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Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior

pituitary gland, plays an important role in regulating reproductive processes. In this study,

using the TargetScan program, we predicted that miRNAs regulate FSH secretion. Dual-

luciferase reporter assays were performed and identified miR-7a-5p. MiR-7a-5p has been

reported to regulate diverse cellular functions. However, it is unclear whether miR-7a-5p

binds to mRNAs and regulates reproductive functions. Therefore, we constructed a

suspension of rat anterior pituitary cells and cultured them under adaptive conditions,

transfected miR-7a-5p mimics or inhibitor into the cell suspension and detected expression

of the FSHb gene. The results demonstrated that miR-7a-5p downregulated FSHb

expression levels, while treatment with miR-7a-5p inhibitors upregulated FSHb expression

levels relative to those of negative control groups, as shown by quantitative PCR analysis.

The results were confirmed with a subsequent experiment showing that FSH secretion was

reduced after treatment with mimics and increased in the inhibitor groups, as shown by

ELISA. Our results indicated that miR-7a-5p downregulates FSHb expression levels,

resulting in decreased FSH synthesis and secretion, which demonstrates the important role

of miRNAs in the regulation of FSH and animal reproduction.
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21 ABSTRACT 

22 Follicle-stimulating hormone (FSH), which is synthesized and secreted by the anterior 

23 pituitary gland, plays an important role in regulating reproductive processes. In this study, using 

24 the TargetScan program, we predicted that miRNAs regulate FSH secretion. Dual-luciferase 

25 reporter assays were performed and identified miR-7a-5p. MiR-7a-5p reportedly regulates diverse 

26 cellular functions. However, whether miR-7a-5p binds to mRNAs and regulates reproductive 

27 functions is unclear. Therefore, we created a suspension of rat anterior pituitary cells and cultured 

28 them under adaptive conditions. The cell suspension was transfected with miR-7a-5p mimics or 

29 inhibitors, and the expression of the FSHb gene was detected. MiR-7a-5p downregulated FSHb 

30 expression levels, while compared to the negative control, miR-7a-5p inhibitors upregulated FSHb 

31 expression levels, as shown by quantitative PCR analysis. The results were confirmed with a 

32 subsequent experiment showing that FSH secretion was reduced after treatment with mimics and 

33 increased after treatment with inhibitors, as shown by ELISA. Our results indicated that miR-7a-

34 5p downregulates FSHb expression levels, resulting in decreased FSH synthesis and secretion, 

35 demonstrating the important role of miRNAs in FSH regulation and animal reproduction.

36

37
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38 INTRODUCTION

39 The pituitary gland, which is located in the sella turcica at the base of the crania and is composed 

40 of the adenohypophysis and neurohypophysis(Hong et al. 2016), is involved in complex feedback 

41 mechanisms. This gland secretes several specific regulatory hormones to control peripheral 

42 endocrine organs, such as the thyroid, adrenal gland and gonads, after receiving information from 

43 the brain via the hypothalamus(Treier & Rosenfeld 1996). Consequently, the pituitary gland can 

44 regulate vital processes such as metabolism(Rodriguez-Pacheco et al. 2013), growth(Vyshnevs'ka 

45 & Bol'shova 2013), reproduction(Musumeci et al. 2015) and behavior(Shin et al. 2013). As the 

46 most important internal secretion gland in mammals, the pituitary plays a role throughout an 

47 animal9s life by releasing seven types of hormones(Yuan et al. 2015).

48 Gonadotropin follicle-stimulating hormone (FSH) plays a critical role in modulating the 

49 reproductive health of both sexes. FSH stimulates spermatogenesis and androgen production in 

50 males and regulates the cyclic recruitment of follicles, follicle development, and ovulation 

51 triggering in females(Hunzicker-Dunn & Maizels 2006; Rull et al. 2018; Walker & Cheng 2005). 

52 FSH, which is synthesized and secreted by the anterior pituitary gland(Sheng et al. 2018), together 

53 with luteinizing hormone (LH), human chorionic gonadotropin (HCG) and thyroid-stimulating 

54 hormone (TSH), comprises a class of the glycoprotein hormone family(Telikicherla et al. 2011). 

