A community perspective on the concept of marine holobionts: current status, challenges, and future directions

The Holomarine working group*: Simon M. Dittami†, Enrique Arboleda, Jean-Christophe Auguet, Arite Bigalke, Enora Briand, Paco Cárdenas, Ulisse Cardini, Johan Decelle, Aschwin H. Engelen, Damien Eveillard, Claire M.M. Gachon, Sarah M. Griffiths, Tilmann Harder, Ehsan Kayal, Elena Kazamia, François H. Lallier, Mónica Medina, Ezequiel M. Marzinelli, Teresa Morganti, Laura Núñez Pons, Soizic Pardo, José Pintado Valverde, Mahasweta Saha, Marc-André Selosse, Derek Skillings, Willem Stock, Shinichi Sunagawa, Eve Toulza, Alexey Vorobev, Catherine Leblanc‡, and Fabrice Not‡

† Corresponding authors: Simon M Dittami (simon.dittami@sb-roscoff.fr), Catherine Leblanc (catherine.leblanc@sb-rosocff.fr), and Fabrice Not (fabrice.not@sb-roscoff.fr)

Simon M. Dittami, simon.dittami@sb-roscoff.fr, Sorbonne Université, CNRS, Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff, 29680 Roscoff, France
Enrique Arboleda, arboleda.enrique@gmail.com, Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, 29680 Roscoff, France
Jean-Christophe Auguet, jean-christophe.auguet@cnrs.fr, MARBEC, Université de Montpellier, CNRS, IFREMER, IRD, Montpellier, France
Arite Bigalke, arite.bigalke@uni-jena.de, Institute for Inorganic and Analytical Chemistry, Bioorganic Analytics, Friedrich-Schiller-Universität Jena, Lessingstrasse 8, D-07743 Jena, Germany
Enora Briand, enora.briand@ifremer.fr, Ifremer, Laboratoire Phycotoxines, 44311 Nantes, France
Paco Cárdenas, paco.cardenas@ilk.uu.se, Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, BMC Box 574, 75123 Uppsala, Sweden
Ulisse Cardini, ulisse.cardini@zsn.it, Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Napoli, Italy
Johan Decelle, johan.decelle@univ-grenoble-alpes.fr, Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble Alpes, CNRS, CEA, INRA; 38054, Grenoble Cedex 9, France.

* This working group gathers 31 scientists from ten different countries, with expertise covering different scientific disciplines including philosophy, evolution, computer sciences, marine biology, ecology, chemistry, and microbiology, who participated in a workshop on marine holobionts, organized at the Roscoff Biological Station in March 2018. Their aim was to exchange ideas regarding key concepts and opportunities in marine holobiont research, to start structuring the community, and to identify and tackle key challenges in the field.
Aschwin Engelen, aengelen@ualg.pt, CCMAR, Universidade do Algarve, Campus de Gambelas, Faro, Portugal

Damien Eveillard, damien.eveillard@univ-nantes.fr, Université de Nantes, CNRS, Laboratoire des Sciences Numériques de Nantes (LS2N), 44322 Nantes, France

Claire M.M. Gachon, claire.gachon@sams.ac.uk, Scottish Association for Marine Science Scottish Marine Institute, PA37 1QA Oban, United Kingdom

Sarah Griffiths, griffiths.sarahm@gmail.com, School of Science and the Environment, Manchester Metropolitan University, Manchester, UK

Tilmann Harder, t.harder@uni-bremen.de, University of Bremen, Leobener Strasse 6, 28359 Bremen, Germany

Ehsan Kayal, ehsan.kayal@sb-roscoff.fr, Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, 29680 Roscoff, France

Elena Kazamia, kazamia@biologie.ens.fr, Institut de Biologie de l’Ecole Normale Supérieure, 46 rue d’Ulm, 75005 Paris, France

François H. Lallier, lallier@sb-roscoff.fr, Sorbonne Université, CNRS, Adaptation and Diversity in the Marine Environment, Station Biologique de Roscoff, 29680 Roscoff, France

Mónica Medina, mum55@psu.edu, Department of Biology, Pennsylvania State University, University Park PA 16801, USA

Ezequiel M. Marzinelli, e.marzinelli@sydney.edu.au, 1) The University of Sydney, School of Life and Environmental Sciences, Sydney, NSW 2006, Australia; 2) Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; 3) Sydney Institute of Marine Science, Mosman, NSW 2088, Australia

Teresa Morganti, tmorgant@mpi-bremen.de, Max Planck Institute for Marine Microbiology, Celsiusstraße 1, 28359, Bremen, Germany

Laura Núñez Pons, laura.nunezpons@szn.it, Section Biology and Evolution of Marine Organisms (BEOM), Stazione Zoologica Anton Dohrn (SZN), Villa Comunale, 80121, Napoli, Italy

Soizic Prado, sprado@mnhn.fr, Molecules of Communication and Adaptation of Microorganisms (UMR 7245), National Museum of Natural History, CNRS, CP 54, 57 rue Cuvier, 75005 Paris, France

José Pintado, pintado@iim.csic.es, Instituto de Investigaciones Marinas (IIM-CSIC), Eduardo Cabello 6, 36208 Vigo, Galicia, Spain

Mahasweta Saha, sahamahasweta@gmail.com, 1) Benthic Ecology, Helmholtz Center for Ocean Research, Düsternbrooker Weg 20, 24105 Kiel, Germany; 2) School of Biological Sciences, University of Essex, Wivenhoe Park, CO4 3SQ, Colchester, United Kingdom.

