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Corals provide structure and food sources vital for the maintenance of coral reef fish

diversity. However, coral reefs are currently under threat from climate change, which has

led to the largest recorded loss of live coral. The loss of live coral, and corresponding shift

in reef benthic composition, are predicted to impact the abundance and composition of

coral reef fish species and communities. In this study, we investigate the effect of changes

in reef benthic composition (eg. live coral, dead coral, algae), on the diversity and

composition in an assemblage of butterflyfish species, in Faafu Atoll in the Maldives after

the 2016 bleaching event. We show that differences in community composition of

butterflyfish are associated to benthic structure, reflecting species feeding preferences.

Interestingly, however, we also show that lower coral cover is not associated to lower

abundance and species richness of butterflyfish. Our results suggest that maintenance of

coral reef structure after a disturbance provides key microhabitats to accommodate non-

corallivorous butterflyfish, thus maintaining abundance and species richness. Overall our

study provides support for regulation of richness and abundance of coral reef fish

assemblages to short term changes in coral reef benthic composition after disturbance via

turnover in composition.
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ABSTRACT

Corals provide structure and food sources vital for the maintenance of coral reef fish 

diversityL However, coral reefs are currently under threat from climate change, which has

led to the largest recorded loss of live coralL The loss of live coral, and corresponding 

shift in reef benthic composition, are predicted to impact the abundance and 

composition of coral reef fish species and communitiesL In this study, we investigate the 

effect of changes in reef benthic composition (egL live coral, dead coral, algae), on the 

diversity and composition in an assemblage of butterflyfish species, in Faafu Atoll in the 

Maldives after the 2016 bleaching eventL We show that differences in the community 

composition of butterflyfish are driven by benthic structure, which was concordant with 

species feeding preferencesL Interestingly, however, we also show that loss of benthic 

composition produced no change in the abundance and in species richness of 

butterflyfishL Our results suggest that maintenance of coral reef structure after a 

disturbance provides key microhabitats to accommodate other non-corallivorous 

butterfly fish, thus maintaining species richnessL Overall our study highlights the 

potential resilience of coral reef fish assemblages to changes in coral reef benthic 

composition after disturbance via turnover in compositionL
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INTRODUCTION

Corals are important niche constructorsL The shape, form and size of corals physically

modify the characteristics of the habitat, which determine the assemblage of species

that associate with coral reefsL High spatial heterogeneity in coral’s shapes and forms

are key to sustaining one of the most diverse ecosystems on Earth, with over one million

species associated with coral reefs (Vernon 1995, Moberg & Folke 1999, Halford et alL

2004)L  Worryingly,  coral  reefs  throughout  the  world  are  under  threat  from  human-

induced climate change (Hughes et alL 2017)L The loss of reef corals and the respective

impact on the associated fauna they support can lead to dramatic ecological shifts in the

ecosystem,  likely  to  have serious  economic  effects  in  locations that  rely  heavily  on

fisheries and tourismL Understanding how changes in reef benthic composition shape

the  community  they  support  is  therefore  of  crucial  ecological  as  well  as  economic

importanceL 

Reefs are heterogeneous in their benthic composition, which directly impacts the 

diversity of the associated fish faunaL For example, the percentage of live coral is an 

accurate predictor of the abundance of corallivorous reef fishes (Bell & Galzin 1984)L 

Shifts in the dominance and heterogeneity of reef benthic composition are related to 

disturbance history (De’ath et alL 2012)L For instance, bleaching events are often 

accompanied by a shift in the benthic composition away from a scleractinian reef-

builders dominated reef towards an algae dominated reef system (McManus & 

Polsenberg 2004)L While live coral loss has an immediate effect on the abundance of 

corallivorous fish species, other fish species may also be affected in the long term by 
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loss of structural complexity essential for shelter, habitat and settlement of many fish 

larvae (Feary et alL 2007)L 

The joint effect of shifts in reef benthic composition and the potential loss of coral 

structure is an important driver of patterns of diversity and community structure among 

reef fish species (Morgan et alL 2008, Graham et alL 2014)L The direction and magnitude 

of such impact in terms of community and diversity change, is, however, not linearL The 

loss of live coral does not always leads to loss of fish diversity because coral reef fish 

species differ in the degree to which they are impacted by changes in reef benthic 

composition (Syms & Jones 2000)L Some species rely exclusively on live coral, but 

others depend on other components of the benthos such as turf algae or cyanobacteriaL 