55 FSH consists of a common ³ subunit shared by all glycoprotein hormones and a unique ³ subunit 

56 that determines its unique biological function(Lamminen et al. 2005). The ³ subunit combines with 

57 hormone-specific ³ subunits to form heterodimers, and the extracellular domain of the ³ subunit 

58 has important binding sites for the membrane-bound receptor(Fan & Hendrickson 2005).

59 MicroRNAs (miRNAs) are genome-encoded small noncoding RNAs that are 22 nucleotides 

60 long in their mature form(Bartel 2009). MiRNAs can regulate gene expression at the 

61 posttranscriptional level by recognizing the 3'UTR sequence of target messenger RNAs(Ambros 

62 2004). MiRNAs participate in various physiological processes and have a significant impact on 

63 hormone regulation. For example, miR-8 regulates multiple peptide hormones and may contribute 
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64 to Drosophila growth(Lee et al. 2015). In 2013, Setyowati Karolina D found that miR-25 and miR-

65 92a overexpression suppressed insulin I expression in rats(Setyowati Karolina et al. 2013). 

66 Furthermore, miR-325-3p is involved in suppressing LH translation and secretion(Nemoto et al. 

67 2012), and miR-136-3p binds directly to LHR mRNA to downregulate this molecule(Kitahara et 

68 al. 2013). MiR-133b promotes estradiol synthesis and levels by targeting Foxl2(Dai et al. 2013), 

69 and miR-132 stimulates estradiol synthesis by repressing Nurr1 translation(Wu et al. 2015b). 

70 However, miRNAs and their regulatory roles in the pituitary and whether they affect FSH 

71 expression are unclear.

72 In this study, we investigated and established a link between miR-7a-5p and FSH secretion 

73 based on previous research(Han et al. 2017). We verified the complementary sequence region 

74 between miR-7a-5p and the FSHb 3'UTR through dual-luciferase reporter assays. Moreover, we 

75 measured FSHb expression and secretion after transfection of miR-7a-5p mimics/inhibitors to 

76 determine whether miR-7a-5p affects FSH secretion.

77 2. MATERIALS AND METHODS

78 2.1. Animals and ethics

79 This study was performed with the approval of the Jilin University College of Animal 

80 Science. Healthy 8- to 9-week-old sexually mature male Sprague Dawley (SD) rats were used in 

81 this study. SD rats were raised in a comfortable room with a 12 h dark/12 h light cycle and free 

82 access to food and water.

83 We cared for the animals and sacrificed the rats in strict accordance with animal welfare laws 

84 and regulations and animal welfare ethics requirements. This experiment was approved by the 

85 Institutional Animal Care and Use Committee of Jilin University (201705026).

86 2.2. Pituitary extraction and cell culture

87 SD rats were euthanized by anesthesia and cervical dislocation. Then, we removed the heads 

88 with ophthalmic scissors and placed them on gauze disinfected with alcohol-soaked cotton. Next, 

89 we separated the rat skin with scissors to expose the rat skull. We opened the skull with tweezers 
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90 and removed the brain to collect the pituitary gland. Next, the tissues were placed in precooled 

91 phosphate-buffered saline (PBS) containing 0.3% bovine serum albumin (BSA) and 1% 

92 penicillin/streptomycin. We also separated the neurohypophysis from the pituitary. To ensure 

93 aseptic operations during the experiment, we autoclaved all experimental instruments and 

94 performed the operations near an alcohol-burning lamp.

