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Background: Every human being carries with them a collection of microbes, a collection that is likely

both unique to that person, but also dynamic as a result of significant flux with the surrounding

environment. The interaction of the human microbiome (i.e., the microbes that are found directly in

contact with a person in places such as the gut, mouth, and skin) and the microbiome of accessory

objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to both epidemiology and the

developing field of microbial forensics. Therefore, the microbiome of personal accessories are of interest

because they serve as both a microbial source and sink for an individual, they may provide information

about the microbial exposure experienced by an individual, and they can be sampled non-invasively.

Findings: We report here a large-scale study of the microbiota found on cell phones and shoes. Cell

phones serve as a potential source and sink for skin and oral microbiota, while shoes can act as sampling

devices for the microbial environmental experience. Using 16S rRNA gene sequencing, we characterized

the microbiota of thousands of paired sets of cell phones and shoes from individuals at sporting events,

museums, and other venues around the United States.

Conclusions: We place this data in the context of previous studies and demonstrate that the microbiota

of phones and shoes are different. This difference is driven largely by the presence of <environmental=

taxa (taxa from groups that tend to be found in places like soil) on shoes and human-associated taxa

(taxa from groups that are abundant in the human microbiome) on phones. This large dataset also

contains many novel taxa, highlighting the fact that much of microbial diversity remains uncharacterized,

even on commonplace objects.
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58 Abstract

59

60 Background: Every human being carries with them a collection of microbes, a collection that is 

61 likely both unique to that person, but also dynamic as a result of significant flux with the 

62 surrounding environment. The interaction of the human microbiome (i.e., the microbes that are 

63 found directly in contact with a person in places such as the gut, mouth, and skin) and the 

64 microbiome of accessory objects (e.g., shoes, clothing, phones, jewelry) is of potential interest to 

65 both epidemiology and the developing field of microbial forensics. Therefore, the microbiome of 

66 personal accessories are of interest because they serve as both a microbial source and sink for an 

67 individual, they may provide information about the microbial exposure experienced by an 

68 individual, and they can be sampled non-invasively. 

69

70 Findings: We report here a large-scale study of the microbiota found on cell phones and shoes. 

71 Cell phones serve as a potential source and sink for skin and oral microbiota, while shoes can act 

72 as sampling devices for microbial environmental experience. Using 16S rRNA gene sequencing, 

73 we characterized the microbiota of thousands of paired sets of cell phones and shoes from 

74 individuals at sporting events, museums, and other venues around the United States. 

75

76 Conclusions: We place this data in the context of previous studies and demonstrate that the 

77 microbiota of phones and shoes are different. This difference is driven largely by the presence of 

78 <environmental= taxa (taxa from groups that tend to be found in places like soil) on shoes and 

79 human-associated taxa (taxa from groups that are abundant in the human microbiome) on 

80 phones. This large dataset also contains many novel taxa, highlighting the fact that much of 

81 microbial diversity remains uncharacterized, even on commonplace objects.

82

83 Keywords

84

85 16S rRNA gene, cell phones, shoes, citizen science, biogeography, human microbiome, Illumina, 

86 taxonomy, microbial dark matter, ASV
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89 Introduction

90

91 Recent years have dramatically expanded our understanding of the human microbiome (e.g. 

92 (McDonald et al., 2018)), the microbiome of the built environment around us (e.g. (National 

93 Academies of Sciences, Engineering, and Medicine et al., 2017)), and the interactions between 

94 the two (e.g. (Leung & Lee, 2016)). This understanding has implications for fields ranging from 

95 medicine to forensics to architecture. In addition to the millions of microbes that we carry around 

96 each day, the majority of people on the planet now possess a cell phone. Previous work on the 

97 microbiome associated with phones has shown that people share a much greater percentage of 

98 their microbes with their own phone than with the phones of others (Meadow, Altrichter & 

99 Green, 2014). As for the environment around us, shoes (or other foot coverings) act in some 

100 ways as microbial sampling devices. We have previously described data suggesting this to be the 

101 case, as well as demonstrated that the microbiome of cell phones and shoes from the same person 

102 are quite distinct (Lax et al., 2015). 

103

104 Throughout 2013-2014, we organized public events around the United States for the purpose of 

105 swabbing surfaces of the built environment and collecting bacteria for isolation via culturing. 