Marc-André Selosse, ma.selosse@wanadoo.fr, 1) Département Systématique et Évolution, Muséum national d’Histoire naturelle, UMR 7205 ISYEB, CP 50, 45 rue Buffon, Paris 75005, France ; 2) Faculty of Biology, University of Gdansk, ul. Wita Stwosza 59, 80- 308, Gdansk, Poland
Abstract:

Host-microbe interactions play crucial roles in marine ecosystems, but we still have very little understanding of the mechanisms that govern these relationships, the evolutionary processes that shape them, and their ecological consequences. The holobiont concept is a renewed paradigm in biology that can help describe and understand these complex systems. It posits that a host and its associated microbiota, living together in a stable relationship, form the holobiont, and have to be studied together, as a coherent biological and functional unit, to understand its biology, ecology and evolution. Here we discuss critical concepts and opportunities in marine holobiont research and identify key challenges in the field. We highlight the potential economic, sociological, and environmental impacts of the holobiont concept in marine biological, evolutionary, and environmental sciences with comparisons to terrestrial science wherever appropriate. Given the connectivity and the unexplored biodiversity of marine ecosystems, a deeper understanding of such complex systems requires further technological and conceptual advances. For the marine scientific community, the most significant challenge is to bridge functional research on tractable and original model systems and global approaches addressing ecological and evolutionary questions. This will be crucial for establishing the roles of marine holobionts in biogeochemical cycles, but also developing concrete applications of the holobiont concept in aquaculture and marine ecosystem management projects.
Glossary

Anna Karenina principle – a number of factors can cause a system to fail, but only a narrow range of parameters characterizes a working system; based on the first sentence of Leo Tolstoy’s “Anna Karenina”: “Happy families are all alike; every unhappy family is unhappy in its own way.”

Dysbiosis – microbial imbalance in a symbiotic community that affects the health of the host.

Ecosystem services – any direct or indirect benefits that humans can draw from an ecosystem; they include provisioning services (e.g., food), regulating services (e.g., climate), cultural services (e.g., recreation), and supporting services (e.g., habitat formation).

Ectosymbiosis – a symbiotic relationship in which symbionts live on the surface of a host. This includes, for instance, algal biofilms, the skin microbiome, but also extracellular symbionts on the digestive glands, such as gut bacteria.

Endosymbiosis – a symbiotic relationship in which a symbiont lives inside the host cells; prominent examples are mitochondria, plastids/photosymbionts, or nitrogen fixing bacteria in plant root nodules. Compared to ectosymbiosis these relationships often exhibit a higher degree of interdependence and co-evolution.

Gnotobiosis – the condition in which all organisms present in a culture can be controlled.

Holobiont – an ecological (and evolutionary) unit of different species living together in symbiosis.

Horizontal transmission – acquisition of the associated microbiome from the environment.

Host – the largest partner (in size) in a symbiotic community.

Infochemical – a usually diffusible chemical compound that mediates inter- and intraspecific communication.

Microbial gardening – the act of frequently releasing growth-enhancing or inhibiting chemicals or metabolites that favor the development of a microbial community beneficial to the host.

Microbiome – the combined genetic information encoded by the microbiota; may also refer to the microbiota itself.

Microbiota – all microorganisms present in a particular environment or associated with a particular host.

Nested ecosystems – a view of ecosystems where each individual system can be decomposed into smaller systems and/or considered part of a larger system, all of which still qualify as ecosystems.

Phagocytosis – a process by which a eukaryotic cell ingests other cells or solid particles.

Phycosphere – the physical envelope surrounding a phytoplankton cell; usually rich in organic matter.

Phyllosymbiosis – congruence in the phylogeny of different hosts and the composition of their associated microbiota.

Rasputin effect – the phenomenon that commensals and mutualists can become parasitic in certain conditions; after the Russian monk Rasputin who became the confidant of the
Tsar of Russia, but later helped bring down the Tsar’s empire during the Russian revolution.

Sponge loop – sponges efficiently recycle dissolved organic matter turning it into detritus that becomes food for other consumers.

Symbiont – an organism living in symbiosis; usually used to refer to but not restricted to the smaller/microbial partners living in commensalistic or mutualistic relationships (see also host).

Symbiosis – a close and lasting or recurrent (e.g. over generations) relationship between organisms living together; includes mutualistic, commensalistic, and parasitic relationships.

Vertical transmission – acquisition of the associated microbiome by a new generation of hosts from the parents (as opposed to horizontal transmission).

Marine holobionts from their origins to the present

The history of the holobiont concept

Current theory proposes a single origin for eukaryotic cells through the symbiotic assimilation of prokaryotes to form first mitochondria and later plastids through several independent symbiotic events (reviewed in Archibald 2015). These **ancestral and founding symbiotic events**, which prompted the metabolic and cellular complexity of eukaryotic life, most likely occurred in the ocean (Martin et al. 2008).

