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The observed dynamics of infectious diseases are driven by processes across multiple

scales. First is within-host, that is how an infection progresses inside a single individual (for

instance viral and immune dynamics). Second is how the infection is transmitted between

multiple individuals of a host population. The dynamics of each of these may be influenced

by the other, particularly across evolutionary time. Thus understanding each of these

scales, and the links between them, is necessary for a wholistic understanding of the

spread of infectious diseases. One approach to combining these scales is through

mathematical modeling. We conducted a systematic review of the published literature on

multi-scale mathematical models of disease transmission to determine the extent to which

mathematical models are being used to understand across-scale transmission, and the

extent to which these models are being confronted with data. Following the PRISMA

guidelines for systematic reviews, we identified 19 of 139 qualifying papers across 30

years that include both linked models at the within and between host levels and that used

data to parameterize/calibrate models. We find that the approach that incorporates both

modeling with data is under-utilized, if increasing. This highlights the need for better

communication and collaboration between modelers and empiricists to build well-

calibrated models that both improve understanding and may be used for prediction.
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ABSTRACT20

The observed dynamics of infectious diseases are driven by processes across multiple scales. First is

within-host, that is how an infection progresses inside a single individual (for instance viral and immune

dynamics). Second is how the infection is transmitted between multiple individuals of a host population.

The dynamics of each of these may be influenced by the other, particularly across evolutionary time.

Thus understanding each of these scales, and the links between them, is necessary for a wholistic

understanding of the spread of infectious diseases. One approach to combining these scales is through

mathematical modeling. We conducted a systematic review of the published literature on multi-scale

mathematical models of disease transmission to determine the extent to which mathematical models are

being used to understand across-scale transmission, and the extent to which these models are being

confronted with data. Following the PRISMA guidelines for systematic reviews, we identified 19 of 139

qualifying papers across 30 years that include both linked models at the within and between host levels

and that used data to parameterize/calibrate models. We find that the approach that incorporates both

modeling with data is under-utilized, if increasing. This highlights the need for better communication

and collaboration between modelers and empiricists to build well-calibrated models that both improve

understanding and may be used for prediction.
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INTRODUCTION36

In the study of biological systems, phenomena are often observed at either the between-host scale or the37

within-host scale. At the between-host scale, which may include how a disease spreads among organisms38

in a population, or the within-host scale, which may include intracellular or inter-cellular interactions39

with an invading pathogen. Since biological systems do not exhibit a clear separation of temporal or40

spatial scales, there has been increased interest in recent years in how interactions at one scale can affect41

interactions at the other.42

Mathematical and computational modeling, which has a rich history of application to the dynamics43

of ecological systems and infectious diseases, has been used to study phenomena at both scales. At the44

between-host scale, classic compartmental models like the SIR model, which models the interactions45

between susceptible individuals S, infected individuals I, and recovered individuals R, have been used to46
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predict the spread of infectious diseases between individuals in a population (Kermack and McKendrick,47

1991, 1927; Anderson and May, 1992). At the within-host scale, models such as the T IV model of viral48

dynamics, which models the interactions between target cells T , infected cells I, and virus V , were used49

to understand viral load within hosts (Perelson et al., 1996; Nowak and May, 2000).50

To understand the outcomes produced by the interactions in and between different scales, a multi-scale51

model that links the scales may be constructed. For example, an SIR model may be used to model the52

spread of a viral disease in a population. If the transmission rate between hosts is dependent on the53

outcome of the viral load from a T IV model (since higher viral loads often are associated with higher54

disease transmission), the models at the between-host scale and the within-host scale depend on one55

another, and are thus considered linked. These models can be diverse in their structure and formulation56

(Garira, 2017). Thinking about the implications across scales is important but is also challenging as the57

relationships are often complex, nonlinear and, therefore, unintuitive. Previously, theoretical models of58

multi-scale phenomena have been reviewed (Mideo et al., 2008; Reiner et al., 2013; Dorratoltaj et al.,59