Differences in dependence upon live coral is likely to shape how fish respond to change 

in benthic coverL A stronger understanding of the impacts and implications of disturbance

in shaping fish communities must, therefore, include understanding of changes in fish 

abundance in relation to live coral cover, as well as in relation to other benthic 

organismsL 

Here we examine the effect of spatial differences in benthic composition and 

relate this to patterns in community composition and diversity of coral reef speciesL 

Specifically, we ask how butterflyfish (Chaetodontidae) communities reflect reef benthic 

compositionL Butterflyfish are one of the most conspicuous, common, and well-studied 

coral reef fish groupsL Their wide geographic range, relative abundance, and ease of 

identification make them a popular model organism when studying the links between 

reef fish ecology and coral reef condition (Bell & Galzin 1984, Pratchett & Berumen 

2008)L Butterflyfish rely on coral for providing habitat and shelter against predators and 

wave action (Graham et alL 2009)L Corals are also a key component of the dietary 
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requirements of butterflyfish (Pratchett 2005, Pratchett & Berumen 2008)L However, the 

degree of dietary dependence on corals varies within the group, ranging from obligate 

corallivore species, to facultative corallivore species, to invertebrate feeding species 

(Cole et alL 2008)L The existence of such heterogeneity in feeding preferences within the

single genus provides an opportunity to investigate the extent to which changes in reef 

benthic composition and structure shape community of butterflyfishesL Species with 

specific dietary requirements are more vulnerable to changes in food availability than 

generalist ones (Pratchett et alL 2006)L We predict that sites with lower live coral cover 

are inhabited by communities of generalist butterflyfishL Conversely, sites with higher live

coral cover should be dominated by obligate corallivore butterflyfish speciesL 
The sea surface temperature anomalies caused by the 2015-2016 El Niño led to 

the largest bleaching event recorded in the Maldives, with more than 70% of corals 

completely or partially bleached (Ibrahim et alL 2017)L Understanding the impact of this 

disturbance in changing benthic composition and coral reef fish community structure is 

especially important for countries, such as the Maldives, where the economy relies 

heavily on services provided by coral reef ecosystemL Fishing and tourism are the two 

main sources of revenue of the Maldivian economy (World Bank Report 2017)L 

Investigating the impacts of spatial heterogeneity in benthic cover caused by bleaching 

in shaping butterflyfish community will give us invaluable information about ecosystem 

resilience, which can be used for predicting the knock-on effects of climate change on 

corals (Berumen & Pratchett 2006, Swain et alL 2017)L 
The aim of this study is to quantify trophic community composition of butterflyfish 

assemblage in response to variation in reef benthic composition caused by recent 

environmental disturbanceL Namely, we ask how differences in benthic composition and 

reef structure contribute to promoting differences in butterflyfish assemblagesL We first 

compare two sites in terms of abundance and species richness in both corals and 
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butterflyfish speciesL Second, we investigate how differences in benthic reef composition

are reflected in patterns in butterflyfish species and trophic compositionL 

MATERIALS & METHODS

STUDY SITE 

This study was conducted at Magoodhoo Island, Faafu Atoll, Maldives across two reef 

sites within the atoll: Blue Cove and Maaga (Figure 1)L These two sites were selected for

having different levels of benthic reef cover (Figure 1)L We randomly identified two points

on the crest of each reef and conducted transect surveys parallel to the reef crest, 4-7 m

deep, in opposite directions from the starting pointL We used GPS to ensure the start of 

the second set of transects was more than 300 m from the first, and thus the survey 

areas did not overlapL We conducted four 60-minute SCUBA dives at each reef site 

between 0845 and 1145 hoursL 

BUTTERFLYFISH SURVEYS 

There are 37 species of butterflyfish found in the Maldives (Froese & Pauly 

2016)L We categorized the butterflyfish species based on their trophic group, as obligate 

corallivores (oc), non-coral feeders (nc), and generalist (ge) (Table 1)L On each dive, two

divers conducted a census of butterflyfish species using an adaptation of established 