106 Cultured isolates from these samples were screened and a subset of them were sent to the 

107 International Space Station (ISS) for growth in microgravity (Coil et al., 2016). As part of the 

108 public outreach component of this project, we engaged the public in helping collect these swabs, 

109 as well as in swabbing their cell phones and shoes for a nationwide microbial biogeography 

110 study. Thousands of people participated in this project, and we initially collected ~3500 paired 

111 cell phone/shoe samples. The intent of examining bacteria on cell phones and shoes was twofold; 

112 firstly to scale up the results of previous studies on shoes and phones and to look for patterns in 

113 the biogeography at a national scale. The second was to engage people in thinking about cell 

114 phones as being a proxy for sampling the microbes found on a person and their shoes as being a 

115 proxy for sampling the microbes found in a person9s environment. However, given the logistical 

116 constraints, disparate sampling sites/personnel, and Institutional Review Board (IRB) waiver 

117 limitations, we were very constrained in what metadata we could collect. In the end, the only 

118 information retained for each sample was the physical location (GPS coordinates), rough age of 

119 participants, sample object type (cell phone or shoe), and event (basketball game, museum visit, 
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120 etc.). Swabs from these samples were sent back to the laboratory, DNA was extracted from them, 

121 and the DNA was used for 16s rRNA gene PCR amplification and sequencing. To our 

122 knowledge, this represents the largest collection of bacterial community sequencing data 

123 associated with cell phones or shoes.

124

125 Materials and Methods

126

127 Sample collection

128

129 Cell phone and shoe samples were collected on sterile cotton swabs (Puritan cotton tipped #25-

130 806) and participants were instructed to <swab for about 15 seconds as if trying to clean the 

131 object=. Swabs were kept at room temperature by necessity and then sent overnight to the 

132 University of Chicago, where they were kept at -80 °C until processing. DNA extractions, library 

133 preparation, and Illumina sequencing (paired-end 150 bp) were performed exactly as described 

134 in our previous work using swabs from the ISS (Lang et al., 2017). In brief: samples were 

135 prepared using Mo BIO UltraClean kits, DNA extracted using Zymo ZR-96 kits, DNA amplified 

136 using EMP barcoded primer sets targeting the V4 region of the 16S rRNA gene, amplicons were 

137 cleaned and pooled and sequenced on an Illumina MiSeq platform.

138

139 Data processing/validation

140

141 Data from our study reported here was combined with comparable data from a few other 

142 microbiome studies: a study of swabs of the International Space Station, (Lang et al., 2017), a 

143 study examining the microbiomes of both cell phones and their owners (Meadow, Altrichter & 

144 Green, 2014), and a study we conducted of the microbiome of cell phones and shoes (Lax et al., 

145 2015). 

146

147 All datasets were prepared by following the DADA2 protocols (regular or big data, depending on 

148 the size of the dataset) (Callahan et al., 2016a). All four data sets were pre-processed separately, 

149 and each lane of our large dataset was also pre-processed individually to account for error 

150 patterns from different runs or machines. Reads longer than 150 base pairs (bp) were trimmed 
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151 down to 150 bp before processing with DADA2. Low quality regions of reads were removed by 

152 trimming bases that did not satisfy a Q2 quality score. The reads were also trimmed down to a 

153 length of 145 bp. Reads containing Ns were discarded and we used two expected errors to filter 

154 the overall quality of the read (rather than averaging quality scores) (Edgar & Flyvbjerg, 2015). 

155 Only forward reads were considered for this study in order to have uniform data sets (since some 

156 of the data sets only had forward reads). Error models were calculated using one million reads 

157 for the three published data sets. Our samples were additionally separated into sequencing lanes. 

158 Each lane was dereplicated individually according to the DADA2 <BigData= protocol to generate 

159 amplicon sequence variants (ASVs). The ISS samples were pre-processed using the standard 

160 workflow using all the reads available and dereplicating all the samples at the same time. All 

161 seven sequence tables were merged to generate a single biom-like table for statistical analyses. 

