2019.
MetaBAT 2: an adaptive binning algorithm for robust and efficient
genome reconstruction from metagenome assemblies. PeerJ 7:e7359
https://doi.org/10.7717/peerj.7359

https://doi.org/10.7717/peerj.7359
https://doi.org/10.7717/peerj.7359


MetaBAT 2: an adaptive binning algorithm for robust and

efficient genome reconstruction from metagenome

assemblies

Dongwan Kang  1  ,  Feng Li  2  ,  Edward S Kirton  1  ,  Ashleigh Thomas  1  ,  Rob S Egan  1  ,  Hong An  2  ,  Zhong Wang
Corresp.  1, 3, 4 

1 Department of Energy, Joint Genome Institute, Walnut Creek, CA, United States of America

2 School of Computer Science and Technology, University of Shanghai for Science and Technology, Hefei, Anhui, China

3 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley, United States of America

4 School of Natural Sciences, University of California at Merced, Merced, United States of America

Corresponding Author: Zhong Wang

Email address: zhongwang@lbl.gov

We previously reported MetaBAT, an automated metagenome binning software tool to

reconstruct single genomes from microbial communities for subsequent analyses of

uncultivated microbial species. MetaBAT has become one of the most popular binning tools

largely due to its computational efficiency and ease of use, especially in binning

experiments with a large number of samples and a large assembly. MetaBAT requires

users to choose parameters to fine-tune its sensitivity and specificity. If those parameters

are not chosen properly, binning accuracy can suffer, especially on assemblies of poor

quality. Here we developed MetaBAT 2 to overcome this problem. MetaBAT 2 uses a new

adaptive binning algorithm to eliminate manual parameter tuning. We also performed

extensive software engineering optimization to increase both computational and memory

efficiency. Comparing MetaBAT 2 to alternative software tools on over 100 real world

metagenome assemblies shows superior accuracy and computing speed. Binning a typical

metagenome assembly takes only a few minutes on a single commodity workstation. We

therefore recommend the community adopts MetaBAT 2 for their metagenome binning

experiments. MetaBAT 2 is open source software and available at

https://bitbucket.org/berkeleylab/metabat.
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ABSTRACT16

We previously reported MetaBAT, an automated metagenome binning software tool to reconstruct single

genomes from microbial communities for subsequent analyses of uncultivated microbial species. MetaBAT

has become one of the most popular binning tools largely due to its computational efficiency and ease of

use, especially in binning experiments with a large number of samples and a large assembly. MetaBAT

requires users to choose parameters to fine-tune its sensitivity and specificity. If those parameters are not

chosen properly, binning accuracy can suffer, especially on assemblies of poor quality. Here we developed

MetaBAT 2 to overcome this problem. MetaBAT 2 uses a new adaptive binning algorithm to eliminate

manual parameter tuning. We also performed extensive software engineering optimization to increase

both computational and memory efficiency. Comparing MetaBAT 2 to alternative software tools on over

100 real world metagenome assemblies shows superior accuracy and computing speed. Binning a

typical metagenome assembly takes only a few minutes on a single commodity workstation. We therefore

recommend the community adopts MetaBAT 2 for their metagenome binning experiments. MetaBAT 2 is

open source software and available at https://bitbucket.org/berkeleylab/metabat.
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INTRODUCTION30

Studies of microbial communities based on microbial isolation and cultivation have been gradually31

replaced by high throughput, whole genome shotgun sequencing based metagenomics (reviewed in32

(Van Dijk et al., 2014; Tringe and Rubin, 2005)). Advances in computational metagenomics have33

produced tools that assemble billions of short sequence reads derived from deep metagenome sequencing34

into larger fragments (contigs), and subsequently group them into draft genomes by metagenome binning35

(reviewed in (Kang et al., 2016)).36

Recently we have witnessed exciting progress in metagenome binning as several automatic binning37

tools become available. Our group developed MetaBAT (Kang et al., 2015) in 2015, among a few others38

developed around the same time, including MyCC (Lin and Liao, 2016), MaxBin 2.0 (Wu et al., 2015),39