95 After separation, we used PBS (0.3% BSA and 0.1% penicillin/streptomycin) to clean the 

96 pituitary glands and wash the blood from the tissue. Next, we placed the samples in 1 ml 

97 Dulbecco9s Modified Eagle9s Medium-F12 (DMEM-F12) containing 2.5% collagenase type I and 

98 cut the pituitary into pieces with ophthalmic scissors. We placed the pituitary fragments in a 

99 temperature-controlled incubator containing 5% CO2 at 37°C for 90 min. After a 90 min 

100 incubation, we diluted pituitary cells with PBS (0.3% BSA and 0.1% penicillin/streptomycin) and 

101 then filtered the mixture through a 200 mesh (75 µm) cell sieve, which allowed pituitary cells to 

102 pass, while cell clusters and unhomogenized tissue could not pass through. The collected cell 

103 solution was centrifuged at 200×g for 10 min. After centrifugation, we carefully discarded the 

104 supernatant and diluted the cell precipitate with DMEM-F12 containing 15% fetal bovine serum 

105 (FBS). Finally, the diluted cell suspension was transferred to 6-well plates and cultured in a 

106 temperature-controlled incubator with 5% CO2 at 37°C. Pituitary cells were monitored for the next 

107 few days.

108 2.3. Transfection of miR-7a-5p mimics, inhibitors or siRNA

109 After cells were cultured in 6-well plates for 4 days and in 24-well plates for 1 day, 

110 transfection of miR-7a-5p mimics or inhibitors was carried out as FSHb expression and FSH 

111 secretion peaked when pituitary cells were cultured for approximately 6 days. We used 30 µl 

112 buffer, 3 µl reagent and 2.5 µl mimics/inhibitors in this transfection. First, we added buffer, 

113 reagent and mimics, inhibitors or siRNA to a centrifuge tube. Then, we used a vortex oscillator 

114 to centrifuge the sample briefly to ensure homogeneous mixing. Next, we transfected the mixture 

115 into 24-well plates filled with pituitary cell suspension. Finally, we placed the 24-well plates into 

116 a 5% CO2 incubator for 24 h to provide adequate time for the reaction. All mimics, inhibitors and 
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117 siRNAs were purchased from RiboBio (Gouzhou, China), and the transfection method and 

118 operation steps were performed in strict accordance with the manufacturer9s recommended 

119 protocol. The mimic sequence was the double-stranded sequence of the miRNA mature sequence 

120 (sense strand: 59-UGGAAGACUAGUGAUUUUGUUGU-39) and its complementary sequence 

121 (antisense strand: 39-ACCUUCUGAUCACUAAAACAACA-5'). The inhibitor was the single-

122 stranded sequence of the reverse complement of the miRNA mature sequence, which underwent 

123 full-chain methylated modification (59-

124 mAmCmAmAmCmAmAmAmAmUmCmAmCmUmAmGmUmCmUmUmCmCmA-39).

125 3.4. RNA isolation and qRT-PCR

126 After transfection, we harvested rat primary anterior pituitary cells that were transfected with 

127 miR-7a-5p mimics or inhibitors in 24-well plates. We used 350 µl or 600 µl cell lysate RL 

128 containing 1% ³-mercaptoethanol to cause cell rupture and then extracted RNA according to the 

129 instructions of an RNAprep Pure Cell/Bacteria Kit. We subsequently measured the concentration 

130 and purity of the RNA with a NanoDrop ND-2000 spectrophotometer (Beijing, China) to verify 

131 the operational accuracy and RNA quality with a standard. Total RNA extraction was performed 

132 on a clean bench, and the samples were maintained at low temperatures to prevent RNA 

133 degradation. Next, we obtained cDNA using a FastQuant RT Kit and acquired raw data via q-PCR 

134 with SuperReal PreMix Plus (SYBR Green). These reagent kits were purchased from Tiangen 

135 (Beijing, China). The mRNA and miRNA primers used in RT-PCR and qRT-PCR are listed in 

136 Table 1.

137 2.5. Detection of cell apoptosis by flow cytometry 

138 Flow cytometry was applied to detect rat adenohypophysis cell apoptosis to evaluate the effect 

139 of transfection on cells after 24 h. At an appropriate time point, we used trypsin to digest adhesive 

140 cells and transferred them into 10-ml reaction tubes. Then, the cells were centrifuged at 200×g for 

141 5 min and harvested by cell sedimentation. Next, we resuspended cells in 500 µl 1x working fluid 

142 by diluting 5× binding buffer with double-distilled water. Then, Annexin V-fluorescein 