162 ASVs were assigned taxonomy using the dada2 function <assignTaxonomy= and the Silva (NR 

163 v132) database (Quast et al., 2013; Yilmaz et al., 2014; Glöckner et al., 2017). ASVs that were 

164 taxonomically assigned to mitochondria or chloroplast were removed. We excluded the ASVs 

165 not represented in 5% of our samples or those with <unidentified= Phyla assignments. Very 

166 closely related ASVs were merged using both a phylogenetic tree based approach and the 

167 taxonomic labels comparisons (tip_glom and tax_glom functions from phyloseq). Samples were 

168 excluded if they did not contain at least one ASV after the filtering. Finally, the resulting ASV 

169 table was selected for only those ASVs assigned to the bacterial kingdom using the subset_taxa 

170 function.

171

172 Alignment of the observed sequences was performed using Clustal Omega (Goujon et al., 2010; 

173 Sievers et al., 2011), and an approximate maximum likelihood phylogeny was constructed using 

174 FastTree2 (Price, Dehal & Arkin, 2009, 2010). Metadata was loaded from the mapping files for 

175 each of the four studies as tab-delimited tables, and relevant columns were extracted using 

176 Pandas (McKinney & Others, 2010) (retained values were: Age, City, Date, Event, Gender, 

177 Hand, Module, Run, Sample, Sport, State, Study, Surface, Time, Touches, Type, Wash). OTU 

178 filtering, taxonomic agglomeration, and ordination was performed using phyloseq (McMurdie & 

179 Holmes, 2013) using Callahan et al. as a guide (Callahan et al., 2016b). Variable importance 

180 measures were estimated by training a random forest classifier (Breiman, 2001; Geurts, Ernst & 

181 Wehenkel, 2006; Pedregosa et al., 2011) on the ASV counts and extracting the attribute 
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182 importance values from the trained classifiers (Janitza, Strobl & Boulesteix, 2013). The PCoA 

183 ordination of the ASV data was generated using the ordinate and plot_ordination functions from 

184 Phyloseq. We exported the ordination coordinates and averaged values for cell phones and shoes 

185 separately to find the centroid of the two data spreads. We plotted a line bisecting 

186 perpendicularly the segment between the two centroids to highlight the separation between the 

187 two groups. We used ggplot2 to overlay this line on the sample and taxa (at the phylum level) 

188 versions of the PCoA (Wickham, 2010). We ran an ANalysis Of SIMilarity (ANOSIM) test 

189 available through the vegan R package to assess the similarities between the phone and shoe 

190 samples using Bray-Curtis distances and 999 permutations (Oksanen et al., 2011). 

191

192 Results/Discussion

193

194 In total, ~3500 swabs were collected for this study at 38 events (see Table 1 for details).  Of 

195 these, some samples were lost in transit and a further 864 samples were excluded from 

196 sequencing due to an irretrievable loss of the sample ID data.  Sequencing was done on 2,486 

197 samples with 599,386,254 paired end reads generated across four lanes of Illumina HiSeq 

198 PE150.  

199

200 Following the DADA2 protocol, we combined the data from our 2,486 samples with data from 

201 three other microbiome studies (439 samples and 57,864,099 reads) and then carried out quality 

202 filtering on the combined data set which resulted in 2,673 samples moving forward for further 

203 analysis. For subsequent analysis on this combined data set, we only used the forward reads 

204 because some of the comparison studies only reported forward reads. These reads were then used 

205 to identify amplicon sequence variants (ASVs). 227,629 unique ASVs were identified and 

206 taxonomic assignments were made for these ASVs using the Silva NR v132 database. Using 

207 Phyloseq, those ASVs that were assigned to mitochondria or chloroplasts (in total 72,400 or 32% 

208 of the ASVs) were excluded from further analysis, resulting in 155,229 remaining ASVs. ASVs 

209 present in too few samples (less than 5%) were removed, keeping 1,928 ASVs. We grouped 

210 closely-related taxa separated by a cophenetic distance smaller than 0.4, further reducing to 291 

211 ASVs. ASVs that were taxonomically assigned to anything that was not bacteria were also 

212 excluded (289 ASVs remaining).
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213

214 The ASV based filtration reduced the total number of samples to 2,630 (since some samples did 

215 not contain any of these final ASVs). In total, these 289 unique ASVs included 64,067,941 of the 

216 initial reads.  For some analyses, we further reduced this final data set by including only samples 

217 from this study.  This resulted in 40,432,677 reads representing 223 unique ASVs from 2,185 

218 samples.