MetaWatt-3.5 (Strous et al., 2012) and CONCOCT (Alneberg et al., 2014). These binning software tools40

have achieved various extents of success with simulated data or real world data. However, in practice the41

quality of binning experiments is largely dependent on characteristics of the underlying dataset and hence42

the choice of binning parameters. Our users and ourselves both independently observed that MetaBAT’s43

binning performance can vary greatly among different parameter choices. As there are no established44
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parameter optimization methods, to get a comprehensive binning result one has to run multiple binning45

experiments with different sets of parameters followed by merging the results. For example, in a recent46

large scale study of over 1500 metagenome datasets, 8,000 draft genomes were obtained by merging 547

MetaBAT binning results, each derived from a different parameter set (Parks et al., 2017).48

In the recent Critical Assessment of Metagenome Interpretation (CAMI) metagenome binning chal-49

lenge (Sczyrba et al., 2017), MetaBAT is the fastest and most robust software that can scale up to large50

metagenomic datasets with millions of contigs. Its accuracy was not the best, however, likely due to its51

lack of robustness towards various datasets. We therefore replaced the core binning algorithm with a52

completely new one and report MetaBAT 2 (the original MetaBAT hereafter referred as MetaBAT 1) in53

this study. The new algorithm consists of several new aspects: 1) normalized TNF scores, 2) a graph54

structure and an iterative graph partitioning procedure for clustering and 3) additional steps to recruit55

smaller contigs. In addition, we greatly improve the computational efficiency so that the increase in56

calculations does not affect the program’s scalability.57

MetaBAT 2 has been packaged by the research community as a Bioconda package (https://58

bioconda.github.io/recipes/MetaBAT2) and as a standard APP on the DOE Knowledgebase59

platform (https://kbase.us/applist/apps/metabat/run_metabat/release). A docker60

image is also available (https://hub.docker.com/r/metabat/metabat). There are numer-61

ous studies that have reported using MetaBAT 2 and its associated tools for successful large scale62

metagenomic analyses (e.g., Rinke et al. (2018); Bahram et al. (2018); Pasolli et al. (2019)). Here we63

focus on describing how MetaBAT 2 works, while providing performance benchmarks on a few synthetic64

datasets and a large number of real world datasets.65

METHODS66

The adaptive binning algorithm67

MetaBAT 2 uses the same raw tetra-nucleotide frequencies (TNF) and abundance (ABD) scores as those68

in MetaBAT 1. There are three major changes in binning algorithms as listed below.69

Score normalization70

We use ABD to rank-normalize TNF (where the smallest TNF becomes the smallest ABD and the greatest

TNF becomes the greatest ABD, and so on) then the composite score (S) is calculated by the geometric

mean of TNF and ABD as the following,

S = T NF(1−w) ∗ABDw

where w = nABD/(nABD+ 1), where nABD represents the number of effective samples which have

enough coverage (by default > 1) for at least one of the contigs. Whenever there are 3 or more samples

available, an abundance correlation score (COR) is also calculated using the Pearson correlation coefficient

and then rank-normalized using ABD. In this case, S is calculated as the geometric mean of TNF, ABD,

and COR.

S = sqrt(T NF(1−w) ∗ABDw ∗COR)

In this way all scores fall within the same range. S should be more accurate especially when the71

communities are extremely complex.72

Graph-based clustering73

Instead of the modified k-medoid clustering algorithm implemented in MetaBAT 1, MetaBAT 2 uses a74

graph based structure for contig clustering. A graph with contigs as nodes and their similarity as edges is75

constructed in two steps. During the first step, an initial graph is constructed by only using TNF. Since76