143 isothiocyanate (FITC) and propidium iodide (PI) were added to sample tubes and parameter 
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144 regulation tubes according to an Annexin V-FITC/PI Apoptosis Kit (Multi Sciences, Hangzhou, 

145 China). Finally, we analyzed cell apoptosis via flow cytometry for 1 h.

146 2.6. Construction of the reporter plasmids

147 The pmiR-FSHb-39UTR-wild-type (WT) plasmid and pmiR-FSHb-39UTR-MUT plasmid were 

148 constructed to verify the target sites of the FSHb 39UTR and miR-7a-5p. The PCR primers and 

149 mutant sequence of the target site are listed in File S1.

150 2.7. Detection of FSH secretion

151 After transfection with miR-7a-5p mimics or inhibitors for 24 h, we cultured pituitary cells 

152 with serum-free medium instead of DMEM-F12 (15% FBS) because FBS may contain other 

153 hormones that influence the results. After 24 h, we collected the culture medium and measured the 

154 secretion level of FSH in the culture medium via a Rat FSH enzyme-linked immunosorbent assay 

155 (ELISA) Kit (Meilian Biotech Co., Ltd., Shanghai, China).

156 2.8. Statistical analysis

157 At least three replicates were performed for each experiment. One-way ANOVA and Chi-

158 square tests were performed to evaluate the statistical significance of differences. P<0.05 was 

159 considered statistically significant.

160 3. RESULTS

161 3.1 Prediction and verification of the complementary region between miR-7a-5p and the 

162 FSHb 3'UTR

163 First, information on the complementary sequence between miR-7a-5p and the FSHb 3'UTR 

164 was acquired via the TargetScan program (http://www.targetscan.org/) (Fig. 1A). Then, to further 

165 confirm that miR-7a-5p targets the FSHb 3'UTR, we successfully mutated the target 

166 complementary sequence TCTTCCA to AGAAGGT and constructed a FSHb-3'UTR-WT plasmid 

167 and FSHb-3'UTR mutated (MT) plasmid (Fig. 1B). Finally, the constructed plasmids were 

168 cotransfected with miR-7a-5p mimics into 293T cells. As expected, the luciferase activity was 

169 reduced by 36% when we cotransfected the pmiR-FSHb-3'UTR WT plasmid and miR-7a-5p 
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170 mimics into 293T cells. In contrast, cotransfection of the FSHb-3'UTR MUT plasmid and miR-7a-

171 5p mimics resulted in a 7% reduction in luciferase activity (Fig. 1C). Therefore, we concluded that 

172 miR-7a-5p may regulate FSHb expression by directly targeting the FSHb gene.

173 3.2 Expression level of miR-7a-5p in different developmental stages and various rat tissues

174 To ascertain whether miR-7a-5p expression shows discrepancies, we measured miR-7a-5p 

175 levels in different developmental stages and rat tissues. We selected 2-week-old rats as the 

176 nonsexually mature group and 4-month-old rats as the sexually mature group. Then, we detected 

177 the expression levels of miR-7a-5p by RNA isolation and qRT-PCR and normalized them to the 

178 levels in immature animals (by setting this value to 1). MiR-7a-5p expression was downregulated 

179 in mature rats compared to that in nonsexually mature rats (Fig. 2A). Next, we collected seven 

180 tissues from mature rats and detected the expression level of miR-7a-5p by qRT-PCR. Relative 

181 miR-7a-5p expression was extremely high (1378-fold) in the pituitary gland compared to that in 

182 the heart. Furthermore, miR-7a-5p was poorly expressed in the heart, liver, spleen, lung, and 

183 kidney, although it was slightly expressed in the brain (Fig. 2B). These findings suggested that 

184 miR-7a-5p is much more highly expressed in the rat pituitary gland than in other tissues.