2017; Murillo et al., 2013; Severins, 2012). In 2015, Handel and Rohani highlighted the need for a better60

incorporation of data into multi-scale models (Handel and Rohani, 2015).61

In this review, we aim to illuminate the state of the field joining experimental data with mathematical62

and computational models that bridge multiple scales. In doing so we expect to identify potential gaps63

in understanding and methodology. To do so, we examine papers that incorporate models that contain64

both within-host and between-host model components as well as utilize data. While we have related an65

example that involves the linking of two compartmental models in the context of a viral disease, we do66

not restrict our search to only compartmental models or those of viral disease. We find 19 papers which67

contain both (i) the within-host and between-host connection and (ii) data. In section 2, we explain how68

we searched for and chose papers. In section 3, we explain trends of the models in the papers we selected.69

We then conclude in section 4 with some overall thoughts on the current literature using multi-scales70

models with data.71

SURVEY METHODOLOGY72

To perform our systematic review we followed the Preferred Reporting Items for Systematic Reviews and73

Meta-Analyses (PRISMA) guidelines (Moher et al., 2009). PRISMA is a standard protocol for conducting74

a systematic review or a meta-analysis. The flowchart showing our procedures are presented in Fig. 1.75

We searched All Databases on Web of Science using the search terms “within-host between-host76

pathogen* transmi*” for papers published before November 30, 2017. We obtained 159 results, for which77

we screened abstracts (Fig. 1A). We initially eliminated 20 search results, which included duplicates78

and other results that were not papers. Further, there was one paper that could not be obtained (Verenini,79

1983). This left us with 139 papers, which we initially screened by the abstract.80

In the initial abstract screening phase, two randomly assigned people (i.e., two of LMC, FEM, ZG,81

SK, RNB, MW, or LRJ) separately categorized each of the 139 papers into three categories based on82

whether it included a linked model with data: ‘Yes’, ‘Maybe’, and ‘No’. A linked model was defined as83

a mathematical model that includes at least two scales, within-host and between-host, as well as some84

explicit link between the scales. The abstract was labeled as follows: ‘Yes’ if it appeared to describe both85

a linked model with data; ‘Maybe’ if it either (i) clearly described a linked model but was unclear on86

data, or (ii) clearly referred to data, but was unclear if the included model was linked; ‘No’ if it did not87

meet any of the above criteria, was obviously a review, or obviously out-side the scope of our review. A88

set of study properties (Fig. 1B, Q2.1 - Q2.7) were also collected for each of 110 papers at the abstract89

screening stage including the focal host species, other mentioned species, the type of infection, and the90

main results of the paper. Study properties were not recorded for the other 29 papers as they were either91

review papers (15) or deemed out of scope (14).92

If an abstract was labeled with two ‘Yes’ or with one ‘Yes’ and one ‘Maybe’, we retained the paper93

for full paper screening; if an abstract was labeled with two ‘No’ we excluded the paper from screening.94

If an abstract was labeled with one ‘Yes’ and one ‘No’, we reviewed the abstract collectively to relabel it95

to either two ‘Yes’, two ‘No’, or one ‘Maybe’. We obtained 40 abstracts labeled two ‘Yes’ or one ‘Yes’96

and one ‘Maybe’, 36 abstracts labeled two ‘No’, 34 abstracts labeled one ‘Maybe’ and one ‘No’, and 2997

abstracts labeled two ‘Maybe’. If an abstract was labeled with one ‘Maybe’ and one ‘No’, the person who98

labeled ‘Maybe’ was assigned to skim the paper to decide if the paper should be kept or eliminated. If an99

abstract was labeled with two ‘Maybe’, a third randomly assigned person was assigned to skim the paper100
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Figure 1. Schematic of survey methodology. (A) PRISMA flowchart showing the inclusion of papers.