“coral reef visual fish census” methods (English et alL 1997)L We conducted 4 transects 

per siteL The divers descended to the survey site and swam slowly while deploying 100 

m of tape measureL They tallied and identified to species level all butterflyfish within 1L25

m on either side of the tape measure and recorded the time each species was first seen 
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on the dive and at the reef siteL Divers were careful to not double count fish that followed

them, and only tallied fish while swimming away from the starting pointL 

BENTHIC COMPOSITION SURVEYS 

We surveyed each site four timesL At each dive we conducted three 20 m line intersect 

transects to evaluate benthic composition following the established line intersect 

transect procedure (English et alL 1994)L Each buddy pair laid a 20 m tape measure 

parallel to the fish transect, starting at 0, 25, and 50 m and following the contour of the 

reefL Each diver recorded the category of benthos directly below the tape measure to 

5cm resolutionL Benthos composition was categorized as live coral, dead coral, algae, 

and otherL Morphology of any living or deceased coral was recorded as branching, 

foliose, tabular, massive, plate, encrusting or mushroomL Any live coral was identified to 

genus level using the Indo Pacific Coral Finder 2L0 (Kelley 2011)L When divers were not 

confident in the identification of a coral underwater, it was photographed for later reviewL 

STATISTICAL ANALYSIS

We used a Principal Component Analysis (PCA) to determine site-level differences in 

benthic composition and in butterflyfish community trophic composition between sites 

(based on trophic groups, see Table 1)L To infer about benthic composition differences 

between sites, and to identify the main drivers of these differences, we used a PCA with 

total cover for each benthic type as variables for each transectL We also ran a PCA on 

the fish data, using each trophic level as variablesL In both analyses, variables were not 

standardised as each variable was measured on the same scale (iLeL benthic cover and 
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abundance of butterflyfish species)L We added 95% confidence ellipses for the mean 

position of each site to the PCA in order to infer whether the sites were distinctL We 

selected the number of principal components (PC) to retain using the cumulative 

explained variation in the data from the first PC onwardsL We also examined the 

loadings of each variable on the retained PCs to determine which variables were most 

important for each PCL 

Finally, we calculate the total number of individuals, total number of species (species 

richness) and evenness for each siteL We used the Pielou’s metric to estimate evenness

using the Vegan package (Oksanen et alL 2018)L Differences in community metrics 

between sites were assessed using a one-way ANOVA (p-values were considered 

significant after Bonferroni correction)L All analyses were performed using R (Team 

2018)L 

RESULTS

Linking trophic community structure with benthic compositionL

Live coral cover was significantly higher at Blue Cove compared to Maaga (F = 69L43, df

= 22, p < 0L001, Figure 2, Table 1)L The abundance of obligate corallivore individuals 

was also higher at Blue Cove (F = 23L58, df = 6, p = 0L002, Figure 3, Table 1)L 

Contrastingly there was greater abundance of non-corallivore species at Maaga (F = 

29L68, df = 6, p = 0L001, Figure 3, Table 1), which was characterized by greater cover of 

dead coral (cm) (df = 28L42, p = 0L001, Figure 2, Table 1)L 

Despite the differences in trophic composition of butterflyfish community between sites, 

we did not detect a correspondent difference in both total abundance (F = 0L54, df = 6, p 
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= 0L496), butterflyfish richness (F = 4L42, df = 6, p = 0L138), between the two sites 

(Figure 4)L We did, however, found that the relative abundance of butterflyfish species at

Blue Cove was more even than the one found at Maaga (evenness between sites, F = 

7L91, df = 6, p = 0L03)L 

Benthic composition

Eighty-three percent of the variation in benthic composition was captured by the first 

principal component (PC) (Figure 5)L The variables that most contributed to this were 

live coral (63%) and dead coral (60%)L The second principal component captured 10% 

of the variation with tabular morphology (74%) and branching morphology (40%) 

contributing the mostL The two sites are well delineated in the PCA, with Maaga located 

in the right quadrant suggesting it had low live coral cover and with both tabular and 

branching coral morphologiesL Blue Cove seats in the left corner and it best described 

by the presence of live coral and by encrusting and massive coral morphologies (Figure 

5)L 

Butterflyfish Community Structure

Eighty-one percent of the variation in fish community structure was captured by the first 

principal component (PC) (Figure 6)L The variable that contributed to this was “obligate 

corallivore” (80%)L The second principal component captured 9L5% of the variation with 