219

220 In order to examine and visualize differences between samples, we plotted a PCoA ordination of 

221 samples based on sample to sample Bray-Curtis distances of the microbial communities in those 

222 samples (FIGURE 1). A quick examination of the plot revealed that cell phones (green) and 

223 shoes (black) appear to group separately (something seen in prior studies); this is supported by 

224 ANOSIM statistical analysis which showed a significance of 0.001 for this separation of shoes 

225 and phones. Visual examination suggests that floor samples (light blue) group with shoes (as 

226 expected), while spacecraft (yellow) group with phones, presumably because both of these 

227 communities have major contributions from human associated taxa. However, we did not test the 

228 significance of these groupings. 

229

230 As an alternative method for examining the potential importance of the metadata variables 

231 (sample type, sport, location, and sequencing run) we utilized variable importance measures 

232 (VIMs). These VIMs were estimated by training a random forest classifier (Breiman, 2001; 

233 Geurts, Ernst & Wehenkel, 2006; Pedregosa et al., 2011) to assign samples to their metadata 

234 categories (sample type, city, state, sequencing run and sport) based on their ASV counts, and 

235 extracting the variable importance values from the trained classifiers (Janitza, Strobl & 

236 Boulesteix, 2013). Note that variable importance analysis is a distinct application of random 

237 forests from the more widely-used classification application. Extracting VIMs not does not 

238 include the optimization and benchmarking steps required to use random forests in their 

239 predictive capacity. Sample feature importances indicate that the sample type (shoe or phone) 

240 was the most predictive of the observed community structure, followed by the geographic 

241 location of the sample (Supplemental Figure 1). The sport played at the venue where the sample 

242 was collected is less predictive of the community structure than the sequencing run.  Overall, 

243 these results support and extend our previous findings that the microbiomes of shoes and phones 
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244 are distinct. Interestingly, the city where an event took place was more predictive of community 

245 structure than state, suggesting the possibility that there are local biogeography effects in 

246 patterning the microbial community. Further analysis of this large dataset may reveal more 

247 detailed patterns, such as the influence of geographic location on microbial communities

248

249

250 To further examine the differences between cell phones and shoes we identified the centroids of 

251 the two data spreads, after first removing all the data from previous studies (FIGURE 2). The 

252 line in this figure represents the bisection of these two centroids, to highlight their separation. 

253 We then used this bisection line to examine in more detail the taxa that contribute to the 

254 separation of shoe and phone samples. 

255

256 We did this by generating a series of plots showing only the ASVs belonging to each phylum 

257 separately (FIGURE 3). The line in each plot is the same as in the sample plot in Figure 2 and 

258 those ASVs to the top/left can be considered to be driving the <shoe= portion of the PCoA and 

259 the ASVs to the bottom/right can be considered to drive the <phone= portion of the PCoA. These 

260 plots (and the underlying data) show some interesting phyla-specific patterns. Some phyla (e.g., 

261 Bacteroides and Firmicutes) have many ASVs on both sides of the line, indicating that there are 

262 ASVs from these phyla that are biased towards shoes and others that are biased towards phones. 

263

264 Two phyla (Tenericutes and Fusobacteria) contain only ASVs that are skewed towards phones. 

265 We believe this is likely due to these ASVs being human associated taxa.  For example, the 

266 taxonomic assignments of the Fusobacteria ASVs were Leptotrichia (n=2) and Fusobacterium 

267 (n=1); these two genera are generally found in animal microbiomes including the oral 

268 microbiome of humans and other mammals. The two Tenericutes ASVs were both taxonomically 

269 assigned to the Mycoplasma genus; many members of this genus are animal associated.