Despite the general acceptance of this so-called endosymbiotic theory, the term ‘holobiont’ did not immediately enter the scientific vernacular. It was coined by Lynn Margulis in 1990, who proposed that evolution has worked mainly through symbiosis-driven leaps that merged organisms into new forms referred to as ‘holobionts’, and only secondarily through gradual mutational changes (Margulis and Fester 1991; O’Malley 2017). However, the concept did not become widely used until it was co-opted by coral biologists over a decade later. Corals and dinoflagellate algae of the family Symbiodiniaceae are one of the most iconic examples of symbioses found in nature; most corals are incapable of long-term survival without the products of photosynthesis provided by their endosymbiotic algae. Rohwer et al. (2002) were the first to use the word “holobiont” to describe a unit of selection *sensu* Margulis (Rosenberg et al. 2007b) for corals, where the holobiont comprised the cnidarian polyp (host), algae of the family Symbiodiniaceae, various ectosymbionts (endolithic algae, prokaryotes, fungi, other unicellular eukaryotes), and viruses.

Although initially driven by studies of marine organisms, much of the research on the emerging properties and significance of holobionts has since been carried out in other fields of research: the microbiota of the rhizosphere of plants or the animal gut became predominant models and have led to an ongoing paradigm change in agronomy and medical sciences (Bulgarelli et al. 2013; Shreiner et al. 2015; Faure et al. 2018). Holobionts occur in **terrestrial**
and aquatic habitats, and several analogies between these ecosystems can be made. For example, it is clear that interactions within and across holobionts are mediated by chemical cues and signals in the environment, dubbed infochemicals (Loh et al. 2002; Harder et al. 2012; Rolland et al. 2016; Saha et al. 2019). The major differences across systems are due to the physicochemical properties of water resulting in chemical connectivity and signaling between macro- and micro-organisms in aquatic or moist environments. In marine ecosystems, carbon fluxes also appear to be swifter and trophic modes more flexible, leading to higher plasticity of functional interactions (Mitra et al. 2013). Moreover, dispersal barriers are usually lower, allowing for faster microbial shifts in marine holobionts (Kinlan and Gaines 2003; Martin-Platero et al. 2018). Finally, phylogenetic diversity at broad taxonomic scales (i.e., supra-kingdom, kingdom and phylum levels), is higher in aquatic realms than on land, with much of the aquatic diversity yet to be uncovered (de Vargas et al. 2015; Thompson et al. 2017), especially for marine viruses (Middelboe and Brussaard 2017; Gregory et al. 2019). The recent discovery of this astonishing marine microbial diversity and the scarcity of marine holobiont research suggest a high potential for complex cross-lineage interactions yet to be explored in marine holobiont systems (Figure 1).

These examples and the associated debate over how to define organisms or functional entities has led to the revival of ‘holism’, a philosophical notion first proposed by Aristotle in the 4th century BC. However, a major shift happened during the Age of "Enlightenment" when the dominant thought summarized as “dissection science” was to focus on the smallest component of a system in order to understand it better. By contrast, holistic thinking states that systems should be studied in their entirety, with a focus on the interconnections between their various components rather than on the individual parts (Met. Z.17, 1041b11–33). Such systems have emergent properties that result from the irreducible behavior of a system that is ‘larger than the sum of its parts’. In this context the boundaries of holobionts are usually delimited by a physical gradient, which corresponds to the area of local influence of the host, e.g. in unicellular algae the so-called phycosphere (Seymour et al. 2017). However, they may also be defined in a context-dependent way as a ‘Russian Matryoshka doll’, encompassing all the levels of host-symbiont associations from intimate endosymbiosis with a high degree of co-evolution up to the community and ecosystem level; a concept referred to as “nested ecosystems” (Figure 2; McFall-Ngai et al. 2013; Pita et al. 2018).

Such a view raises fundamental questions for studies of the evolution of holobionts, especially regarding the relevant units of selection and the role of co-evolution. For instance, plant and animal evolution involves new functions co-constructed by members of the holobiont or elimination of functions redundant between them (Selosse et al. 2014). Rosenberg and Zilber-Rosenberg (2018) have argued that all animals and plants can be considered holobionts, and thus advocate the hologenome theory of evolution. It proposes that natural selection acts at the level of the holobiont and the hologenome (i.e., the combined genomes of the host and all members of its microbiota; Rosenberg et al. 2007a; Zilber-Rosenberg and Rosenberg 2008). This interpretation of Margulis’ definition of a ‘holobiont’ considerably broadened fundamental
concepts in evolution and speciation and has not been free of criticism (Douglas and Werren 2016), especially when applied on a community or ecosystem level (Moran and Sloan 2015). More recently, it has been shown that species that interact indirectly with the host can also be important in shaping coevolution within mutualistic multi-partner assemblages (Guimarães et al. 2017). Thus, the holobiont concept and its complexity should be further considered when addressing evolutionary and ecological questions.

Marine holobiont models

Today, an increasing number of marine model organisms, both unicellular and multicellular, are being used in holobiont research, often with different emphasis and levels of experimental control, but altogether covering a large range of scientific topics. Here, we provide several illustrative examples of this diversity and some of the insights they have provided.