“non-coral feeders” (72%) contributing the mostL The two sites had distinctive 

butterflyfish trophic community structures, with Maaga located towards the right 

suggesting it is comprised of non-corallivore species, such as the Black Pyramid 

butterflyfish (Hemitaurichthys zoster) and the Blue Cove site was characterised by 

obligate corallivore species (Figure 6)L 
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DISCUSSION

Our study reveals that butterflyfish species assemblages in the Maldives reflect 

differences in the composition of the benthic substrateL Sites with lower percentage of 

live coral cover have significantly greater abundance of non-corallivorous butterflyfish 

species, such as H. zoster, while obligate corallivorous species such as the Pinstriped 

butterflyfish (Chaetodon trifasciatus) are more abundant in sites with greater live coral 

coverL Our results are consistent with the links between benthic composition and 

butterflyfish feeding preferences reported for the Great Barrier Reef and for the Indo-

Pacific region (Halford et alL 2004)L Despite the significant difference in benthic 

composition between our sites, we did not detect an effect in total abundance and 

species richness of butterflyfishL This result contrasts with evidence that spatial 

heterogeneity in coral cover is linked to a reduction in the abundance of butterflyfish 

(Öhman et alL 1998, Berumen & Pratchett 2006, Pratchett et alL 2006)L We did find, that 

changes in benthic composition are accompanied by changes in the trophic composition

of butterflyfishL Overall, our results strengthen the view that benthic composition and the 

maintenance of coral structure are the main driving factors controlling the distribution of 

butterflyfish speciesL
Decline in coral populations and associated degradation of reef communities are 

being reported worldwide (Hughes et alL 2017, Hughes et alL 2018)L Namely, increasing 

sea surface temperature caused by global warming creates physiological stress to 

corals, which in extreme cases leads to the end of the endosymbiotic relationship 

between the corals and the zooxanthella (Dove & Hoegh-Guldberg 2006)L Spatial 

heterogeneity in coral mortality caused by bleaching leads to changes in coral 

community composition (Glynn 1996, Lenihan et alL 2008)L Our two sites were 
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remarkably different in terms of benthic composition on this occasion, despite both sites 

having high coral cover before the 2016 bleaching event (Davide Seveso personal 

observation)L It was not possible to investigate the causes of benthic differences in this 

study because of the timing of our observationsL However, the greater percentage in 

recently dead coral found at the Maaga site suggests that the difference in benthic 

composition between sites is likely to be caused by the 2016 bleaching event, which is 

known to have impacted this region severely (Ibrahim et alL 2017)L 

Loss of live coral cover after a disturbance is often linked to a reduction in the 

abundance and composition of coral reef fish species (Jones et alL 2004, Pratchett et alL 

2006, Komyakova et alL 2018)L Our results show mixed results in terms of community 

effects of changes in benthic structL Firstly, we found that the relative abundance of 

butterflyfish species is different between sitesL The greater percentage of live coral cover

found at Blue Cove is likely to have an impact in reducing the pressure associated with 

feeding, which is expected lower the level of inter-specific competitionL Reduction in 

local competitiveness for resource acquisition can lead to greater evenness among the 

community (Wilsey & Stirling 2007)L 

Secondly, while, there were differences in the percentage of live coral cover 

between the two sites in our study, we also failed to detect and effect of benthic 

composition in total abundance and richness of butterflyfishL This result is in agreement 

with a recent study that reported a spatial mismatch between abundance of coral reef 

fish species and bleaching (Wismer et alL 2018)L This later study reports that coral reefs 

that experienced bleaching did not have significantly fewer fish than coral reefs un-

affected by bleachingL In fact, in some cases fish number increased after bleaching, 

suggesting the replacement of some fish species by othersL Structural complexity is 
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predicted to have more of an effect in regulating the abundance of reef fish than live 

coral cover (Garpe et alL 2006)L Despite having a greater proportion of dead coral, the 

Maaga site also had a greater abundance of coral shapes of greater structural 

complexity such as tabular and branching shapesL Greater heterogeneity in coral 

structural complexity creates microhabitats that reduce inter-specific competition while 

providing refuge from predation, thus likely to support greater abundance of fish 