185 3.3 Efficiency of transfection and subsequent impact

186 To detect the efficiency of transfection, we transfected the NC mimic with fluorescent 

187 markers into pituitary cells. We detected red fluorescence labeling in the cells. The results showed 

188 that the NC mimic was successfully transfected into pituitary cells. The transfection efficiency was 

189 approximately 70380%, as shown in Fig. 3A. Flow cytometry was performed to assess the damage 

190 from transfection and certain reagents. No significant differences in cell apoptosis were observed 

191 among the four groups, indicating that the impact of transfection was negligible (Fig. 3B). We 

192 examined the expression levels of miR-7a-5p after transfection of miR-7a-5p mimics or inhibitors 

193 for 24 h to verify whether the mimics and inhibitors were transfected into pituitary cells. The 

194 expression levels of miR-7a-5p in cells transfected with mimics were increased, while the 

195 expression levels of miR-7a-5p in cells transfected with inhibitors were lower than those in cells 

196 transfected with controls (Fig. 3C). In other words, transfection was successful and reliable.
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197 3.4. Effects of miR-7a-5p overexpression/blockade on FSH secretion 

198 We examined FSHb mRNA levels and FSH hormone secretion after the transfection of 

199 miR-7a-5p mimics, inhibitors and siRNA into rat primary anterior pituitary cells for 24 h to 

200 further verify that miR-7a-5p affects FSHb expression and regulates animal reproduction. As a 

201 positive control, rat primary pituitary cells were transfected with FSHb siRNA, and we examined 

202 the levels of FSHb by quantitative RT-PCR and FSH secretion by ELISA 24 h after transfection. 

203 As expected, FSHb levels and FSH secretion significantly decreased (P<0.001, P=0.002) (Fig. 

204 4A-B). The expression levels of FSHb decreased by 0.60-fold (P=0.002) after transfection with 

205 miR-7a-5p mimics compared to those after transfection with the negative control. In contrast, 

206 after transfection with a miR-7a-5p inhibitor, FSHb levels increased by 1.5-fold (P<0.001) (Fig. 

207 4C). We subsequently measured FSH secretion levels. As expected, FSH secretion showed the 

208 same trend as that of FSHb expression. After transfection with miR-7a-5p mimics, the FSH 

209 concentration was substantially decreased. Moreover, the FSH concentration increased after 

210 transfection with the miR-7a-5p inhibitor (Fig. 4D).

211 These results indicated that miR-7a-5p can decrease FSHb expression and reduce FSH 

212 hormone secretion. Our findings provide additional evidence showing that miRNAs regulate FSH, 

213 demonstrating their potential role in the pituitary.

214 4. DISCUSSION

215 MiRNAs have crucial roles in multiple fundamental biological processes, such as cell 

216 proliferation(Hu et al. 2018), apoptosis(Ren et al. 2018), metastasis(Sun et al. 2018), migration(Liu 

217 et al. 2015; Ying et al. 2016), differentiation(Chen et al. 2018), and cell adhesion(Wu et al. 2015a). 

218 In addition, some diseases and cancers are associated with aberrant expression of miRNAs and 

219 subsequently, their target genes(Tuna et al. 2016). For example, miR-9-3p, miR-330-3p-3p, and 

220 miR-345-5p were significantly overexpressed in sera from patients with prostate cancer compared 

221 to those in sera from individuals without cancer, while patients who were in remission after 

222 androgen deprivation therapy (ADT) appeared to have significantly decreased miR-345-5p 
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223 levels(Tinay et al. 2018). Consequently, some changes in miRNA expression can be used as 

224 diagnostic and potential clinical biomarkers in cancer and other diseases(Min et al. 2018; Quan et 

225 al. 2018; Tuna et al. 2016). In the normal pituitary and pituitary adenomas, miRNAs affect cell 

226 proliferation, organ maturity and hormone secretion. In 2018, Lu B et al. found that miRNA-16 

227 expression influences the proliferation and angiogenesis of pituitary tumors(Lu et al. 2018), and 

228 low expression of miR-23b and miR-130b may facilitate pituitary carcinogenesis(Leone et al. 