270  

271 In contrast, there are many phyla (Acidobacteria, Cyanobacteria, Deinococcus-Thermus, 

272 Planctomycetes, Fibrobacteres, Nitrospirae, Chloroflexi, Armatimonadetes, and 

273 Gemmatimonadetes) which include only ASVs that are skewed towards shoes. We presume that 

274 these ASVs from these phyla represent taxa from the broader environment (e.g., soil) that would 
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275 be picked up by shoes. Examination of the taxonomic assignments for these ASVs supports this 

276 possibility, with genera assignments including taxa commonly found in water or soil such as 

277 Chroococcidiopsis, Oscillatoria, Chroococcidiopsis, Truepera, Deinococcus, Longimicrobium, 

278 Gemmatirosa, Gemmatimonas, Nitrospira, and Planctomyces.

279

280 Novel evolutionary lineages

281

282 One of the reasons we chose to sample cell phones and shoes is that they are such 

283 commonplace objects used by so many people all around the world. The fact that they are so 

284 commonplace makes them useful in the context of crowdsourcing and participatory 

285 microbiology projects: many people have both of them, one can use them as a way to get people 

286 to think about microbes hidden in the world around them, and they have potential for various 

287 forensic types of analyses.

288 In relation to this, we examined how many (if any) of these microbes present in such 

289 everyday objects were from any of the so-called <microbial dark matter= branches in the tree of 

290 life. The term <microbial dark matter= or MDM for short is used in this context to refer to major 

291 evolutionary lineages for which few or no representatives have ever been grown in the lab or 

292 studied in detail (Rinke et al., 2013). To examine the MDM in these samples, we examined the 

293 taxonomic annotation of ASVs and identified those that were assigned to phyla or candidate 

294 phyla that are generally viewed as MDM lineages. The phyla we focused on were: 

295 Aegiribacteria, AncK6, Armatimonadetes, Atribacteria, BRC1, Caldiserica, Calditrichaeota, 

296 Chrysiogenetes, Cloacimonetes, Coprothermobacteraeota, Dadabacteria, Dependentiae, 

297 Diapherotrites, Edwardsbacteria, Elusimicrobia, Entotheonellaeota, Fervidibacteria, FCPU426, 

298 GAL15, Hydrogenedentes, Latescibacteria, Margulisbacteria, Nanoarchaeaeota, Nitrospinae, 

299 Omnitrophicaeota, Patescibacteria, PAUC34f, Rokubacteria, RsaHf231, WOR-1, WPS-2, WS1, 

300 WS2, WS4, and Zixibacteria. We also then examined the distribution patterns of these ASVs 

301 across samples and the whether they showed any skew between phones and shoes (Supplemental 

302 Table 1).

303 This analysis of ASVs assigned to MDM lineages revealed that in fact quite a large 

304 number of ASVs found in our study were from such MDM groups. In some cases, these ASVs 

305 assigned to these groups are quite rare - for example ASVs from WOR-1, Edwardsbacteria and 
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306 Diapherotrites was found to be present in one sample each. However, some were present in a 

307 much wider range of samples, and we focused most of our attention on those. Of the nine MDM 

308 phyla for which ASVs were found to be present in at least 10% of samples (Armatimonadetes, 

309 Patescibacteriam, WPS-2, Entotheonellaeota, Dependentiae, BRC1, Rokubacteria, 

310 Latescibacteria, Elusimicrobia), all were found more often in shoe samples than phone samples. 

311 This is not surprising given that (1) phone samples tend to be enriched for human associated 

312 microbes, only a few of which are in current MDM groups and (2) many MDM lineages are 

313 known to be found in soil, which is presumably abundant on shoes. Two of these widespread 

314 MDM phyla (Armatimonadetes, Patescibacteriam) were found to have ASVs present in almost 

315 50% of samples. Twelve classes and thirteen orders were found to be present in more than 10% 

316 of samples. Of these, all were skewed towards shoe samples except two taxa (Gracilibacteria 

317 within Patescibacteria, and Absconditabacteriales within Gracilibacteria). 

318 Overall these results show that though MDM is frequently portrayed as mostly coming 

319 from remote, isolated, or extreme environments, a remarkable fraction of people are traveling 

320 around with representatives from these groups on commonplace objects. 

321

322 Conclusion. 

323

324 These data support previous work by ourselves and others demonstrating that the microbiome of 

325 cell phones and shoes are distinct, even when belonging to the same person.  In this analysis, we 

326 also highlight which phyla are most responsible for the observed differences in microbial 

327 communities between phones and shoes. This difference is driven largely by the presence of 

328 <environmental= taxa (taxa from groups that tend to be found in places like soil) on shoes and 

329 human-associated taxa (taxa from groups that are abundant in the human microbiome) on 

330 phones.  Lastly, we show that a number of <microbial dark matter= taxa are present, even 

331 abundant, on these commonplace objects.

