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Whole-genome sequencing (WGS) of bacterial pathogens is currently widely used to

support public-health investigations. The ability to assess WGS data quality is critical to

underpin the reliability of downstream analyses. Sequence contamination is a quality issue

that could potentially impact WGS-based findings; however, existing tools do not readily

identify contamination from closely-related organisms. To address this gap, we have

developed a computational pipeline, ConFindr, for detection of intraspecies contamination.

ConFindr determines the presence of contaminating sequences based on the identification

of multiple alleles of core, single-copy, ribosomal-protein genes in raw sequencing reads.

The performance of this tool was assessed using simulated and lab-generated Illumina

short-read WGS data with varying levels of contamination (0-20% of reads) and varying

genetic distance between the designated target and contaminant strains. Intraspecies and

cross-species contamination was reliably detected in datasets containing 5% or more

reads from a second, unrelated strain. ConFindr detected intraspecies contamination with

higher sensitivity than existing tools, while also being able to automatically detect cross-

species contamination with similar sensitivity. The implementation of ConFindr in quality-

control pipelines will help to improve the reliability of WGS databases as well as the

accuracy of downstream analyses. ConFindr is written in Python, and is freely available

under the MIT License at github.com/OLC-Bioinformatics/ConFindr.
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ABSTRACT11

Whole-genome sequencing (WGS) of bacterial pathogens is currently widely used to support public-health

investigations. The ability to assess WGS data quality is critical to underpin the reliability of downstream

analyses. Sequence contamination is a quality issue that could potentially impact WGS-based find-

ings; however, existing tools do not readily identify contamination from closely-related organisms. To

address this gap, we have developed a computational pipeline, ConFindr, for detection of intraspecies

contamination. ConFindr determines the presence of contaminating sequences based on the identifi-

cation of multiple alleles of core, single-copy, ribosomal-protein genes in raw sequencing reads. The

performance of this tool was assessed using simulated and lab-generated Illumina short-read WGS

data with varying levels of contamination (0-20% of reads) and varying genetic distance between the

designated target and contaminant strains. Intraspecies and cross-species contamination was reliably

detected in datasets containing 5% or more reads from a second, unrelated strain. ConFindr detected

intraspecies contamination with higher sensitivity than existing tools, while also being able to automat-

ically detect cross-species contamination with similar sensitivity. The implementation of ConFindr in

quality-control pipelines will help to improve the reliability of WGS databases as well as the accuracy of

downstream analyses. ConFindr is written in Python, and is freely available under the MIT License at

github.com/OLC-Bioinformatics/ConFindr.
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INTRODUCTION28

Public-health microbiology laboratories increasingly apply bacterial whole-genome sequence (WGS)29

analyses for pathogen identification, high-resolution typing and risk profiling (Ronholm et al., 2016;30

Allard et al., 2016; Taboada et al., 2017). Reductions in cost for generating WGS data have led to the31

widespread use of this technology for tracking foodborne pathogens internationally, and public databases32

currently include sequences for hundreds of thousands of isolates. A significant effort has been undertaken33

to produce guidelines and minimum standards for sequence data quality, particularly when such data is34

used to support regulatory activities (Lambert et al., 2017; W.A. Rossen et al., 2017).35

Quality assessment tools are typically integrated into bioinformatics workflows to ensure the reliability36

of WGS data (Koren et al., 2014; Page et al., 2016). For example, FastQC is used to assess the per-base37

quality of raw reads to identify problems with the sequencing libraries or runs (Andrews, 2010). Tools38

such as QUAST can be used to evaluate the quality of de novo assemblies, identify misassemblies,39

determine error rates, and more (Gurevich et al., 2013). These tools can be extremely valuable for40

identifying inferior datasets; however, assessing contamination is outside of their current scope.41

The presence of contamination in WGS data is recognized as an important sequence quality issue42

(Merchant et al., 2014; Ballenghien et al., 2017; Robertson et al., 2018; Cornet et al., 2018). Introduction of43

contaminants can occur at many stages in the generation of bacterial sequence data. For example, cultures44

recovered from samples may not be adequately purified, or cross-contamination could occur during45
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preparation of genomic DNA or sequencing-libraries (Merchant et al., 2014). Carryover contamination46

results from the presence of residual fragments from previous sequencing runs (Souvorov et al., 2018).47