229 2014). Moreover, miRNAs are functional components and have potential roles in regulating 

230 hormone secretion in the pituitary, such as the secretion of growth hormone (GH)(Hao & Waxman 

231 2018; Qi et al. 2015), LH(Menon et al. 2015), TSH(Vadstrup 2006), and FSH(Han et al. 2017; 

232 Sheng et al. 2018). In this study, miR-7a-5p was highly expressed in the rat pituitary gland. This 

233 finding indicates that miR-7a-5p plays a potentially vital role in the secretion of hormones and the 

234 regulation of sequential production in animals.

235 According to many studies, the miR-7 family plays different roles in different cancers and has 

236 pathological significance in cancer. MiR-7-5p acts as a tumor suppressor in pancreatic ductal 

237 adenocarcinoma and suppresses cell proliferation, migration and invasion by targeting 

238 SOX18(Zhu et al. 2018); in MCF-10A mammary epithelial cells, this miRNA suppresses 

239 oncogenes by mediating the signaling of hepatocyte growth factor(Jeong et al. 2017). However, 

240 miR-7 overexpression in NFs dramatically increased cancer cell coculture growth rates and 

241 migratory activity(Shen et al. 2017). Moreover, the miR-7 family is involved in diverse cellular 

242 functions. MiRNA-7a plays a role in Müller glial differentiation via blockade of Notch3 

243 expression(Baba et al. 2015) and alleviates the maintenance of neuropathic pain by regulating 

244 neuronal excitability(Sakai et al. 2013). In addition, miR-7 promotes Drosophila wing growth by 

245 controlling the Notch signaling pathway(Aparicio et al. 2015). Importantly, miR-7 may slow 

246 Parkinson's disease (PD) progression and regulate proliferation and the mTOR pathway(Titze-de-

247 Almeida & Titze-de-Almeida 2018; Wang et al. 2013). In 2017, Ahmed K et al. found that 

248 normal pituitary development depended on the participation of miR-7a2 and that genetic deletion 

249 of miR-7a2 caused infertility(Ahmed et al. 2017). Moreover, the lack of miR-200b and miR-429 
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250 exerted the same biological effects, anovulation and infertility(Hasuwa et al. 2013). Accordingly, 

251 as a single member of the miR-7 family, miR-7a-5p may regulate pituitary development and 

252 reproduction. Based on our results, miR-7a-5p overexpression attenuates FSHb expression and 

253 decreases FSH secretion, contributing to the mechanism underlying FSH regulation by miRNAs.

254 In the past decade, miRNAs have been found in various tissues and organs. However, most 

255 mature miRNAs exhibit tissue-specific expression patterns with a precise timing trend that 

256 crucially contribute to cell identity and function(Choudhury et al. 2013; Landgraf et al. 2007). In 

257 2002, Lagos-Quintana M et al. examined nine different mice and identified 34 highly tissue-

258 specific novel miRNAs(Lagos-Quintana et al. 2002). In 2014, in a study of the pig genome, Martini 

259 P et al. predicted species-specific and conserved miRNAs and identified many tissue-specific 

260 miRNAs in different tissues(Martini et al. 2014). Moreover, some muscle-specific miRNAs, such 

261 as miR-1, miR-133a, miR-133b and miR-206, were validated in 2014(Takeuchi et al. 2014). In 

262 our study, miR-7a-5p was highly expressed in the brain and pituitary, consistent with the results 

263 of an in situ hybridization study(Herzer et al. 2012). These data indicate that miR-7a-5p has a 

264 potential regulatory function in the pituitary gland and brain.

265 Gonadotropin FSH, one of the major hormones secreted by the anterior pituitary gland, has a 

266 critical role in regulating reproduction(Ulloa-Aguirre et al. 1995). Therefore, elucidating the 

267 mechanisms involved in FSH regulation is important. Although many studies have reported that 

268 miRNAs can inhibit the secretion of FSH, there are many other factors that influence the secretion 

269 of FSH to ensure the growth and development of animals, such as follistatin(Meriggiola et al. 