“Non-papers” refers to database entries that were figures or codes. (B) Schematic of the screening and

evaluation questions used. Dashed lines indicate links between questions that were conditional, i.e.,

answering the second question/box depended on the answers to the earlier question. For example, details

on the study properties (Q2.1 - Q2.7) and questions from the final screening stage (Q3.1 - Q3.3) were

only collected for the 139 papers that were retained following the abstract screening stage. Questions in

boxes 4 through 8 were completed for all 19 papers that remained following the final screening stage.

Questions are found in Text S1; Responses are found in Tables S1-S8; References to all included papers

are found in Text S2; References to all excluded papers are found in Text S3; All recorded data can be

found in our Supplemental Data Sets.

to decide whether it should be kept or eliminated. A paper was kept if it appeared to have a linked model101

and/or data, but still was unclear if it had both; the paper was excluded otherwise. Once this process102

was completed, we kept 46 papers for further screening, and excluded 93 papers based on the abstracts.103

The reason for exclusion (lacking data, lacking a model, lacking a within-host component, lacking a104

between-host component, review, or another reason, which needed to be described) was recorded for all105

93 papers excluded at this stage (Fig. 1B, Q3.2 - Q3.3).106

We then conducted a final screening of the remaining 46 papers by having two individuals (randomly107

assigned from the full author list) read through the full text of each paper. During this step, a final108

determination was made for each paper whether to keep it for further analysis or to exclude it. A paper109

was kept if it contained a linked model with data; a paper was otherwise excluded. The reason for110

exclusion (lacking data, lacking a model, lacking a within-host component, lacking a between-host111

component, review, or another reason, which needed to be described) was recorded for all 27 papers112

excluded at this stage (Fig. 1B, Q3.2 - Q3.3). In all, we included 19 papers in the full analyses (Fig. 1A).113

For the papers that were included, we answered a detailed set of questions, which described important114

aspects of the model (such as the transmission route), how the models were linked, how the data was used115

in the model, etc. (Supplemental Text S1, Fig. 1B, Q4 - Q8). We further characterized the journal in116

which each paper appeared as a general audience journal, a specialized biological journal, a primarily117

mathematical/computational journal, or a biology sub-discipline journal (Fig. S1).118

RESULTS119

Traits of included compared to excluded papers120

Our initial search yielded 139 papers published over the span of than 30 years. While the earliest included121

paper was from 1990 (Dwyer et al., 1990), the next papers that met our requirements were published122

15 years later (Cooper and Heinemann, 2005; McKenzie and Bossert, 2005). In the interim, a few more123

papers were published, but interest in this general area grew quickly starting in 2005. Both the number of124

papers loosely related to the topic (i.e. those excluded) and papers meeting our criteria to include both125

models and data (i.e. those included) increased in that time frame (Fig. 2A).126
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Figure 2. Summary of papers considered. Both included and excluded papers by (A) year of

publication, (B) host species, and (C) the reason for exclusion (only for excluded papers). Papers were

classified as included (gray), out of scope (orange) or excluded (blue) for (A) and (B). ‘Out of scope’

designated papers that literally included the search terms but were not topically related.

Papers spanned a variety of host species systems (Fig. S2). Infections of humans were, not surprisingly,127

the most common in both the excluded (28/120) and included categories (8/19). Although non-human128

mammals (20 overall) and invertebrates (14 overall) were the next largest individual categories of hosts129

overall, no papers focusing on invertebrates met the criteria for inclusion. Humans and non-human130

mammals also comprised a larger proportion of papers included than the other categories of host species131

(8/19 and 5/19, respectively). The most common reason for exclusion was a lack of data being used with132

the model (34%) followed by no model (20%) (note, that only one reason was recorded for each paper).133

That is, many papers explore within- to between-host transmission either from a modeling or empirical134

perspective, but many fewer link the models robustly to data. Recently, there have been a number of135

review papers on multi-scales models with data, another common reason for exclusion (12.5%).136