TNF usually are not very reliable, we only use strong TNF scores for the first stage graph. Here we also77

put a limit on the number of edges per node to reduce computation, a parameter that can be adjusted to78

control sensitivity/specificity.79

The second step is an iterative procedure of graph building and graph partitioning. At each iteration,80

a subset of edges with the highest similarity scores (S) are incorporated into the above graph, followed81

by graph partitioning using a modified label propagation algorithm (LPA, (Zhu and Ghahramani, 2002)).82

The LPA was modified so that the partitioning is deterministic since the search order is decided by edge83

strength, and the previous partitioning results are used as labels for the graph in the next iteration to speed84
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up binning. In addition, we use Fisher’s method (also used in MetaBAT 1) to combine edge strengths and85

compare them to decide the best neighborhood.86

Small contigs/bins recruiting87

MetaBAT 1 by default uses contigs 2.5kb or larger. As many metagenome assemblies contain smaller88

contigs, MetaBAT 2 includes an additional step to include small contigs (between 1kb and 2.5kb), as well89

as the contigs from small bins (< 200kb) if there are 3 or more samples in the dataset. In this additional90

step, a “free” contig is assigned to a specific bin where its correlation to member contigs from that bin is91

larger than the mean correlation among the contigs themselves.92

Metagenome assemblies used for benchmarking binning93

Three synthetic datasets (Low-, Medium- and High-complexity, respectively) were downloaded from the94

CAMI website (Sczyrba et al., 2017).95

120 real world metagenome assemblies were obtained from The Integrated Microbial Genomes &96

Microbiomes system (IMG/M: https://img.jgi.doe.gov/m/) (Chen et al., 2018). A complete97

list of the samples and their IMG access IDs are available in the supplemental table S1.98

Software tools used for benchmarking binning99

The other software tools we used are their latest version, CONCOCT 0.4.0, MaxBin 2.2.4, MyCC(docker100

image 990210oliver/mycc.docker:v1), BinSanity v.0.2.6.4 and COCACOLA python version (updated on101

March 5,2017), respectively. All tools were run with their default parameters.102

Searching best parameters by a genetic algorithm103

The genetic algorithm was performed using the following parameters: population size: 10, selection size:104

3, mutation rate: 0.05, crossover rate: 0.01, minimum/maximum generations: 3/10, and binary tournament105

selection. To evaluate the performance of binning, we used the Minimum Information about Metagenome-106

Assembled Genome (MIMAG) standards described in (Bowers et al., 2017). The number of high-quality107

putative genomes was used as the fitness score, where high-quality is defined as >= 90% complete and108

<= 5% contamination as determined by CheckM, >= 18 tRNAs identified by tRNAscan-SE (Lowe and109

Eddy, 1997), and all three ribosomal subunits, found by cmsearch. While tRNA and rRNA annotations110

can be annotated just once per contig, CheckM (Parks et al., 2015) must be run on each parameter set’s111

results and is the time-limiting step.112

Computational optimization113

The above changes in the binning algorithm in MetaBAT 2 require significantly more computation than114

MetaBAT 1. To make MetaBAT 2 work well with similar computing resources in a comparable runtime,115

we implemented several computational optimization techniques to improve its resource efficiency.116

Computing efficiency117

In addition to the original multi-thread strategy in MetaBAT 1, we also applied a lower level optimization118

on CPU cache memory access. A typical CPU has only 8-64KB level-1 cache and 256KB-2MB level-2119

cache. When the data is bigger than the level-2 cache (e.g., TNF distance matrix), the data is kept in120

random-access memory that is much slower to access. We adopted a loop tiling threading model that121

divides the TNF distance matrix into many smaller “tiles” that fit into level-2 cache, and distributes122

the calculation of each tile among many threads. This optimization alone gains a 35% performance123

improvement over the original parallel code.124

Memory efficiency125

With thousands or even millions of contigs, the pair-wise distance matrix gets bigger and can take a large126

amount of memory. To avoid storing the entire matrix in RAM, we use a priority queue data structure127

to store only the top k strong links of every contig for iterative clustering. This method scaled down the128

memory usage from O(N2) to O(N), at the cost of a few extra calculations. The parameter k will affect the129

sensitivity and specificity of binning results, as smaller k values lead to high specificity but low sensitivity.130
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RESULTS131