270 1994), hormones(Dumesic et al. 2009) and single nucleotide polymorphisms(Dai et al. 2009). For 

271 example, triiodothyronine differentially modulates FSH synthesis and secretion in male rats, and 

272 the Bu-shen-zhu-yun decoction promotes FSH synthesis and secretion. Gonadotropin releasing 

273 hormone (GnRH) is a major regulator of FSH secretion, and differential GnRH pulse frequencies 

274 and amplitudes affect FSH secretion levels and patterns(Belchetz et al. 1978; Savoy-Moore & 

275 Swartz 1987). Nevertheless, little is known regarding the association of miRNAs with FSH 

276 secretion. In 2013, several miRNAs were shown to target the FSHb mRNA 32UTR after pituitary 
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277 cells were treated with 100 nM GnRH(Ye et al. 2013). Additionally, the activation of FSH 

278 expression is dependent on miR-132/212(Lannes et al. 2015). In our previous study, miR-186, 

279 miR-433 and miR-21-3p were confirmed to regulate FSHb expression and FSH secretion by 

280 directly targeting the FSHb 32UTR(Han et al. 2017; Sheng et al. 2018). Furthermore, in this study, 

281 miR-7a-5p had the same effect on FSHb. This study will help improve our understanding of the 

282 regulatory functions of miRNAs in the pituitary, enriching our knowledge regarding the 

283 mechanism underlying FSH regulation.

284 CONCLUSION

285 Overall, our study demonstrated a role for miR-7a-5p in suppressing FSHb expression and 

286 decreasing FSH secretion. These findings provide additional evidence that miRNAs may regulate 

287 FSH secretion by directly targeting FSHb.

288

289 SUPPLEMENTARY MATERIAL

290 S1 File. Construction of the pmiR-FSHb-39UTR-MUT reporter plasmid.

291

292
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293 FIGURE LEGENDS

294 Table 1. Primers used for RT-qPCR.

295 Fig. 1. Prediction and verification of the complementary region between miR-7a-5p and the 

296 FSHb 3'UTR.

297  (A) The complementary base pairing region of miR-7a-5p and FSHb predicted through the 

298 TargetScan program is shown in red. (B) A sequencing map shows the mutation of the target 

299 sequence from TCTTCC to AGAAGG. (C) Relative luciferase activity was examined after 

300 cotransfection of the plasmid with the miR-7a-5p NC/mimic into 293T cells for 48 h. As a negative 

301 control, the luciferase activity of cells cotransfected with the FSHb-39UTR wild-type plasmid and 

302 the NC group was set to 1. At least three replicates were performed for each experiment. Mean 

303 values and standard deviations (SDs) of the data are shown. One-way ANOVA and the Chi-square 

304 test were applied to analyze statistical significance. P<0.05 was considered significant, and 

305 different letters (a and b) indicate significant differences between groups.

306 Fig. 2. Expression levels of miR-7a-5p in different developmental stages and in various rat 

307 tissues.

308  (A) MiR-7a-5p expression was measured in immature and mature rat pituitary. (B) MiR-7a-5p 

309 expression in pituitary and other tissues. U6 was used as an internal standard in this study. At least 

310 three replicates were performed for each experiment. Mean values and standard deviations (SDs) 

311 of the data are shown. One-way ANOVA and the Chi-square test were performed to assess 

312 statistical significance. Different letters (a and b) indicate significant differences between groups 

313 (P<0.05).

314 Fig. 3. Efficiency of transfection and subsequent impact.

315 (A) Fluorescence labeling was detected after transfection with the NC mimic carrying fluorescence 

316 markers. (B) The percentage of apoptotic pituitary cells after transfection with miR-7a-5p 

317 NC/mimic/I-NC/inhibitor in rat pituitary cells. (C) The relative expression of miR-7a-5p after 

318 transfection with miR-7a-5p mimic/inhibitor in rat pituitary cells. At least three replicates of each 

319 experiment were performed. Mean values and standard deviations (SDs) are shown. Data 

320 management and analysis were performed by using SPSS 19.0. Different letters (a and b) indicate 

321 significant differences (P<0.05).

322 Fig. 4. Effects of miR-7a-5p overexpression/blockade on FSH secretion.

323  (A) FSHb relative expression after transfection with siRNA in rat pituitary cells. (B) The FSH 

324 concentration was measured via ELISA after transfection with siRNA for 24 h in rat pituitary cells. 