Traits of included papers137

We considered whether the aim of each paper was primarily strategic (trying to understand underlying138

dynamics) or primarily tactical (trying to make predictions) (Nisbet and Gurney, 1982). Of the papers139

examined, most were classified as primarily strategic and very few papers as primarily tactical. Only one140

paper was classified as both strategic and tactical (Vrancken et al., 2014) (Table S4.2). included papers141

were rarely found in highly specialized non-mathematical journals (2/19), but were relatively equally142

spread between mathematically focused journals, biology focused, and for a general audience (Fig. S1).143

Other

Reptile, Amphibian,
 Fish

Plants

Non2human
 Mammal

Human

Bird

0 2 4 6 8

Count

F
o

c
a

l 
H

o
s
t 

S
p

e
c
ie

s
 T

y
p

e

Type of Infection

Bacterial

Fungal

Macroparasite

Multiple

Protozoa

Viral

Other

Other

Viral

Protozoa

Multiple

Macroparasite

Fungal

Bacterial

0 5 10

Count

In
fe

c
ti
o

n
 T

y
p

e

Transmission Model

Direct contact

Indirect contact

Multiple

A B

Figure 3. Focal host species and infection types for included papers. (A) Type of infection across

host species for included papers as bacterial (gray), fungal (orange), macroparasite (blue), multiple

(green), protozoa (yellow), viral (dark blue), or other (red). (B) Modeled transmission route across

infection types for included papers as direct contact (gray), indirect contact (orange) or multiple routes

(blue).
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Infection, host, and transmission categorization144

We found that the majority of the papers and models focused on a single infection. Most infection145

types were viral (10/19), with protozoa being the second most common (4/19). The host species were146

predominately mammals (13/19), of which eight were human hosts (Fig. 3A). Most papers modeled147

transmission as direct contact across infection types. Half of those with protozoa infection type were148

modeled by indirect contact. The only paper included that modeled a bacterial infection assumed indirect149

transmission (Chen et al., 2013). Of the papers which modeled viral infections, there was one which was150

indirect (Handel et al., 2014) and one with multiple modes of transmission (Handel et al., 2013) (Fig. 3B).151

Figure 4. Types of modeling framework used in included papers. The x-axis shows the model types

used in the within-host part of the model while the y-axis shows the model types used in the between-host

model. The dots’ diameter represents how many papers used a particular framework.

Model characteristics152

The multi-scale models reviewed are composed of three parts: the within-host model, the between-host153

model, and the linking mechanism. Approximately two thirds (12/19) of papers primarily investigated154

how the within-host dynamics affect the between-host dynamics; only one paper focused on the impact of155

the between-host dynamics on the within-host dynamics (Handel et al., 2014). The remaining third of the156

papers either examined both of the above directions of impact (i.e. how the within-host and between-host157

dynamics effect each other) or the influence of within- or between-host dynamics on another factor in158

their model (Table S4.3).159

In a multi-scale model, the within-host component and between-host component are both modeled160

explicitly. We characterized each of the within-host and between-host models used as either a deterministic161

model, an individual-based model (IBM), a statistical model, or a stochastic model. Figure 4 shows162

the types of within-host and between-host models used in the included papers. Most studies used the163

deterministic model type at least once, either for within- or between-host models and sometimes for164

both. In the included papers, within-host models were most commonly deterministic (9), followed by165

statistical (7), individual-based (2), and stochastic (1). In contrast, for the between-host models, the vast166

majority were deterministic (11), with a lower and more evenly distributed representation of statistical167

(3), individual based (3), and stochastic (3). One study used an IBM model type for both the within-host168

model and the between-host model (van Dorp et al., 2014). In general, studies did not typically use the169

same modeling approach for both the within- and between-host components. As for host type, there was170

no evident correlation between model types and the focal host species used in the model (Fig. ??).171

Within- and between-host models can be linked in three different ways: within- to between-, between-172

to within-, or bi-directionally. Among the included papers, ten of the studies linked the within-host173

model to the between-host model while nine linked bidirectionally - both within-host to between-host174

and between-host to within-host (Table S5.5). None of the included papers only linked the between- to175

within-host model.176

To link the within-host and between-host models, a linking mechanism was needed, which we177

categorized either as a state or a trait. Linking via a state meant that an outcome of the model was178