While integration of controls can help to identify pervasive contamination issues, they are not effective for48

the identification of sporadic contamination events.49

Cross-species contamination in short-read WGS data can be readily identified by taxonomic classifica-50

tion of sequence reads using reference databases (Wood and Salzberg, 2014; Merchant et al., 2014; Ounit51

et al., 2015; Mallet et al., 2017). Contamination can also be inferred following de novo assembly of short52

sequencing reads into a contiguous bacterial chromosome. Contiguity can be impacted by presence of53

contaminating sequencing reads, but also by factors such as the assembler used, length of the sequencing54

reads, presence of repeat regions, GC content and coverage (Lin et al., 2011; Jünemann et al., 2014;55

Souvorov et al., 2018). Contamination may be indicated by a highly fragmented assembly, or a genome56

size that is larger than expected (Robertson et al., 2018). However, establishment of appropriate cutoffs57

requires determination of acceptable ranges within a species, and atypical strains may fall outside of these58

limits.59

Intraspecies contamination is far more difficult to detect because read-classification approaches cannot60

be used. In some studies, the quality of metagenomic or single-cell sequencing data is assessed by61

evaluating core genes to determine the completeness and degree of contamination of assemblies (Hess62

et al., 2011; Parks et al., 2015). One of the tools developed for this purpose is CheckM, which determines63

the presence of contamination based on the identification of multiple copies of lineage-specific, ubiquitous,64

single-copy genes (Parks et al., 2015). To our knowledge, there are no tools designed and evaluated65

specifically for the detection of intraspecies contamination in bacterial-isolate sequence data.66

We have developed a bioinformatics tool, ConFindr, which can accurately and rapidly identify intra-67

and cross-species contamination based on the analysis of raw sequencing reads. We evaluated the68

performance of this tool for detecting contamination in Illumina short-read WGS data derived from69

priority foodborne pathogens Listeria monocytogenes, Salmonella enterica and Shiga-toxin producing70

Escherichia coli (STEC).71

METHODS72

ConFindr Workflow and Implementation73

ConFindr determines the presence of contaminating sequencing reads based on the analysis of the set74

of 53 genes encoding the bacterial ribosomal-protein subunits that are used in the ribosomal multilocus75

sequence typing scheme (rMLST) (Jolley et al., 2012). The rMLST genes are typically present as single76

copies and are conserved across the entire bacterial domain, with some exceptions where multiple alleles77

for a gene exist or no gene exists. ConFindr works on the principle that a genome containing more than78

one allele for any rMLST gene is contaminated, taking into consideration the known exceptions.79

In its first step, ConFindr uses a screening functionality provided in Mash (Ondov et al., 2016) to80

determine which genera are present in a sample. This screen is done against a custom database derived81

from the NCBI RefSeq genomes (https://www.ncbi.nlm.nih.gov/refseq/) with one genome representing82

each species (O’Leary et al., 2015). If more than one genus is detected, ConFindr reports cross-species83

contamination for the sample and does not proceed further. If only one genus is present, ConFindr84

creates a genus-specific rMLST database by extracting all rMLST sequences associated with the target85

genus, excluding genes known to have multiple alleles, and proceeds to attempt to find contamination by86

searching for multiple alleles of one or more of the benchmark rMLST genes.87

To search for multiple alleles, ConFindr begins by using BBDuk (Bushnell, 2014) to extract reads that88

are likely part of the rMLST gene set. These baited reads are stringently trimmed, again using BBDuk,89

and then aligned to the rMLST genes using BBMap (Bushnell, 2014). The resulting BAM file is then90

parsed in order to find ‘Contaminating Single Nucleotide Variants’ (cSNVs) – that is, sites in the pileup91

where more than one base is present. Since all rMLST genes are known to be present as single copies, the92

occurrence of multi-base sites in the pileup indicates multiple alleles, and therefore contamination. To be93

called as a cSNV, at least 2 bases of the minor variant with a Phred score of 20 or greater must be present94

at that site, and at least 5 percent of bases must support the minor variant (though these parameters can be95

changed by the user). ConFindr determines that a sample is contaminated if multiple genera are found in96

the Mash screen step or if three or more cSNVs are found.97
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in silico Dataset Creation98

