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In the health self-management services it is beneficial to identify and address the already

existing healthy activity patterns of the user. Some of these healthy activity patterns

might be of a utilitarian nature, e.g. commuting to work by bike or on foot, or might be for

leisure, like taking a walk in a park. In the paper we discuss one possibility to detect the

utilitarian or leisure nature of a particular ambulatory path based on the geometry of the

trajectory. In essence, a leisure trip is more commonly a round-trip while an utilitarian A-

to-B trips follow the single shortest path between A and B. We define a generic measure

for the characterization of utilitarian and leisure paths based on GPS location data and

develop an algorithm for approaching the same based on only magnetometric data from a

wearable device.
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ABSTRACT8

In the health self-management services it is beneficial to identify and address the already existing healthy

activity patterns of the user. Some of these healthy activity patterns might be of a utilitarian nature, e.g.

commuting to work by bike or on foot, or might be for leisure, like taking a walk in a park. In the paper we

discuss one possibility to detect the utilitarian or leisure nature of a particular ambulatory path based

on the geometry of the trajectory. In essence, a leisure trip is more commonly a round-trip while an

utilitarian A-to-B trips follow the single shortest path between A and B. We define a generic measure for

the characterization of utilitarian and leisure paths based on GPS location data and develop an algorithm

for approaching the same based on only magnetometric data from a wearable device.
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INTRODUCTION17

When we go to work or visit a supermarket most of us are likely to choose the shortest route to the18

destination and back. On the other hand, a person having a walk for health purposes often prefers19

choosing a path around an area, for example, a nearby park or a block. This paper is based on this20

common observation that some geometric property of a path may be associated with the utilitarian or21

leisure character of a trip the person takes. Experiments by Guo and Loo (2013) show clear geographic22

and cultural differences but there is objective evidence that utilitarian commuters typically choose the23

shortest route from A to B (Agrawal et al., 2008).24

It is commonly understood that lifestyle is one of the most important determinants of overall health,25

see, e.g., (Schroeder, 2007). Walking is a healthy and safe form of physical activity and therefore it26

is often recommended in health programs aiming at increasing the physical activity level of the user27

(Takama et al., 2015). Walking is also easy to measure using, e.g., pedometers, bracelets, and apps (Case28

et al., 2015; Evenson et al., 2015). However, changing a lifestyle by adding new active routines like29

healthy walks is not easy because of various economical, social, and environmental constrains. Therefore,30

health coaches often try to identify healthy routines the customer already has and then ask the user to31

perform them more often or make them more intense. In automated health self-management programs32

where communication is based on sensor data, it is not straightforward to know which routines are healthy33

routines that can be boosted. People are not ready to commute more often or make a trip to a supermarket34

longer. On the contrary, a healthy walk around a park can be repeated more often or made longer when35

the subject has the motivation for it and understanding of the health benefits of it.36

In this paper it is assumed that a geometric property of the path may give an indirect indication of the37

purpose of the trip. In particular, we assume that a trip may be an utilitarian trip from a place A to B and38

back the shortest path, or a healthy or leisure activity bout with a path that encloses a geographic area.39

The path circularity measure introduced in the following section is based on accurate geographic position40

data. In absence of position data, the detection of the geometry is of course more challenging. However,41

there are possibilities to use various sensor modalities to detect if the user took the same or different route42

when returning. There is anecdotal evidence on how pets find a way back to home over long distances,43

how migratory birds (Beason, 2005; Holland and Helm, 2013) return back to the nesting sites, a salmon44

finds the way back to the same creek where it hatched (Putman et al., 2013), or rats learn paths in mazes45

(Singer et al., 2006).46
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Bio-inspired positioning based on local magnetic signatures has been proposed in Haverinen and47

Kemppainen (2009). In the current paper this is extended to the problem of detection of the return path.48

The ability of animals to navigate a way back without a dedicated external positioning infrastructure is a49

good model for the design of data processing also in low-power wearable devices. In section III, which is50

inspired by this observation, we focus on deriving geometric properties from trips solely based on data51

output by low-power inertial and magnetic sensors, which resemble the geometric properties estimated52

from geographic location data that require more battery power. Finally, the conclusions are summarized53

in the last section.54

CIRCULARITY IN POSITION DATA55

Many personal health products and services come with an app which tracks the location of the user by56

means of global positioning techniques that rely on satellites or other beacons.57

A path is a represented by discrete time-series of geographic points g(t) = [gx(t),gy(t),gz(t)]
T

corresponding to the latitude, longitude, and elevation, respectively. The length of the path is

L =
T−1

∑
t=0

|g(t)−g(t−1)|. (1)

There are several practical approaches also to compute the area enclosed by the path. On a plane, one58

may use the popular shoelace algorithm which in the current notation is written by59

A =
1

2
|

T−1

∑
t=0

gx(t)gy(t +1)+gx(T )gy(0) (2)