Environmental or “semi-controlled” models: Radiolarians and foraminiferans (both heterotrophic protists dwellers harboring endosymbiotic microalgae) are emerging as critical ecological models for unicellular photosymbiosis due to their ubiquitous presence in the world’s oceans (Decelle et al. 2015; Not et al. 2016). The discovery of deep-sea hydrothermal vents revealed symbioses of animals with chemosynthetic bacteria that have later been found in many other marine ecosystems (Dubilier et al. 2008; Rubin-Blum et al. 2019) and frequently exhibited high levels of metabolic and taxonomic diversity (Duperron et al. 2008; Petersen et al. 2016; Ponnudurai et al. 2017). The cosmopolitan haptophyte *Emiliania huxleyi*, promoted by associated bacteria (Seyedsayamdost et al. 2011; Segev et al. 2016), produces key intermediates in the carbon and sulfur biogeochemical cycles making it an important model phytoplankton species.

Controlled bi- or trilateral associations: Only a few models, covering a small part of the overall marine biodiversity, are currently being cultivated ex-situ and can be used in fully controlled experiments, where they can be cultured aposymbiotically (i.e., without symbionts). The flatworm *Symsagittifera (= Convoluta) roscoffensis* (Arboleda et al. 2018), the sea anemone *Exaiptasia* (Baumgarten et al. 2015; Wolfowicz et al. 2016), the upside-down jellyfish *Cassiopea* (Ohdera et al. 2018), and their respective intracellular green and dinoflagellate algae have, in addition to corals, become models for fundamental research on evolution of metazoan-algal photosymbiosis. In particular the sea anemone *Exaiptasia* has been used to explore photobiology disruption and restoration of cnidarian symbioses (Lehnert et al. 2012). The *Vibrio*-squid model provides insights into the effect of microbiota on animal development, circadian rhythms, and immune systems (McFall-Ngai 2014). The unicellular green alga *Ostreococcus*, an important marine primary producer, has been shown to exchange vitamins with specific associated bacteria (Cooper et al. 2019). The green macroalga *Ulva mutabilis* has enabled the exploration of bacteria-mediated growth and morphogenesis including the identification of original chemical interactions in the holobiont (Wichard 2015; Kessler et al. 2018). Although the culture conditions in these highly-controlled model systems differ from the
natural environment, these systems are essential to gain elementary mechanistic understanding of the functioning and thus also the evolution of marine holobionts.

Marine holobionts as drivers of ecological processes

Motile and macroscopic marine holobionts can act as **dissemination vectors** for geographically restricted microbial taxa. For instance, pelagic mollusks or vertebrates have a high capacity for dispersal (e.g., against currents and through stratified water layers). It has been estimated that fish and marine mammals may enhance the original dispersion rate of their microbiota by a factor of 200 to 200,000 (Troussellier et al. 2017) and marine birds may even act as bio-vectors across ecosystem boundaries (Bouchard Marmen et al. 2017). This host-driven dispersal of microbes can include non-native or invasive species as well as pathogens (Troussellier et al. 2017).

A related ecological function of holobionts is their potential to sustain rare species. Hosts provide an environment that favors the growth of specific microbial communities distinct from the surrounding environment (including rare microbes). They may, for instance, provide a nutrient-rich niche in the otherwise nutrient-poor seawater (Smriga et al. 2010; Webster et al. 2010; Burke et al. 2011; Chiarello et al. 2018), and the interaction between host and microbiota can allow both partners to cross biotope boundaries (e.g., Woyke 2006) and colonize extreme environments (Bang et al. 2018). Holobionts thus contribute to marine microbial diversity and possibly resilience in the context of environmental change (Troussellier et al. 2017).

Microbially regulated biological processes are important drivers of **global biogeochemical cycles** (Falkowski et al. 2008; Madsen 2011; Anantharaman et al. 2016). In the open ocean, it is estimated that symbioses with the cyanobacterium UCYN-A contribute ~20% to total N\textsubscript{2} fixation (Thompson et al. 2012; Martínez-Pérez et al. 2016). In benthic systems, sponges and corals may support entire ecosystems via their involvement in nutrient cycling thanks to their microbial partners (Raina et al. 2009; Fiore et al. 2010; Cardini et al. 2015; Pita et al. 2018), functioning as sinks and sources of nutrients. In particular the “sponge loop” recycles dissolved organic matter and makes it available to higher trophic levels in the form of detritus (de Goeij et al. 2013; Rix et al. 2017). In coastal sediments, bivalves hosting methanogenic archaea have been shown to increase the benthic methane efflux by a factor of up to eight, potentially accounting for 9.5% of total methane emissions from the Baltic Sea (Bonaglia et al. 2017).