To create in silico datasets, we selected complete assemblies from RefSeq for E. coli, S. enterica, and L.99

monocytogenes (accessions NC 002695.1, NC 003198.1, and NC 003210.1, respectively) and generated100

variants of these genomes with 100, 500, 1000, and 2000 SNVs using a custom script available at101

https://github.com/lowandrew/MutantCreator). Simulated reads were then created from both variant and102

base genomes using ART v2.5.8 (Huang et al., 2012) and mixed together in proportions of 0, 1, 5, 10,103

and 20 percent contamination using scripts found at https://github.com/lowandrew/FastQMixer to a total104

coverage depth of approximately 60X. Five replicates were created for each mixed read set.105

Test Datasets106

We generated a test dataset of 48 samples comprised of intra- and cross-species mixes of E. coli, S.107

enterica, and L. monocytogenes isolates with varying levels of relatedness (Table 1). Average nucleotide108

identity (ANI) was calculated using OrthoANI version 1.4.0 (Lee et al., 2016). This dataset was made both109

in silico by mixing together reads from previous runs of these isolates using the reformat.sh program of110

the BBMap package (Bushnell, 2014) to a coverage depth of 80X, as well as by sequencing lab-generated111

mixes of genomic DNA (gDNA).112

To generate WGS data, bacterial isolates were cultured in Brain Heart Infusion (BHI) broth (Oxoid113

Ltd., Basingstoke, Hampshire, England) for 4 to 6 h at 36 ç C, and gDNA was extracted using the Maxwell114

16 Cell SEV DNA Purification Kit (Promega, Madison, WI). DNA was quantified using the Quant-it115

High-Sensitivity DNA Assay Kit (Life Technologies Inc., Burlington, ON). Sequencing libraries were116

constructed from 1 ng of gDNA using the Nextera XT DNA Sample Preparation Kit (Illumina, Inc.,117

San Diego, CA) and the Nextera XT Index Kit (Illumina, Inc.) according to manufacturers’ instructions.118

Genomic sequencing was performed on the Illumina MiSeq Platform (Illumina, Inc.) using a 600-cycle119

MiSeq Reagent kit v3 (Illumina, Inc.).120

Nucleotide Sequence Accession Numbers121

Raw data have been deposited at DDBJ/EMBL/GenBank under BioProject PRJNA507762. The accession122

numbers and strain descriptions are listed in the Supplemental Table S1.123

Genome Assemblies and Quality Metrics124

All of the read sets created were also put through the process of de novo assembly. Briefly, reads125

were quality trimmed using bbduk.sh and error corrected with tadpole.sh (both of the BBMap package126

(Bushnell, 2014)) and then assembled using SKESA v2.3.0 (Souvorov et al., 2018). Exact commands127

used to carry this out can be found in Supplemental Table S2. Genome quality statistics were assessed128

using QUAST v4.6.3 (Gurevich et al., 2013).129

Calculation of Number of SNVs Between rMLST Types130

To calculate the number of SNVs between rMLST types within E. coli, S. enterica, and L. monocytogenes,131

we retrieved all rMLST allele sequences and the list of profiles (accessed at https://pubmlst.org/rmlst/,132

November 1, 2018). We then extracted sequences for each allele within each rMLST type (1641 types for133

L. monocytogenes, 3062 types for E. coli, and 7255 for S. enterica). The number of SNVs between every134

sequence type pair within each species was calculated by aligning each gene in the first type against each135

gene in the second type using the pairwise2 module in biopython (Cock et al., 2009).136

Dataset Testing137

To detect contamination in the datasets generated, ConFindr v0.4.4 was run on default settings on all138

samples generated. Kraken v1.0 (Wood and Salzberg, 2014) was run on fastq files that had been trimmed139

to a quality of 15 with bbduk.sh against the standard Kraken database. Exact commands used to carry140

this out can be found in Supplemental Table S2. Strains/species were determined to be present if at141

least 0.5 percent of classified reads could be assigned to them. CheckM v1.0.11 (Parks et al., 2015) was142

run with the lineage wf workflow for each assembly, and samples were called as contaminated if their143

contamination level was 2.5 percent or greater. We note that this is a fairly conservative cut-off and144

CheckM may be able to detect contamination with more sensitivity, but in our experience CheckM results145

with low levels of contamination require further manual analysis. As we focus on automated detection of146

contamination, we feel that this is an appropriate cut-off.147
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Table 1. Summary of test dataset used for ConFindr Evaluation

Target Strain Contaminant

Strain

rMLST

SNVs

ANI Contamination

Levels

E. coli O121:H19 (OLF17053-3) E. coli

O121:H19

(OLC2152)