−
T−1

∑
t=0

gx(t +1)gy(t)−gx(0)gy(T )|

The circularity measure discussed in this paper is defined by

C = 4π

A

L2
(3)

When the path is a full circle the formula gives the maximum value C = 1.0, while for any other shape,60

the value is smaller. The minimum C = 0 is obtained when the enclosed area A = 0, that is, the same path61

was used in both ways on a visit from A to B and back.62

Figures 1 show histograms of walking, running, and cycling trips by a group of volunteers who were63

wearing an activity tracking watch and an app with GPS localization in an experiment lasting several64

weeks. Only semi-continuous trips longer than one kilometer, with the start and end locations in close65

proximity, were included in the data set. Both walking and cycling trips contain significant number of66

utilitarian ABA trips where C ≈ 0. In running data most of the trips had a clear circular pattern, although,67

the running trips were not very popular in this population of 85 subjects. As reference, the histogram68

of transportation trips is shown. Most of the trajectories classified as transportation event have a clear69

utilitarian ABA trip pattern. Based on examination of the location data it became clear that a large number70

of cycling trips were indeed utilitarian visits to a supermarket or a work place. Based on visual inspection71

of the paths and the values of C we could suggest that a practical rule of thumb for the detection of an72

utilitarian path is C < 0.05.73

CIRCULARITY IN MOTION SENSOR DATA74

Location data is typically not available in low-power wearable devices or indoors. However, some75

information about the path can be also estimated from elementary inertial sensors. In principle, it is76

possible to reconstruct a movement path by double-integrating the accelerometer data. This often has77

a significant drift due to sensor noise, nonlinearities, and other artifacts. Magnetometric sensors use78

the magnetic field of the Earth and therefore have a stable allocentric reference direction. Localization79

systems combining inertial and magnetic sensors have been proposed for example in (Wilson et al., 2015;80

Kim and Kong, 2016).81
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Figure 1. Circularity C in a collection of walking, running, cycling and transport trips in 85 individuals.

If the path on the way back from B to A is similar to the AB path, the enclosed area will be zero, and82

consequently the circularity C→ 0. One may say that the estimation of the lower bound of circularity is83

coupled to the problem of finding the return route, the task where many animals are very good at. Finding84

the return route requires memory and the ability to compare the current place to a memory signature. A85

typical approach would be to compute some global correlation metric between the two paths. It is often86

considered that humans and other animals are able to remember the order of historical events Devito87

and Eichenbaum (2011), and construct some cognitive spatial maps of locations Singer et al. (2006)88

which support this processing principle. However, there is evidence that cognitive spatial information in89

human (and non-humans) is organized as relations between local contextual sub-maps rather than using a90

global geographic framework Madl et al. (2016). This suggests an alternative processing model where the91

correlations are computed between local segments.92

Global return path tracking93

The sensor data is a vector-values time series x(t). We assume that when the sensor moves from A to B

and returns to A using the same path, the data corresponding to the path BA is a rotated and temporally

reversed and distorted version of the time-series collected in AB. The sensor data for the entire trip can be

modeled as follows:

y(t) =

{

x(t), if , t < TB

Mx(ν(t)), if , t≥ TB
(4)

where M is a rotation matrix and ν() is a time warping function which is typically monotonically

decreasing, i.e., mapping backwards in time. In a simplified case one may assume that the return path

is simply a time reversal of the forward path. In matrix notation the time-reversed path is then M
←−
I xb,

where
←−
I is a reversal identity matrix and xb is the return part of the path. The least-squares solution for

the rotation matrix M can be found from the normal equations

(
←−
I xb)

T←−I xbM = (
←−
I xb)

Txa (5)
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which reduces to

xT
b xbM = xT

b

←−
I xa (6)

The ability to trace back the path requires the temporal reversal of the first path, but also a rotation M94

of the sensory data because the orientation of the body in relation to the external field is different on the95

way back. A turn to the left in one way is replaced by a turn to the right on the way back.96

In the current paper the temporal mid-point is used as an estimate of TB, because the start and end97

points are known and a robust blind estimate of TB cannot be defined in a unique way in the case of loop98

data.99

The detection of an estimate for the lower bound of circularity can be performed using the following100

algorithm:101

Input: sensor time series x(t) from t = 0...T −1 in102

Output: circularity estimate Cm out103

1: Estimate the turning point TB and divide the time series to two parts xa and xb.104

2: estimate the rotation operator M form the normal equation xT
b xbM = xT

b

←−
I xa105

3: time-align yb = Mrb and xa by the based on maximum point of the cross-correlation function by106

creating a time shifted version ỹb.107

4: Compute the inverse of the Pearson cross correlation coefficient Cm = 1−P(xa, ỹb)108