332

333

334

335

336
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337 Availability of Supporting Data

338

339 All raw sequencing data has been deposited at NCBI under BioProject PRJNA470730 

340 (https://www.ncbi.nlm.nih.gov/sra/SRP145522). All data analysis, supporting files and 

341 intermediate analysis files are available at Zenodo: 

342 (https://zenodo.org/record/1419350#.W6Uy5PlRdEY). An interactive visualization of this data is 

343 available at www.phinch.org.
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Table 1(on next page)

Sample Collection Information

Table 1: Sample Collection Information. <Age= is a rough approximation based on attendees

of the event (A=Adult, K=Kid, M=Mixed). <n== refers to the number of samples that were

actually sequenced. <Event title or location= is how the samples are referenced in the data

files.
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Age City State n= Date

Event title or 

Location Description

A Palmdale CA 19 7/19/2013 TeachersInSpace

Teachers in Space summer 

workshop at Aero Institute

K San Diego CA 14 8/24/2013 PWCoronado

Pop Warner Cheer Organization: 

Coronado Islanders

K Monrovia CA 31 9/24/2013 Wildrose Wildrose Elementary School

K Castro Valley CA 12 9/29/2013 PWGladiators

Pop Warner Cheer Organization: 

Castro Valley Gladiators

M San Francisco CA 147 11/2/2013 BASF Bay Area Science Festival

A Denver CO 33 5/8/2013 DMNS

Denver Museum of Nature and 

Science

K Fountain CO 37

10/10/201

3 ColeMiddle Cole Middle School

A Washington DC 13 4/12/2013 YNDC

Yuri's Night party at Science Club 

in Washington D.C.

M Washington DC 50 9/14/2013 SmithsonianAirSpace

Women in Space Day/Smithsonian 

Museum of Air and Space

M Washington DC 280 4/25/2014 SciEngFest

USA Science and Engineering 

Festival

A

Fort 

Lauderdale FL 16 8/14/2013 Broward STEM Teacher Event

K Orlando FL 40 9/7/2013 PWBrantley

Pop Warner Cheer Organization: 

Lake Brantley Patriots

A Miami FL 28 9/25/2013 MiamiDolphins Miami Dolphins NFL football game

K Atlanta GA 33 4/27/2013 Girl Scouts

Girl Scouts at Atlanta Science 

Festival

K Potlatch ID 25

10/10/201

3 Potlatch Potlatch Junior High School

A Longmeadow MA 10 9/26/2013 Tufts

Tufts University Pediatric 

Infectious Diseases Hospital

M Baltimore MA 24 5/4/2014 KidneyFoundation

Kidney Foundation Walk at the 

Baltimore Zoo

A Columbia MD 69 6/9/2013 HowardCCC

Howard County Community 

Challenge

A Landover MD 6

10/29/201

3 Redskins

Washington D.C. NFL football 

game

A Durham NC 36 4/12/2013 YNNC

Yuri's Night party at Museum of 

Life and Science in Durham, NC

A Durham NC 246 2/17/2014 ScienceOnline

Science Online scientific 

conference - NC State University

A New York NY 40 4/16/2013 YNNY

Yuri's Night party at National Arts 

Club in New York, NY 

K Chittenango NY 35 9/4/2013 PWBears

Pop Warner Cheer Organization: 

Chittenango Bears

A Tulsa OK 78 9/11/2013 TulsaCCBio Tulsa Community College Bio Class 
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Project

K Salem OR 20 10/4/2013 ChapmanHill Chapman Hill Elementary School

M Philadelphia PA 5 4/20/2013 PhillyScienceFest Philadelphia Science Festival 2013

M Philadelphia PA 72 4/25/2013 PhilliesGame

Philadelphia Phillies MLB baseball 

game

A Philadelphia PA 10 5/23/2013 CHF Chemical Heritage Foundation

A Philadelphia PA 3 5/30/2013 FranklinInstitute The Franklin Institute

A Philadelphia PA 17 6/4/2013 PhillyANS

The Academy of Natural Sciences 

at Drexel University

A Philadelphia PA 72 2/18/2014 76ers

Science at the Sixers - Philadelphia 

76ers NBA basketball game

M Philadelphia PA 33 4/26/2014 DiscoveryDays

NaturePalooza - at The Schuylkill 

Center for Environmental 

Education

M Philadelphia PA 23 4/30/2014 DrexelLibrary

Philadelphia Science Festival: 