0 99.98 0, 20

E. coli

O121:H19

(OLC2152)

11 98.86 0, 5, 10, 20

E. coli

O15:H14

(OLF17030)

11 98.78 0, 5, 10, 20

E. coli

O8:H28

(OLF17043)

11 98.83 0, 5, 10, 20

Enterobacter

cancerogenus

(OLC1687)

N/A 78.86 0, 5

S. Heidelberg (OLC2542) S. Heidelberg

(OLC2000)

0 99.99 0, 20

S. Bredeney

(OLC2229)

32 98.36 0, 5, 10 20

S. Ty-

phimurium

(OLF13104-

7)

24 99.08 0, 5, 10 20

S. Dublin

(OLF18064-

1)

33 98.82 0, 5, 10 20

Citrobacter

freundii

(OLC1136)

N/A 81.83 0, 5, 10 20

L. monocytogenes (OLF10129) L. mono-

cytogenes

(OLF11041-

1)

0 99.99 0, 20

L. mono-

cytogenes

(OLF13043-

2)

16 99.54 0, 5, 10, 20

L. mono-

cytogenes

(OLF15140)

10 99.45 0, 5, 10, 20

L. mono-

cytogenes

(OLF09168)

133 94.85 0, 5, 10, 20

Listeria

innocua

(OLC0004)

420 88.26 0, 5, 10

Enterococcus

faecalis

(OLC0147)

N/A 66.36 0, 5
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RESULTS148

Identification of contaminating SNVs within rMLST genes using ConFindr149

As ConFindr is based on finding contaminating SNVs (cSNVs) within the rMLST genes in raw reads, we150

first looked at the reliability of detection of cSNVs in simulated data with different levels of contamination.151

Synthetic mutants with 100 to 2000 SNVs relative to reference genomes were generated in silico, and the152

number of SNVs occurring within rMLST genes in these mutants was calculated. The number of cSNVs153

found by ConFindr in the in silico datasets at 60 times coverage was compared with the predicted number154

of SNVs within rMLST genes in the two isolates making up the contaminated sample (Figure 1). As the155

relative contamination increased, ConFindr’s estimate of the number of cSNVs in the sample approached156

the expected number of SNVs. Contamination at 5% was reliably detected when the contaminant had at157

least 16 SNVs within the rMLST genes, at 10% with at least 7 SNVs and at 20% with at least 3 SNVs158

within target genes.159

Diversity among rMLST sequences types160

To illustrate the genetic diversity within the rMLST scheme, we calculated the numbers of SNVs between161

ribosomal sequence types (rSTs) for L. monocytogenes, S. enterica, and E. coli (Figure 2). Over 99162

percent of all pairs in all three species had three or more SNVs, which is the cutoff chosen in ConFindr as163

the minimum number of cSNVs that need to be found before a sample will be considered contaminated.164

Over 80 percent of the sequence types have 16 or more SNVs relative to others. Therefore, ConFindr165

should almost always be able to detect contamination between two isolates with different rMLST types.166

ConFindr detects contamination with more sensitivity that existing tools167

We compared ConFindr to existing tools capable of detecting contamination, CheckM and Kraken using168

both in silico and lab-generated datasets. Mixes were binned based on the Average Nucleotide Identity169

(ANI) of the two samples being mixed - those with >99 percent ANI, representing very closely related170

mixes, those with between 98 and 99 percent ANI, representing same-species mixes between strains not171

as closely related, and those with ANI of less than 98 percent, representing distantly related same-species172

mixes and cross-species mixes (Table 1).173

ConFindr was more sensitive than either CheckM or Kraken for intraspecies contamination detection174

(Figure 3, panels A, B, D and E), and comparable to both for cross-species contamination detection175

(Figure 3, Panels C and F). ConFindr detected contamination successfully in all cases except for one176

simulated mix of closely related strains at 5 percent contamination (Supplemental Table S1), while both177

CheckM and Kraken required either more distance between species or a higher level of contamination for178

its determination.179

Assembly Metrics are Insufficient for Contamination Detection180

We assembled the contaminated datasets used in this study to assess metrics such as number of contigs,181

N50 and total length for contaminated datasets relative to uncontaminated datasets. At 5% contamination,182

there was an increase in the number of contigs and the total length of the assembly, and a decrease in183