Accuracy benchmarks on synthetic and real world metagenome assemblies132

During the first CAMI challenge, MetaBAT 1 was the fastest and most scalable software, but its accuracy133

was only average compared with CONCOCT, MyCC and MaxBin 2.0 (Sczyrba et al., 2017). To test134

whether MetaBAT 2 improves binning accuracy, we benchmarked MetaBAT 2 by comparing it against135

MaxBin2, CONCOCT, and MyCC. In addition, we added BinSanity (Graham et al., 2017) and COCA-136

COLA (Lu et al., 2017), two new automatic binners developed after CAMI 1.0, for comparison. All the137

tools were run using their default parameters (methods).138

The CAMI metagenome datasets were simulated with different species complexity and genome sizes,139

consisting of reads from 700 microbial genomes including strain-level diversity and 600 plasmids and140

viruses (Sczyrba et al., 2017). Three datasets were simulated at different complexity levels (high, medium141

and low complexity). To date they represent the best benchmark datasets for metagenome binning with142

known ground truth. We therefore ran the above tools on these three datasets. We used the same accuracy143

measures as we did in MetaBAT 1, i.e., number of genomes recovered at certain genome completeness144

(recall, 0.5, 0.6, 0.7, 0.8 and 0.9) and certain precision (0.9 and 0.95) cutoffs. The results are shown in145

Figure 1.146

MetaBAT 2 shows better performance over the other tools in these experiments. In the CAMI Low147

Complexity dataset, MetaBAT 2 recovers the most genomes at almost every completeness/precision cutoff,148

except that CONCOCT recovers one more genome at the 90% completeness cutoff. In the other two149

datasets with higher community complexity, MetaBAT 2 bins more genomes than any other tool tested at150

every threshold. The difference seems to be more pronounced when complexity increases. For example,151

at 90% completeness and 95% precision levels MetaBAT 2 recovers 333 out of 753 genomes (44.2%)152

from the CAMI High Complexity dataset, while the next best software, MaxBin2, only recovers 195153

genomes (25.9%). These results suggest the adaptive binning algorithm implemented in MetaBAT 2 can154

adapt to very complex microbial communities.155

We also carried out benchmarking experiments on real world metagenome datasets downloaded from156

Integrated Microbial Genomes & Microbiomes (IMG/M) (Markowitz et al., 2011, 2013; Chen et al.,157

2018). We chose 120 metagenomes assembled from a very diverse environmental sample as our test158

dataset (methods). All these metagenome datasets were assembled with metaSPAdes (Nurk et al., 2017).159

Hereafter we refer this dataset as IMG100.160

Most of these metagenome datasets produced very few bins from all software tools, with about half161

of them only producing fewer than 5 genome bins. Figure 2 shows the performance of each method in162

the top 13 metagenomes ordered by the number of genome bins identified (COCACOLA was not shown163

since it didn’t produce any bins fulfilling the cutoff). Only genomic bins having contamination less than164

5% are considered and each bar has 3 stacks representing the number of genomes fulfilling different165

completeness criteria of 90%, 70%, and 50%. (10% contamination cutoff shows similar pattern; data not166

shown). MetaBAT 2 outperforms other tools by a large margin for all examples.167

The default set of parameters is good for most datasets168

We next ask the question whether or not MetaBAT 2 requires different parameter sets for optimized169

accuracy for different datasets. There are only three parameters that may affect binning accuracy: 1)170

maxEdges (the maximum number of edges a node can have when constructing the graph, a lower number171

should reduce computing time but may also reduce sensitivity); 2) maxP (percentage of high quality172

contigs included for binning, a higher number gives more sensitivity); and 3) minS (the minimum score173

of an edge kept for binning, a higher number gives more specificity).174

We designed a genetic algorithm to attempt to optimize the above parameters using the IMG 100175

dataset (methods). For each of the samples in this dataset, the genetic algorithm systematically explores176

the parameter space and attempts to find the best parameter set for this sample. In this experiment we177

only considered the high-quality genome bins for performance scoring (methods). Among all the best178

parameter sets found from all samples, the default parameter set is selected to be the best for the majority179