Such impressive metabolic versatility is accomplished because of the simultaneous occurrence of disparate biochemical machineries (e.g., aerobic and anaerobic pathways) in individual symbionts, providing new metabolic abilities to the holobiont, such as the synthesis of specific essential amino acids, photosynthesis, or chemosynthesis (Venn et al. 2008; Dubilier et al. 2008). These metabolic capabilities have the potential to extend the ecological niche of the holobiont as well as its resilience to climate and environmental changes (Berkelmans and van Oppen 2006; Gilbert et al. 2010; Dittami et al. 2016; Shapira 2016; Godoy et al. 2018). It is therefore paramount to include the holobiont concept in predictive models that investigate the consequences of human impacts on the marine realm and its biogeochemical cycles.
Challenges and opportunities in marine holobiont research

Marine holobiont assembly and regulation

Two critical challenges that can be partially addressed by using model systems are 1) to decipher the factors determining holobiont composition; and 2) to elucidate the impacts and roles of the different partners in these complex systems over time. Some marine invertebrates, such as bivalves, transmit part of the microbiota maternally (Bright and Bulgheresi 2010; Funkhouser and Bordenstein 2013). In other marine holobionts, vertical transmission may be weak and inconsistent, whereas mixed modes of transmission (vertical and horizontal) or intermediate modes (pseudo-vertical, where horizontal acquisition frequently involves symbionts of parental origin) are more common (Bjork et al. 2018, preprint). Identifying the factors shaping holobiont composition and understanding their evolution is highly relevant for marine organisms given that most marine hosts display a high specificity for their microbiota and even patterns of phylosymbiosis (Kazamia et al. 2016; Brooks et al. 2016; Pollock et al. 2018), despite a highly connected and microbe-rich environment.

The immune system of the host is one way to regulate the microbial composition of both marine and terrestrial holobionts. Perturbations in this system can lead to dysbiosis, and eventually microbial infections (Selosse et al. 2014; de Lorgeril et al. 2018). Dysbiotic individuals frequently display higher variability in their microbial community composition than healthy individuals, an observation in line with the “Anna Karenina principle” (Zaneveld et al. 2017), although there are exceptions to this rule (e.g., Marzinelli et al. 2015). A specific case of dysbiosis is the so-called “Rasputin effect” where benign endosymbionts opportunistically become detrimental to the host due to processes such as reduction in immune response under food deprivation, coinfections, or environmental pressure (Overstreet and Lotz 2016). Many diseases are now interpreted as the result of a microbial imbalance and the rise of opportunistic or polymicrobial infections upon host stress (Egan and Gardiner 2016). For instance in reef-building corals, warming destabilizes cnidarian-dinoflagellate associations, and some beneficial Symbiodiniacea strains switch their physiology and sequester more resources for their own growth at the expense of the coral host (Baker et al. 2018).

Another factor regulating holobiont composition is chemically mediated microbial gardening. This concept has already been demonstrated for land plants, where root exudates are used by plants to manipulate microbiome composition (Lebeis et al. 2015). In marine environments, the phylogenetic diversity of hosts and symbionts suggests both conserved and marine-specific chemical interactions, but comparable studies are only starting to emerge. For instance, seaweeds can chemically garden beneficial microbes facilitating normal morphogenesis and increasing disease resistance (Kessler et al. 2018; Saha and Weinberger 2019), and seaweeds and corals structure their surface-associated microbiome by producing chemo-attractants and...
anti-bacterial compounds (Harder et al. 2012; Ochsenkühn et al. 2018). There are fewer examples of chemical gardening in unicellular hosts, but it seems highly likely that similar processes are in place (Gribben et al. 2017; Cirri and Pohnert 2019). In the context of ongoing global change, an understanding of how the community and functional structure of resident microbes are resilient to perturbations remains critical to predict and promote the health of their host and the ecosystem, yet it is still missing in most mathematical models, or additional information on biological interactions would be required to make the former more accurate (Bell et al. 2018).

Integrating marine model systems with large-scale studies

By compiling what a sample of researchers today consider the most important trends and challenges in the field of marine holobiont research (Figure 3), we identified two distinct clusters: mechanistic understanding and predictive modeling. This illustrates that, on the one hand, the scientific community is focusing on the establishment of models for the identification of specific molecular interactions between marine organisms at a given point in space and time, up to the point of synthesizing functional mutualistic communities in vitro (Kubo et al. 2013). On the other hand, another part of the community is moving towards global environmental sampling schemes such as the TARA Oceans expedition (Pesant et al. 2015) or the Ocean Sampling Day (Kopf et al. 2015), and towards long-term data series (e.g., Wiltshire et al. 2010; Harris 2010). What emerges as both lines of research progress is the understanding that small-scale functional studies in the laboratory are inconsequential unless they are applicable to ecologically-relevant complex systems. At the same time, large scale-studies remain descriptive and with little predictive power unless we understand the mechanisms driving the observed processes. We illustrate the importance of integrating both approaches in Figure 3, where the node related to potential applications was perceived as a central hub at the interface between mechanistic understanding and predictive modeling.

A successful example allying both functional and large-scale approaches are the root nodules of legumes, which harbor nitrogen-fixing bacteria. In this system with a reduced number of symbionts involved, the functioning, distribution, and to some extent the evolution of these nodules, are now well understood (Epihov et al. 2017). The integration of this knowledge into agricultural practices has led to substantial yield improvements (e.g., Kavimandan 1985; Alam et al. 2015). In the more diffuse and partner-rich system of mycorrhizal symbioses between plant roots and soil fungi, a better understanding of the interactions has also been achieved via the investigation of environmental diversity patterns in combination with experimental culture systems with reduced diversity (van der Heijden et al. 2015).

We consider it essential to implement comparable efforts in marine sciences through interdisciplinary research combining physiology, biochemistry, ecology, and mathematical modeling. A key factor here will be the identification and development of new model systems for keystone holobionts that will allow the hypotheses generated by large-scale data sets to be tested in controlled experiments. Such approaches will enable the identification of common
interaction patterns between organisms within holobionts and nested ecosystems. In addition to answering fundamental questions, they will help address the ecological, societal, and ethical issues that arise from attempting to actively manipulate holobionts (e.g., in aquaculture) in order to enhance their resilience and protect them from the impacts of global change (Llewellyn et al. 2014).