N50 (Table 2). The relative increase or decrease in these metrics varied depending on the strain used as184

the contaminant. For example, contamination of L. monocytogenes strain OLF10129 with OLF15140185

appeared to have a smaller impact than contamination with the more distantly related isolate OLF09168.186

Statistics on all assemblies at all contamination levels are available in Supplemental Table S1.187

Contamination in SRA Data188

To evaluate the prevalence of contamination in public databases, we randomly selected 500 isolates189

sequenced on Illumina instruments from the Sequence Read Archive (SRA) for E. coli, S. enterica,190

and L. monocytogenes. A full list of accessions can be found in Supplemental Table S4. Of the 1500191

samples examined, 78 (5.27%) were determined to be contaminated by ConFindr (Table 3, Supplemental192

Table S4). For all species, intraspecies contamination appeared to be more prevalent than cross-species193

contamination.194

Confirmation of contamination in E. coli WGS data195

In a recent WGS analysis performed in our laboratories, hybrid assemblies of E. coli samples led to an196

incorrect serotype determination (Table 4, sample 1, isolate 3). Three strains of E. coli from two samples197
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Table 2. Assembly metrics for intraspecies contamination dataset

Strain 1 Strain 2

(Contami-

nant)

Percent

Contami-

nant

N50 # Contigs Total

Length

L. monocytogenes (OLF10129) NA 0 338684 16 2966006

OLF13043-

2

5 291474 47 3007464

10 112978 83 3073200

OLF15140 5 302686 26 2971529

10 134503 78 3008481

OLF09168 5 320971 57 2992774

10 271165 453 3333771

S. Heidelberg (OLC2542) NA 0 693768 29 4856249

S. Bre-

deney

(OLC2229)

5 381278 34 4859111

10 228154 111 4936326

S. Ty-

phimurium

(OLF13104-

7)

5 235407 66 4910684

10 162612 162 5080654

S. Dublin

(OLF18064-

1)

5 387491 56 4881296

10 272678 132 5022778

E. coli O121:H19 (OLF17053-3) NA 0 134602 196 5150254

O174:H19

(OLF17021-

7)

5 122561 234 5183143

10 50560 433 5337747

O8:H28

(OLF17043)

5 119304 197 5154985

10 31707 477 5329336

O15:H14

(OLF17030)

5 121490 230 5179176

10 32121 509 5385110

Table 3. Application of ConFindr to the assessment of contamination in published genomes of L.

monocytogenes, S. enterica, and E. coli

Species Intraspecies Contamination Cross-species Contamination

L. monocytogenes 27/500 (5.4%) 5/500 (1%)

S. enterica 17/500 (3.4%) 1/500 (0.2%)

E. coli 26/500 (5.2%) 2/500 (0.4%)
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Figure 1. Detection of contaminating SNVs within rMLST genes by ConFindr.

Sequencing reads were generated in silico from complete assemblies for E. coli, S. enterica, and L.

monocytogenes and synthetic mutants containing 100, 500, 1000 and 2000 randomly-distributed SNVs.

Reads were mixed to generate datasets with 0, 1, 5, 10 and 20% contamination. Datasets were binned

according to the number of SNVs (0 to 16) occurring within rMLST genes in the contaminant relative to

the parent strain (Supplementary Table S3. The number of contaminating SNVs identified in each dataset

was plotted relative to percent contamination of the sample. Error bars indicate standard error for a

minimum of 5 replicates.

were sequenced in duplicate or triplicate. Presumptive contamination was identified due to higher number198

of contigs or larger genome size relative to duplicates from the same sample (Table 4, bold). In one199

sample, the serotype of an isolate was incorrectly determined (O159:H2). Contamination was confirmed200

by analysis of samples with ConFindr (Table 4, bold).201

Runtime Considerations and Installation202

ConFindr can be installed with a single command via bioconda (Grüning et al., 2018), and completes203

analysis on a sample in under one minute when using 4 threads and less than 4 GB of RAM. These features204

make it practical for ConFindr to be installed and run as a standard quality control step in bioinformatics205

pipelines.206
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Table 4. Intraspecies contamination in E. coli