5: return Cm109

The outcome of the algorithm is a measure Cm which gives a small value when the data in the two110

ways has the assumed time-warped temporal temporal and geometric rotation, and a larger value, when111

the similarity is low. If the return path is a symmetrical mirror image of the AB path (e.g., in a perfect112

circle or square path), it is possible to find a rotation matrix R which gives a large value for Cm. In real113

movement data, perfect mirror-symmetrical paths are unusual.114

Return path matching using local dynamic time-warping115

The speed on the way back may be different in different parts of the path which cannot be compensated116

by the time-alignment operation in global path matching algorithm above, where ν(t) was merely a117

time-reversal and shift function. A generic (reversed) time-warping function can be estimated using118

various methods for dynamic time warping (DTW) Paliwal et al. (1982). These methods are typically119

based on a piece-wise linear time-warping function ν(t) matched to the data. One can note that this is120

conceptually similar to the biological mechanism of remembering the return path as sequence of local121

contextual sub-maps.122

Input: sensor time series x(t) from t = 0...T −1 in123

Output: circularity estimate Cd out124

1: Estimate the turning point TB and divide the time series to two parts xa and xb.125

2: estimate the rotation operator M form the normal equation xT
b xbM = xT

b

←−
I xa126

3: Find and optimal dynamic time-warping function ν(t) that minimize a norm of yb− ỹb, where127

ỹb = ν(Mrb). Typically DFT algorithms are based on a least squares norm.128

4: Compute the inverse of the Pearson cross correlation coefficient Cd = 1−P(xa, ỹb)129

5: return Cd130

The following experiments were based on the DWT implementation available in the Matlab Signal131

Processing Toolbox 2016b which is based on the method detailed in Paliwal et al. (1982).132

EXPERIMENTS133

The test data contains multisensor (Shimmer3) measurements of a cyclist riding 1-3km loops and two-134

way trips in a suburban area close to Eindhoven, The Netherlands. The sensor contains two 3-axis135

accelerometer devices, gyroscope, pressure sensor, and a 3-axis magnetometer. The device was attached136

to the chest of the cyclist using an elastic strap. The GPS location data was collected using an app in a137

smartphone carried by the cyclist. In total, 14 loops or two-way trips were recorded. Examples of the138

cycling paths are shown in Fig. 2. The measures of circularity based on the location data (C) and the139

magnetometric sensor data Cm are marked in the figures.140

An example of raw magnetometer data from an AB trip is shown in the top panel of Fig. 3. The141

return trip from B to A is shown in the middle panel and the rotated and time-aligned yb signal of the BA142
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Figure 2. Examples of cycling path trajectories.

trip is in the bottom panel. The bottom and top panels are visually similar which is also reflected in the143

circularity estimate Cm = 0.05.144

The box plot of the circularity measure in the collection of location and magnetometer data of loops145

and two-way trips is shown in Fig. 4. The three pair of boxplots represent the two kinds of trips using GPS146

data, global time alignment (TA) only, and the signals matched using DTW. The difference in the GPS147

and two other conditions is significant. Between the TA and DTW conditions there is a mild trend for the148

benefit of the DTW method but the difference is not significant. The same experiment was also performed149

using accelerometer, gyroscope, temperature and air pressure data. However, the results in the experiments150

were less convincing and the difference in Cm was significantly smaller than in the magnetometer data.151

However, the estimate for the circularity Cm has relatively low values also in the loop data.152

RESULTS AND DISCUSSION153

In personal health services focused on lifestyle behavior change it is important to be able to address the154

current activities correctly in providing feedback, motivation, and advice. However, such information is155

typically scarcely available but the only information source is sensor data, for example, from a wearable156

device or an app. In this paper we study the possibility to get additional information about the activities157

of a subject from the path trajectories. It is assumed that ambulatory trajectories can be divided into158

utilitarian and leisure trips based on the whether a subject returns the same path from a trip from A to159

B, or encloses an area by a loop, respectively. In particular, a measure, circularity, is proposed which160

characterizes the overall geometric property of the trip as a ratio of the enclosed area and a square of the161

path length.162

It is first demonstrated that the histograms of the proposed measure in walking, running, and cycling163

trips in sensor data from a population of 85 volunteers look plausible. Secondly, the measure is computed164

from geographic location tracking data of a collection of cycling paths, which represent either utilitarian165
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Figure 3. Top) Magnetometric time-series of a cycling trip AB. Middle) from BA, and bottom) rotated

and time-aligned BA data.

or leisure trips.166

In many cases real geographic location data is not available and therefore the estimation of the167

circularity becomes impossible. However, one may note that the lower margin of the circularity can be168

found even in the case where the subject on a trip from A to B and back returns the same path. Finding169

a way back is a common phenomenon in many biological organisms which do not have any means of170

global positioning. For example, the local magnetic signature is related to the environment or direction171

of movement is known to be used by many animal species including migratory birds and fishes. The172

proposed algorithm can be seen as an imitation of the process of reverse navigation based on magnetic173

cues. In the paper we demonstrate that the algorithm in application to the cycling data of utilitarian and174

leisure trips shows a significant difference in the estimated lower bound for the circularity.175
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