(Graham & Kirsty 2013)L Our results strongly suggest reefs changes caused by 

environmental disturbance are likely to have consequences in leading to shifts in trophic 

composition of butterflyfish assemblageL 

More broadly, our results are consistent with prevalent patterns across 

ecosystems that show species replacements in the form of turnover are a much more 

prevalent response to disturbance than richness declines (Supp & Ernest 2014)L Indeed,

elevated turnover is the strongest and most prevalent pattern of biodiversity change in 

our times (Dornelas et alL 2014)L Our results are also consistent with evidence that both 

abundance and species richness are regulated in most assemblages (Gotelli et alL 

2017)L Our results suggest that indirect effects of drastic differences on one assemblage

are likely to be reflected as turnover in composition in other assemblages of the same 

ecosystemL
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CAPTIONS

Table 1 – Mean and standard deviation values for benthic and trophic composition for 

Maaga and Blue CoveL 
 
Figure 1 – Sampling site locationL Magoodhoo Island, Faafu Atoll, MaldivesL (Blue) Blue 

Cove characterized by higher live coral cover, and (Pink) Maaga characterized by 

having greater proportion of dead coralL

Figure 2 – Percentage of benthic composition found at Maaga and Blue CoveL Error 

bars denote standard deviationsL
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Figure 3 – Percentage of trophic composition in butterflyfish assemblage found at 

Maaga and Blue CoveL Error bars denote standard deviationsL

Figure 4 – Total abundance (A), Species Evenness (B) and richness (C) at Maaga and 

Blue CoveL Error bars denote standard deviationsL

Figure 5 - PCA plots of; (A) reef benthic cover and (B) abundance and trophic groups 

composition, at Maaga and Blue CoveL Benthic variables were grouped into benthic type

and coral morphologyL  Fish trophic composition was categorized using species feeding 

preferencesL Points represent transects and are coloured by site (Maaga – blue, Blue 

Cove - pink)L Ellipses are 95% confidence ellipses for the average position of each siteL 

Table 1

Sites
Maaga Blue Cove

Benthic Composition

Algae 90L8 ± 100L5 4L58 ± 11L5
Dead Coral 1613 ± 224L6 1066L6 ± 275L1
Live Coral 43L3 ± 35L9 562L1 ± 212L6
Other 196L6 ± 105L7 346L6 ± 283L3

Trophic composition

Generalist 19L25 ± 5L61 21L5 ± 3L11
No coral feeders 23L25 ± 4L34 7L25 ± 3L94
Obligate corallivores 5L75 ± 1L5 25L25 ± 7L88
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Figure 1429
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Figure 1(on next page)

Sampling site location. Magoodhoo Island, Faafu Atoll, Maldives. (Blue) Blue Cove

characterized by higher live coral cover, and (Pink) Maaga characterized by having

greater proportion of dead coral.
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Figure 2(on next page)

Percentage of benthic composition found at Maaga and Blue Cove. Error bars denote

standard deviations.

Percentage of benthic composition found at Maaga and Blue Cove. Error bars denote

standard deviations.
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Figure 3(on next page)

Percentage of trophic composition in butterflyfish assemblage found at Maaga and Blue

Cove. Error bars denote standard deviations.

Percentage of trophic composition in butterflyfish assemblage found at Maaga and Blue

Cove. Error bars denote standard deviations
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Figure 4(on next page)

Total abundance (A), Species Evenness (B) and richness (C) at Maaga and Blue Cove.

Error bars denote standard deviations.

Total abundance (A), Species Evenness (B) and richness (C) at Maaga and Blue Cove. Error

bars denote standard deviations.

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27491v1 | CC BY 4.0 Open Access | rec: 17 Jan 2019, publ: 17 Jan 2019



20

30

40

50

60

70

T
o
ta

l 
n
u
m

b
e
r 

o
f 
in

d
iv

id
u
a
ls

Maaga Blue Cove

Figure 4

0.5

0.6

0.7

0.8

0.9

1.0

E
ve

n
n
e
s
s

Maaga Blue Cove

6

8

10

12

14

S
p
e
c
ie

s
 r

ic
h
n
e
s
s

Maaga Blue Cove

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27491v1 | CC BY 4.0 Open Access | rec: 17 Jan 2019, publ: 17 Jan 2019



Figure 5(on next page)

PCA plots of (A) reef benthic cover and (B) abundance and trophic groups, at Maaga and

Blue Cove.

Benthic variables were grouped into benthic type and coral morphology. Fish trophic

composition was categorized using species feeding preferences. Points represent transects

and are coloured by site (Maaga – blue, Blue Cove - pink). Ellipses are 95% confidence

ellipses for the average position of each site.
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