Sample Isolate Serotype MLST rMLST Contigs N50 Genome Size ConFindr

1 1 O159:H19 1611 52368 76 187212 5087345 Clean

2 O159:H19 1611 52368 73 187212 5085921 Clean

3 O159:H2 1611 52368 193 186411 5500652 Contaminated

4 O83:H31 372 1854 31 436072 1967515 Clean

5 O83:H31 372 1854 112 433519 5077348 Contaminated

2 1 O8:H28 4496 33427 55 218837 4858743 Clean

2 O8:H28 4496 33427 55 218837 4857891 Clean

3 O8:H28 4496 33427 151 218837 4985955 Contaminated

DISCUSSION207

In creating ConFindr, we wanted a tool that would be broadly applicable to the bacterial domain, while208

also providing enough resolution to detect contamination between closely related isolates. We selected209

the 53 ribosomal protein genes used in the rMLST scheme as they are present in all bacteria and provide210

enough diversity for high-resolution characterization (Jolley et al., 2012). While there are duplicate copies211

of some of the genes within the scheme (e.g., L. monocytogenes has two alleles of BACT000014), the212

scheme is actively curated, and these exceptions are known and handled by ConFindr. The advantage of213

this core-gene approach is that the tool can be integrated into pipelines aimed at the analysis of multiple214

bacterial species. While single-copy core genes have been used to evaluate the quality and completeness215

of metagenomic assemblies (Hess et al., 2011; Parks et al., 2015), this approach has not been commonly216

applied to bacterial isolate WGS data. In the current study, we found ConFindr performed equally well217

for three species, including both Gram-positive and Gram-negative bacteria, and we would expect similar218

performance for other species covered by the rMLST database. Due to its reliance on the rMLST scheme,219

ConFindr is intended for use in bacteria and is not for the detection of contamination in archaeal or220

eukaryotic samples. Nonetheless, a similar approach of using broadly-conserved core single-copy genes221

would likely be effective for addressing contamination within other domains.222

The sensitivity of ConFindr for detection of intraspecies contamination is dependent on sequence223

coverage, as well as the number of SNVs occurring within the conserved ribosomal proteins genes used224

in the analysis. ConFindr is unable to detect contamination if the contaminating isolate has fewer than 3225

SNVs within the rMLST genes used in the tool. This cut-off was chosen as ConFindr will occasionally226

detect one or two false positive cSNVs in rMLST genes (Figure 1), but we have yet to see an example with227

3 or more false positive cSNVs. In practice, this means that ConFindr may sometimes miss contamination228

between two strains that have only one or two SNVs within the rMLST genes. However, our analysis of229

the rMLST database demonstrates that greater than 99% of the rMLST profiles for L. monocytogenes, S.230

enterica and E. coli differed by more than 3 SNVs relative to all other profiles in the database indicating231

that this tool would generally be effective for detection of contamination with unrelated strains (Figure 2).232

The combined length of the rMLST genes is approximately 20 kilobases, representing only 0.7% of233

the genome in L. monocytogenes and 0.4% of the genome in E. coli. Examining this small fraction of234

the genome limits the sensitivity of ConFindr. This limitation could be overcome by using core-genome235

multi-locus sequence typing (cgMLST) schemes for species where they are available; however, doing236

this would increase the size of the databases used by ConFindr, increase the runtime, and would require237

additional manual curation of the cgMLST schemes used to ensure reliability in an automated system.238

Moreover, we found ConFindr to be more sensitive than CheckM for intraspecies contamination, despite239

the use of a smaller number of core genes relative to CheckM which uses a larger number of lineage-240

specific core genes. This is likely because ConFindr works at the read level while CheckM works on241

assemblies (Parks et al., 2015). If contamination is at a low level (e.g., one SNV in a gene, at a low242

contamination percentage), variant positions would likely get lost in the assembly process, limiting the243

sensitivity of assembly-based approaches. Furthermore, different assemblers or read preprocessing steps244

may change the results found by assembly-based tools for contamination detection.245

In the present study, cross-species contamination was easily identified based on de novo assembly246

metrics (Supplemental Table S1); however, assemblies with low-level intraspecies contamination had247

assembly metrics similar to uncontaminated assemblies (Table 2). This is consistent with observations in248
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our laboratory (Table 4). Typical assembly metrics vary among species and strains, making it difficult to249

develop robust standards for these metrics. For example, S. enterica genomes tend to have higher N50250

values and assemble into fewer contigs than E. coli (e.g., Table 2). Ultimately, this variability makes it251

difficult to develop standard cutoffs that can be integrated into automated tools.252

We applied ConFindr to the evaluation of 1500 samples in the public SRA repository and identified253

intraspecies contamination in 5.13% of the samples (Table 3). Notably, intraspecies contamination was254

more prevalent than cross-species contamination. A recent assessment of 67758 publically-available255