Emerging methodologies to approach the complexity of holobiont partnerships

As our conceptual understanding of the different levels of holobiont organization evolves, so does the need for multidisciplinary approaches and the development of tools and technologies to handle the unprecedented amount of data and their integration into dedicated ecological and evolutionary models. Here, progress is often fast-paced and provides exciting opportunities to address some of the challenges in holobiont research.

Notably, a giant technological stride has been the explosion of affordable ‘–omics’ technologies allowing molecular ecologists to move from metabarcoding (i.e., sequencing of a taxonomic marker) to metagenomics or single-cell genomics in the case of unicellular hosts, metatranscriptomics, and metaproteomics, thus advancing our understanding from phylogenetic to functional analyses of the holobiont (Bowers et al. 2017; Meng et al. 2018). These approaches are equally useful in marine and in terrestrial environments, but the existence of numerous poorly studied lineages in the former make the generation of good annotations and reference databases an additional challenge for marine biologists. Metaproteomics combined with stable isotope fingerprinting can help study the metabolism of single species within the holobiont (Kleiner et al. 2018). In parallel, meta-metabolomics approaches have advanced over the last decades, and can be used to unravel the chemical interactions between partners. One current limitation here, especially in marine systems, is that many compounds are still undescribed in databases and are present in low quantities in natural environments, although recent technological advances such as molecular networking and meta-mass shift chemical profiling to identify relatives of known molecules promise significant advancement (Hartmann et al. 2017).

A further challenge in holobiont research is to identify the origin of compounds among the different partners of the holobionts and to determine their involvement in the maintenance and performance of the holobiont system. Well-designed experimental setups may help answer some of these questions (e.g., Quinn et al. 2016), but they will also require high levels of replication due to extensive intra-species variability. Recently developed in vivo and in situ imaging techniques combined with ‘omics’ approaches can provide spatial and qualitative information (origin, distribution, and concentration of a molecule or nutrient), shedding new light on the role of each partner of the holobiont system at the subcellular level. The combination of stable isotope labelling and chemical imaging (mass spectrometry imaging such as secondary ion mass spectrometry and matrix-assisted laser desorption ionization, and synchrotron X-ray fluorescence) is particularly valuable in this context, as it enables the investigation of metabolic...
exchange between the different components of a holobiont (Musat et al. 2016; Raina et al. 2017). Finally, three-dimensional electron microscopy may help evaluate to what extent different components of a holobiont are physically integrated (Colin et al. 2017; Decelle et al. 2019), where high integration is one indication of highly specific interactions. All of these techniques can be employed in both marine and terrestrial systems, but in marine systems the high phylogenetic diversity of organisms adds to the complexity of adapting and optimizing the techniques.

One consequence of the development of such new methods is the feedback they provide to improve existing models and to develop entirely new ones, for example by conceptualizing holobionts as the sum of the interactions between the host and its microbiota (Skillings 2016; Berry and Loy 2018), or by redefining boundaries between the holobiont and the ecosystem (Zengler and Palsson 2012). Such models may incorporate metabolic complementarity between different components of the holobiont (Dittami et al. 2014; Bordron et al. 2016), simulate microbial communities starting from different cohorts of randomly generated microbes for comparison with actual metatranscriptomics and/or metagenomics data (Coles et al. 2017), or even employ machine learning techniques to predict host-associated microbial communities (Moitinho-Silva et al. 2017).

A side-effect of these recent developments has been to shift the focus of holobiont research away from laboratory culture-based experiments. We argue that maintaining cultivation efforts to capture the maximum holobiont biodiversity possible remains essential in order to experimentally test hypotheses and investigate physiological mechanisms. A striking example of the importance of laboratory experimentation is the way germ-free mice re-inoculated with cultivated bacteria (the so-called gnotobiotic mice) have contributed to the understanding of interactions within the holobiont in animal health and physiology (e.g., Faith et al. 2014; Selosse et al. 2014). Innovations in cultivation techniques for axenic (or germ-free) hosts (e.g., Spoerner et al. 2012) or in microbial cultivation such as microfluidic systems (e.g., Pan et al. 2011) and cultivation chips (Nichols et al. 2010) may provide a way to obtain pure cultures. Yet, bringing individual components of holobionts into cultivation can still be a daunting challenge due to the strong interdependencies between organisms as well as the existence of yet unknown metabolic processes that may create specific requirements. In this context, single-cell omics analyses can provide critical information on some of the growth requirements of the organisms, and can complement approaches of high-throughput culturing (Gutleben et al. 2018). Established cultures can then be developed into model systems to move towards mechanistic understanding and experimental testing of hypothetical processes within the holobiont derived from environmental meta’-omics’ approaches. A few such model systems have already been mentioned above, but omics techniques can broaden the range of available models, enabling generalizations about the functioning of marine holobionts and their interactions in marine environments (Wichard and Beemelmanns 2018).
Ecosystem services and holobionts in natural and managed systems

A better understanding of marine holobionts will likely have direct socioeconomic consequences for coastal marine ecosystems, which have been estimated to provide services worth almost 50 trillion \(10^{12}\) US$ per year (Costanza et al. 2014). Most of the management practices in marine systems have so far been based exclusively on the biology and ecology of macro-organisms. A multidisciplinary approach that provides mechanistic understanding of habitat-forming organisms as holobionts will ultimately improve the predictability and management of coastal ecosystems. For example, host-associated microbiota could be integrated into the proxies used to assess the health of ecosystems. Microbial shifts and dysbiosis constitute early warning signals that may allow managers to predict potential impacts and intervene more rapidly and effectively (van Oppen et al. 2017; Marzinelli et al. 2018).