(58%) of the samples (Supplemental Table S2). Comparing the next nine most frequently selected best180

parameter sets to the default one on all the samples showed that the default parameter set has a consistent181

performance (Figure 3). The genetic algorithm did find some parameter sets that are slightly better than182

the default on some samples under this scoring metric, although it significantly increased the total running183

time. Using a different scoring scheme or using a different set of testing data may select a different set of184
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Figure 1. Benchmark of several popular binning tools on CAMI challenge datasets. The number

of identified genomes are shown at two different precision levels, ≥ 95% (left column) or ≥ 90% (right

column). The number of identified genomes recovered with a completeness (recall) level 90%, 80%, 70%,

60%, or 50% are represented by different shades of gray, with 90% being the darkest. Benchmarking

results using the high complex dataset (a), medium complex dataset (b), and low complex dataset (c) are

shown. All the tools (MyCC, CONCOCT, COCACOLA, BinSanity, MaxBin 2 and MetaBAT 2) were run

using their default parameters. Completeness and precision were calculated with the ground truth of each

dataset.
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Figure 2. Comparing binning performance of MetaBAT 2 with alternative binning tools on real

world metagenomes. 120 metagenome assemblies were obtained from IMG (IMG100, see methods).

The top 13 assemblies with the most genome bins were shown. Using a 5% contamination cutoff, each

bar has 3 stacks of results representing 90%, 70%, and 50% completeness from the same binning tool,

respectively, with 90% having the darkest shade.

parameters, but the benefit over the default parameters appears to be very small (data not shown).185

We also experimented with MetaBAT 1 on the IMG100 set, using the two most commonly used preset186

parameters (sensitive and superspecific). In this comparison setting we can see whether or not MetaBAT 2187

with default parameters is more sensitive than MetaBAT 1 (sensitive) and more specific than MetaBAT 1188

(very specific). Figure 4 shows the performance of each method in the top 20 metagenomes ordered by the189

number of genome bins identified. In the majority of the binning experiments, MetaBAT 2 outperforms190

both modes of MetaBAT 1, demonstrating a robust performance without parameter tuning.191

Benchmarking MetaBAT 2’s computing efficiency192

In contrast to most of the other software tools that are implemented with Python, MetaBAT 2 is written in193

C++ with extensive low-level computational optimization (Methods). This gives MetaBAT 2 a unique194

advantage in computational efficiency. The runtime and memory consumption of MetaBAT 2 and195

alternative tools on CAMI High, Medium, and Low complexity datasets are shown in Table 1. The tests196

were run on a workstation with 2 Intel Xeon CPUs @ 2.30GHz, each with 16 cores and 40MB smart197

cache, and 128 GB RAM.198

MetaBAT 2 finished the CAMI Low dataset in just 7 seconds, while most other tools took 11 minutes199

or more, which is 90 times or more slower than MetaBAT 2. It finished the Medium and the High datasets200

in 25 seconds and 1 min 54 seconds, respectively. The others need from one hour to several hours for201

binning the two datasets. Memory requirement by all tools varies. In general, MetaBAT 2 requires the202

least while BinSanity requires the most (with a factor of 20x, in constrast to others with about 1-4x).203

Running on the entire IMG100 datasets we observed a much more pronounced difference in computa-204

tional resource requirement. MetaBAT 2 finished binning in a few hours, but other tools took days even205
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Figure 3. A binning performance comparison between the default parameter set of MetaBAT 2

against several common best parameter sets found by the genetic algorithm. The IMG100 dataset

was used for searching for the best parameter set for each sample. For each parameter set (S1 to S9, see

supplemental Table S2), a stacked bar shows the percentages of datasets where its performance is better

than (darkest gray at the bottom), the same as (medium gray in the middle), or worse than (light gray at

the top) the default parameter set. Overall the default parameter set is consistently selected as the best

parameter set for most samples.