Salmonella sequences determined that 1.87% of samples had cross-species contamination based on a read256

classification approach (Robertson et al., 2018). Prevalence of cross-species sequence contamination in257

public repositories is a known issue that has been described in a number of studies (Merchant et al., 2014;258

Mukherjee et al., 2015; Lee et al., 2017; Cornet et al., 2018). Very few studies have looked at intraspecies259

contamination in public repositories, and we could not identify any studies evaluating prevalence of260

intraspecies contamination in foodborne pathogens. While the effects of intraspecies contamination are261

poorly understood, the relatively high proportion of samples determined to be contaminated by ConFindr262

highlights the need to further investigate the impacts of intraspecies contamination on WGS-based263

analyses.264

WGS pipelines for public-health microbiology often include analyses of SNVs among a group of265

isolates to assess evolutionary relatedness and/or detection of genetic targets (e.g. serotype markers,266

virulence determinants) (Lambert et al., 2015; Ronholm et al., 2016; Allard et al., 2016; Chen et al., 2017).267

The impact of using contaminated data in these analyses is not well understood as validation schemes for268

bioinformatics pipelines do not often assess the effect of contamination on results of analyses to determine269

acceptable limits. We found one report on the development and validation of the SNVPhyl pipeline that270

incorporated an assessment of the impact of contamination (Petkau et al., 2017). In this evaluation, the271

number of SNVs detected decreased as contamination with a closely related strain increased, and detection272

of clusters of epidemiologically-related isolates was impacted with greater than 10% contamination273

(Petkau et al., 2017). While few studies of the impact of contamination on phylogenomic analyses exist,274

most SNV detection pipelines use cut-offs for coverage and relative nucleotide abundance at a given275

position to ensure validity of a SNV (Davis et al., 2015; Petkau et al., 2017). The presence of intraspecies276

contamination in the analysis of a sample would ultimately result in the exclusion of valid SNVs and277

could have impacts on the resulting phylogenetic tree topology. Contamination may have more important278

effects on detection of genetic markers in WGS data. For example, in a recent analysis in our laboratory,279

contamination impacted the accuracy of the determination of an E. coli serotype (Table 4). Similarly,280

intraspecies contamination could result in detection of virulence and antibiotic resistance genes, as well281

as pathogenicity islands or other horizontally acquired genes that are part of the contaminant strain and282

not the target strain.283

CONCLUSION284

We have developed a novel bioinformatics pipeline (ConFindr) for detection of contaminating reads in285

raw short-read bacterial WGS data and have demonstrated its applicability for quality assessment of286

data derived from the priority foodborne pathogens L. monocytogenes, S. enterica and STEC. To our287

knowledge, this is the first automated tool developed specifically for this purpose. ConFindr outperforms288

existing bioinformatics tools for detection of intraspecies contamination in bacterial WGS data and can289

reliably detect cross-species contamination. It may be possible to adapt the approach used by ConFindr290

for long read data, but this is reserved for future work due to the drastic differences in error profile that291

may impact the identification of contaminating SNVs. ConFindr should be universally applicable to292

bacterial genomes and can be easily implemented in quality-control pipelines for WGS analysis. Further293

studies are needed to better understand the effects of contamination on WGS analyses, as well as establish294

what acceptable levels of contamination are when analyzing WGS data. The integration of tools such295

as ConFindr in quality-analysis pipelines will improve the reliability of public WGS databases, and the296

accuracy of downstream analyses.297

ConFindr source code and documentation are freely available under the MIT Licence at https://github.com/OLC-298

Bioinformatics/ConFindr.299
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Cornet, L., Meunier, L., Van Vlierberghe, M., Léonard, R. R., Durieu, B., Lara, Y., Misztak, A., Sirjacobs,322

D., Javaux, E. J., Philippe, H., Wilmotte, A., and Baurain, D. (2018). Consensus assessment of the323

contamination level of publicly available cyanobacterial genomes. PLOS ONE, 13(7):1–26.324

Davis, S., Pettengill, J. B., Luo, Y., Payne, J., Shpuntoff, A., Rand, H., and Strain, E. (2015). CFSAN325

SNP Pipeline: an automated method for constructing SNP matrices from next-generation sequence326

data. PeerJ Computer Science, 1:e20.327
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