Katharine Drexel Library

M Philadelphia PA 171 5/3/2014 PhillySciFest Philadelphia Science Festival 2014

M San Antonio TX 84 4/12/2013 SPURS

San Antiono Spurs NBA basketball 

game

M Houston TX 171 4/14/2014 YYCPA

Young Women's College 

Perparatory Academy

K Unknown 13 4/23/2014 KidScoop

Nationwide competition through 

KidScoop magazine

M Dulles VA 70 9/28/2013 NSFSTEM

National Science Foundation, 

STEM Careers Fair; Dulles Town 

Center

1
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Figure 1

Principal coordinate (PCoA) plot of all samples

FIGURE 1: Principal coordinate (PCoA) analysis plot of the Bray-Curtis distances of 16S rRNA

gene sequence based ASVs for all samples, colored by the type of sample.
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Figure 2

Principal coordinate (PCoA) plot of samples in this study

FIGURE 2: Principal coordinate (PCoA) analysis plot of the Bray-Curtis distances of 16S rRNA

gene sequence based ASVs for cell phone and shoe samples from only this study, colored by

sample origin. The line is the bisection of the centroids of the two sample types (phones and

shoes).
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Figure 3

Principal coordinate (PCoA) plot of the ASVs for Phyla identified from this study.

FIGURE 3: Principal coordinate (PCoA) analysis plot of the Bray-Curtis distances of 16S rRNA

gene sequence based ASVs for Phyla identified from this study (Taxa version of Figure 2).

This is showing a split representation of individual Phyla to prevent overlapping points. The

line represents the split between cell phone and shoe samples from Figure 2.
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Figure 4

Supplemental Figure 1: Importance of metadata variables (attribute importance

analysis)

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27514v1 | CC BY 4.0 Open Access | rec: 1 Feb 2019, publ: 1 Feb 2019



Table 2(on next page)

Supplemental Table 1. MDM (Microbial dark matter) phyla distribution summarized for

shoes vs. phones
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Phylum %cell %shoe #samples % of Samples

Armatimonadetes 26.3 73.7 1068 47.8

Patescibacteria 36.7 63.3 1041 46.6

WPS-2 15.8 84.2 404 18.1

Entotheonellaeota 25.3 74.7 360 16.1

Dependentiae 19.7 80.3 356 15.9

BRC1 11.1 88.9 352 15.8

Rokubacteria 29.0 71.0 352 15.8

Latescibacteria 29.1 70.9 278 12.4

Elusimicrobia 25.9 74.1 259 11.6

RsaHf231 10.7 89.3 103 4.6

Nanoarchaeaeota 32.4 67.6 71 3.2

Omnitrophicaeota 36.0 64.0 50 2.2

Hydrogenedentes 23.3 76.7 43 1.9

WS4 26.5 73.5 34 1.5

Zixibacteria 39.1 60.9 23 1.0

FCPU426 21.7 78.3 23 1.0

WS2 31.3 68.8 16 0.7

Nitrospinae 30.8 69.2 13 0.6

GAL15 63.6 36.4 11 0.5

Dadabacteria 10.0 90.0 10 0.4

Atribacteria 50.0 50.0 6 0.3

Margulisbacteria 33.3 66.7 6 0.3

Coprothermobacteraeota 33.3 66.7 6 0.3
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Caldiserica 50.0 50.0 4 0.2

Calditrichaeota 0.0 100.0 4 0.2

Cloacimonetes 25.0 75.0 4 0.2

WS1 0.0 100.0 3 0.1

PAUC34f 50.0 50.0 2 0.1

AncK6 100.0 0.0 2 0.1

Acetothermia 0.0 100.0 2 0.1

Diapherotrites 0.0 100.0 1 0.0

Edwardsbacteria 100.0 0.0 1 0.0

WOR-1 0.0 100.0 1 0.0

1
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