One form of intervention could be to promote positive changes of host-associated microbiotas, in ways analogous to the use of pre- and/or probiotics in humans (Singh et al. 2013) or inoculation of beneficial microbes in plant farming (Berruti et al. 2015; van der Heijden et al. 2015). In macroalgae, beneficial bacteria identified from healthy seaweed holobionts could be applied to diseased plantlets in order to suppress the growth of detrimental ones and/or to prevent disease outbreaks in aquaculture settings. In addition to bacteria, these macroalgae frequently host endophytic fungi that may have protective functions for the algae (Porras-Alfaro and Bayman 2011; Vallet et al. 2018). Host-associated microbiota could also be manipulated to shape key phenotypes in cultured marine organisms. For example, specific bacteria associated with microalgae may enhance algal growth (Amin et al. 2009; Kazamia et al. 2012; Le Chevanton et al. 2013), increase lipid content (Cho et al. 2015), and participate in the bioprocessing of algal biomass (Lenneman et al. 2014). More recently, the active modification of the coral microbiota has even been advocated as a means to boost the resilience of the holobiont to climate change (van Oppen et al. 2015; Peixoto et al. 2017), an approach which would, however, bear a high risk of unanticipated and unintended ecological consequences.

Finally, one could implement holistic approaches in the framework of fish farms. Recent developments including integrated multi-trophic aquaculture, recirculating aquaculture, offshore aquaculture, species selection, and breeding increase yields and reduce the resource constraints and environmental impacts of intensive aquaculture (Klinger and Naylor 2012). However, the intensification of aquaculture often goes hand in hand with increased disease outbreaks both in industry and wild stocks. A holistic microbial management approach may provide an efficient solution to these latter problems (De Schryver and Vadstein 2014).

Nevertheless, when considering their biotechnological potential, it should also be noted that marine microbiota are likely to be vulnerable to anthropogenic influences and that their deliberate engineering, introduction from exotic regions, or inadvertent perturbations may have profound, and yet entirely unknown, consequences for marine ecosystems. Terrestrial environments provide numerous examples of unwanted plant expansions or ecosystem perturbations linked to microbiota (e.g., Dickie et al. 2017), and cases where holobionts...
manipulated by human resulted in pests (e.g., Clay and Holah 1999) call for a cautious and ecologically-informed evaluation of holobiont-based technologies.

Conclusions

Marine ecosystems represent highly connected reservoirs of largely unexplored biodiversity. They are of critical importance to feed the ever-growing world population, constitute significant players in global biogeochemical cycles but are also threatened by human activities and global change. In order to unravel some of the basic principles of life and its evolution, and to protect and sustainably exploit marine natural resources, it is paramount to consider the complex biotic interactions that shape the marine communities and their environment. The scope of these interactions ranges from simple molecular signals between two partners to complex assemblages of eukaryotes, prokaryotes, and viruses with one or several hosts, to entire ecosystems. We believe that the concept of holobionts will be most useful and heuristic if used with a degree of malleability. It not only represents the fundamental understanding that all living organisms have intimate connections with their immediate neighbors, which may impact all aspects of their biology, but also enables us to define units of interacting organisms that are most suitable to answer specific scientific, societal, and economic questions. The consideration of the holobiont concept marks a paradigm shift in biological and environmental sciences, but only if scientists work together as an (inter)active and transdisciplinary community bringing together holistic and mechanistic views. This will result in tangible outcomes including a better understanding of evolutionary and adaptive processes, improved modeling of habitats and biogeochemical cycles, and application of the holobiont concept in aquaculture and ecosystem management projects.