Runtime

Memory MetaBAT 2 CONCOCT MaxBin MyCC BinSanity COCACOLA

CAMI 1min54sec 2hr40min 7hr1min 6hr5min 5hr42min 14hr2min

High 2.63 GB 1.28 GB 2.99 GB 3.04 GB 50.82 GB 4.95 GB

CAMI 25sec 1hr21min 1hr10min 1hr26min 2hr3min 3hr1min

Medium 0.56 GB 0.96 GB 1.04 GB 2.10 GB 25.52 GB 1.21 GB

CAMI 7sec 13min52sec 11min5sec 20min25sec 18min47sec 30min8sec

Low 0.16 GB 0.38 GB 0.69 GB 0.82 GB 2.73 GB 0.85 GB

Table 1. Runtime and memory comparison on CAMI high, medium, low dataset. All tests were run on a

workstation with 2 CPUs of Intel(R) Xeon(R) CPU E5-2698 v3 @ 2.30GHz, 128 GB Memory.

weeks, if they can finish. Some tools failed on some of the large assemblies after a long time probably206

due to their high memory requirement.207

DISCUSSION208

In conclusion, we show that the adoption of a new adaptive binning algorithm makes MetaBAT 2209

automatically adapt to datasets with various characteristics and provides robust metagenome binning. This210

should greatly reduce users’ time needed to manually explore the underlying datasets and experiment with211

different parameter sets. This capability should be particularly useful for datasets derived from unknown212

complex microbial communities, as empirically setting parameters might be challenging. Extensive213

low-level computational optimization taking advantage of the underlying hardware capabilities also makes214

MetaBAT 2 run very efficiently, and makes it scalable for very large datasets.215

There are a couple of considerations when using MetaBAT 2. First of all, MetaBAT 2 uses an adaptive216

binning algorithm which puts more weight on abundance but less weight on TNF, which makes it work217

well on datasets with multiple samples (CAMI synthetic sets, e.g.). In general we expect more samples to218

produce better accuracy. For single-sample datasets, some users reported a genome can sometimes be219
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Figure 4. Comparing MetaBAT 2 with two sets of MetaBAT 1 binning experiments using real

world metagenomes. IMG 100 dataset was used for benchmarking experiment. Top 20 metagenomes

ordered by the number of genome bins identified are shown. X-axis represents each metagenome, and

Y-axis shows the number of genome bins identified using 5% contamination cutoff. Each bar represents 3

completeness results of 90%, 70%, and 50% by the order of color density (i.e. darkest color represents

90%). The completeness and contamination were estimated by CheckM. MetaBAT 2 outperforms both

modes of MetaBAT 1 in most cases.

split among different bins in spite of consistent TNF composition. This illustrates that MetaBAT 2 weighs220

heavily on purity with some sacrifice in completeness. A manual, post-binning polishing step may be221

required to further improve completeness. A second consideration is that MetaBAT does not eliminate222

chimeric contigs or other artifacts from assembly, so binning results from very poor assemblies will not223

be reliable. Some post-binning polishing process, such as dS
2 Bin (Wang et al., 2017), may help reduce the224

contamination problem.225

The method of normalizing TNF and correlation scores using ABD makes it possible for future226

MetaBAT versions to incorporate additional scoring matrices in a similar fashion. Interestingly, in a recent227

preprint, Nissen et al. developed an alternative strategy based on deep variational autoencoders (VAE) to228

accomplish a similar task and got very good results (Nissen et al., 2018). Additional matrices could be229

taxonomic similarity, physical linkage (provided by Hi-C experiments or paired end reads), and/or other230

similarity matrices of the contigs. Incorporating taxonomic information would provide a framework to231

unite taxonomy dependent and independent binning strategies.232
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