325 (C) FSHb relative expression after transfection with miR-7a-5p NC/mimic/I-NC/inhibitor in rat 

326 pituitary cells. (D) FSH concentrations of supernatants transfected with miR-7a-5p NC, mimic, I-
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327 NC, and inhibitor in rat pituitary cells. At least three replicates were performed for each 

328 experiment. Each transfection experiment was performed in rat pituitary cells. Mean values and 

329 standard deviations (SDs) are shown. One-way ANOVA and the Chi-square test were applied to 

330 evaluate the statistical significance of the differences. Different letters indicate significant 

331 differences (P<0.05).

332  
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Figure 1

Prediction and verification of the complementary region between miR-7a-5p and the

FSHb 3'UTR.

(A) The complementary base pairing region of miR-7a-5p and FSHb predicted through

TargetScan program is shown in red. (B) A sequencing map shows the mutation of the target

sequence from TCTTCC to AGAAGG. (C) The relative luciferase activity was examined after

co-transfection of plasmid with the miR-7a-5p NC/mimic into 293T cell for 48 h. As a negative

control, the luciferase activity of cells co-transfected with FSHb-32UTR wild-type plasmid and

the NC group was set to 1. At least three replicates of each experiment were performed.

Mean values and standard deviations (SDs) of data are shown. One-way ANOVA and Chi-

square test were applied to analyze statistical significance. P <0.05 was considered

significant, and different letters (a and b) indicate significant differences between groups.
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Figure 2(on next page)

The expression level of miR-7a-5p in different developmental stages and in various rat

tissues

(A) MiR-7a-5p expression was measured in immature and mature rats. (B) MiR-7a-5p

expression in pituitary and other tissues. U6 was used as an internal standard in this study.

At least three replicates of each experiment were performed. Mean values and standard

deviations (SDs) of the data are shown. One-way ANOVA and the Chi-square test were

performed to assess statistical significance. Different letters (a and b) indicate significant

differences between groups (P<0.05).
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Figure 3

The efficiency of and impact after transfection.

(A) Fluorescence labeling was detected after transfection with mimic NC carrying

fluorescence markers. (B) The percentage of apoptotic pituitary cells after transfection with

miR-7a-5p NC/mimic/I-NC/ inhibitor. (C) The relative expression of miR-7a-5p after

transfection with miR-7a-5p mimic/inhibitor. At least three replicates of each experiment

were performed. Mean values and standard deviations (SDs) are shown. Data management

and analysis was performed by SPSS 19.0. Different letters (a and b) indicate significant

differences (P< 0.05).
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Figure 4(on next page)

Effect of the overexpression/blockade of miR-7a-5p on FSH secretion

 (A) FSHb relative expression after transfection with siRNA. (B) The FSH concentration was

measured via ELISA after transfection with siRNA for 24 h. (C) The FSHb relative expression

after transfection with miR-7a-5p NC/mimic/I-NC/inhibitor. (D) The FSH concentration of

supernatant transfected with miR-7a-5p NC, mimic, I-NC, and inhibitor. At least three

replicates of each experiment were performed. Mean values and standard deviations (SDs)

are shown. One-way ANOVA and Chi-square test were applied to evaluate the statistical

significance of the differences.The different letters indicate significant differences (P<0.05).
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Table 1. Primers used for RT-qPCR

primers name sequence(5'-3')

U6 RT CGCTTCACGAATTTGCGTGTCAT

miR-7a-5p RT
CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAGCCCAA

A

U6 F GCTTCGGCAGCACATATACTAAAAT

U6 R CGCTTCACGAATTTGCGTGTCAT

miR-7a-5p F ACACTCCAGCTGGGTGGAAGACTAGTGATTT

universal 

reverse
CTCAAGTGTCGTGGAGTCGGCAA

GAPDH F GGAAACCCATCACCATCTTC

GAPDH R GTGGTTCACACCCATCACAA

FSHb F ATACCACTTGGTGTGAGGGC

FSHb R TAGAGGGAGTCTGAGTGGCG

2

3
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