Acknowledgments

This paper is based on the results of a foresight workshop funded by the EuroMarine network, Sorbonne University, and the UMRs 8227 and 7144 of the Roscoff Biological Station. We are grateful to Catherine Boyen for useful advice and helpful discussions. We thank Sylvie Kwayeb-Fagon for workshop facilitation; Maryvonne Saout and Léna Corre for administrative support; and Marc Trousselier, Sébastien Villéger, Arthur Escalas, Yvan Bettarel, Thierry Bouvier for help writing a part of the manuscript. EMM was partially funded by an Australian Research Council Discovery Project (DP180104041), and JP was partially funded by the Galician Innovation Agency (IN607A 2017/4). The work of SD ad CL was partially funded by the ANR project IDEALG (ANR-10-BTBR-04). CG, CL, and SD received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement number 624575 (ALFF). The work of FN was partially funded by the ANR project IMPEKAB (ANR-15-CE02-001). UC was partially funded by the
Research Council of Lithuania project INBALANCE (09.3.3-LMT-K-712-01-0069). JD was supported by the LabEx GRAL (ANR-10-LABX-49-01) and Pôle CBS from the University of Grenoble Alpes. PC received support from the European Union's Horizon 2020 research and innovation program through the SponGES project (grant agreement No. 679849). EKAZ was funded by a Marie Curie Individual Fellowship (Horizon 2020, IROCOMM). AHE was supported by Portuguese national funds from FCT - Foundation for Science and Technology through project UID/Multi/04326/2019. This document reflects only the authors’ view and the Executive Agency for Small and Medium-sized Enterprises (EASME) is not responsible for any use that may be made of the information it contains.
Figure 1. Partners forming marine holobionts are widespread across the tree of life including all kingdoms (eukaryotes, bacteria, archaea, viruses), and represent a large diversity of potential models for exploring complex biotic interactions across lineages. Plain lines correspond to holobionts referred to in the present manuscript. Dashed lines are examples of potential interactions. Photo credits: Archaeplastida - C. Leblanc, U Cardini; Cryptophyta, Excavata, Amoebozoa – Roscoff Culture Collection; Stramenopila – C. Leblanc, S. M. Dittami, H. KleinJan; Alveolata – A. M. Lewis; Rhizaria – F. Not; Haptophyta – A. R. Taylor; Opisthokonta – C. Frazee, M. McFall-Ngai, W. Thomas, L. Thiault; Bacteria - E Nelson, L Syuceru, S. M. Dittami, S. Le Panse, Planktomania; Archaea – National Space Science Data Center.
Figure 2. Schematic view of the “Russian Doll” complexity and dynamics of holobionts, according to diverse spatiotemporal scales. The host (blue circles), and associated microbes (all other shapes) including bacteria and eukaryotes that may be inside (i.e., endosymbiotic or outside the host, i.e. ectosymbiotic, are connected by either beneficial (solid orange lines), neutral (solid blue lines) or pathogenic (dashed black lines) interactions respectively. The different clusters can be illustrated by the following examples: 1, a model holobiont in a stable physiological condition (e.g., in controlled laboratory condition); 2 and 3, holobionts changing during their life cycle or submitted to stress conditions; 4 and 5, marine holobionts in the context of global sampling campaigns or long-term time series.
The basis of this map was generated during the Holomarine workshop held in Roscoff in 2018 (https://www.euromarinenetwork.eu/activities/HoloMarine). The size of the nodes reflects the number of votes each keyword received from the participants of the workshop (total of 120 votes from 30 participants). The two main clusters corresponding to predictive modeling and mechanistic modeling, are displayed in purple and turquoise, respectively. Among the intermediate nodes linking these disciplines (blue) “potential use, management” was the most connected.
References

promise in context: from sequence to microbial isolate. *Critical Reviews in Microbiology* **44**: 212–229.

Lewellen MS, Boutin S, Hoseinifar SH, Derome N. 2015. Chemical mediation of ternary interactions between marine holobionts and their environment as exemplified by the red alga *Delisea pulchra*. *Journal of Plankton Research*** **37**: 16163.

Marzinelli EM, Qiu Z, Dafforn KA, Johnston EL, Steinberg PD, Mayer-Pinto M. 2018. Coastal urbanisation affects microbial communities on a dominant marine holobiont. *npj Biofilms and Microbiomes*** **4**: 1.

805 1211.
806 Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. 2007a. The role of microorganisms in coral
808 Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. 2007b. The hologenome theory disregards the
815 Saha M, Weinberger F. 2019. Microbial “gardening” by a seaweed holobiont: Surface metabolites attract
816 protective and deter pathogenic epibacterial settlement (K Van Alstyne, Ed.). *Journal of Ecology in press*: 1365-
817 2745.13193.
819 *ISME Journal* 8: 2360–2368.
822 Selosse M-A, Bessa A, Pozo MJ. 2014. Microbial priming of plant and animal immunity: symbionts as
827 539–549.
828 Shreiner AB, Kao JY, Young VB. 2015. The gut microbiome in health and in disease. *Current Opinion in
829 Gastroenterology* 31: 69–75.
830 Singh Y, Ahmad J, Musarrat J, Ehtesham NZ, Hasnain SE. 2013. Emerging importance of holobionts in
832 Skillings D. 2016. Holobionts and the ecology of organisms: multi-species communities or integrated individuals?
834 Smriga S, Sandin SA, Azam F. 2010. Abundance, diversity, and activity of microbial assemblages associated with
836 Spormann M, Wichard T, Bachhuber T, Stratmann J, Oertel W. 2012. Growth and thallus morphogenesis of
837 *Ulva mutabilis* (Chlorophyta) depends on a combination of two bacterial species excreting regulatory factors.
843 Troussellier M, Escalas A, Bouvier T, Moullot D. 2017. Sustaining rare marine microorganisms:
844 Macroorganisms as repositories and dispersal agents of microbial diversity. *Frontiers in Microbiology* 8: 947.
848 1261605.
851 Webster NS, Taylor MW, Behnam F, et al. 2010. Deep sequencing reveals exceptional diversity and modes of
855 Wichard T, Beemelmanns C. 2018. Role of chemical mediators in aquatic interactions across the prokaryote–
858 Coasts* 33: 295–310.

23