5/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27485v1 | CC BY 4.0 Open Access | rec: 14 Jan 2019, publ: 14 Jan 2019



0

3

6

9

12

15

Host Immune
 Response

Host
 Symptoms

Pathogen Death
 Rate

Pathogen Growth
 Rate

Pathogen
 Load

Within2Host Linking Mechanism

C
o

u
n

t

0

3

6

9

12

15

Host Death
 Rate

Host Recovery
 Rate

Pathogen
 Frequency

Pathogen
 Virulence

Transmission
 Rate

Between2Host Linking Mechanism

C
o
u
n
t

A B

Figure 5. Mechanisms used to link between and within-host models together. The number of

included papers that used the each of the (A) within-host linking mechanisms and (B) between-host

linking mechanisms to connect the models together.

used; for example, the pathogen load at the within-host level or the number of infected individuals at the179

between-host level. In contrast, a trait was a parameter of the model; for example, the pathogen growth180

rate at the within-host level or the transmission rate at the between-host level. The model framework181

was categorized in one of three ways: linked only by states, only by traits, or by both traits and states.182

Furthermore, models could also have multiple linking mechanisms. In the included papers, nine studies183

used state variables, three used trait variables, and seven used both (Table S5.6).184

Within-host models (Fig. 5A) are linked to the between-host models mostly via the pathogen load,185

with more then half the papers using this linking mechanism (14/19). Pathogen growth rate was the186

second most used trait to link the within- to between-host model (4/19 papers). All other within-host187

linking mechanisms were used in two or fewer papers. Between-host models were also linked into the188

within-host models (Fig. 5B) based on primarily a single trait, the transmission rate (13/19). All other189

between-host linking mechanisms were used in at most three papers.190

0

5

10

15

Between2Host Linking Mechanism Within2Host

C
o
u
n
t Data Used?

No

Yes

0

5

10

Between2Host Linking Mechanism Within2Host

C
o

u
n

t

Bottom up or
 Top Down?

Both

Bottom2up

Top2down

Other

A B

Figure 6. Role of data in multi-scale modeling efforts. (A) Scale (within-host, linking, or

between-host) at which data was incorporated (orange) in the multi-scale models. Some models used data

at more than one level. (B) How the data was incorporated into the models: bottom-up, i.e. fitting traits

(orange); top-down, i.e. fitting states (green); both (gray) or other (blue).

Role and method of data incorporation191

All papers that passed the screening criteria utilized data in at least one component: the within-host192

component, the linking mechanism, or the between-host component. Even among the relatively small193

sample of papers that included data at all in multi-scale models, most did not use it for more than one194

level of their model (Fig. 6A). While most of the included papers (17/19) used data at the within-host195

level, only six papers used data at both the within-host and between-host levels, of which only three also196

6/12

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27485v1 | CC BY 4.0 Open Access | rec: 14 Jan 2019, publ: 14 Jan 2019



used data for the linking mechanism. Papers that included data for both linking mechanisms and the197

between-host level also included data for the within-host level.198

Across all model scales, bottom-up, i.e. fitting of traits, was utilized more than top-down, i.e fitting of199

states, or other methods (Fig. 6B). None of the papers used a mixture of bottom-up and top-down data200

fitting at different levels, although one paper did not specify explicitly how the data was incorporated201

(Cooper and Heinemann, 2005). For data fitting that was bottom-up, the majority of papers (6/10 within-202

host, 3/6 linking mechanism) used maximum likelihood or least-squares (3/10 within-host, 3/6 linking203

mechanism). Bayesian inference, although a popular statistical method, was only used twice in the papers204

considered (Fig. S4). Only a single paper (Volz et al., 2017) recorded using multiple fitting methods at205

the same scale, and most papers used the same fitting method across all scales.206

DISCUSSION AND CONCLUSION207

Our objective in this review was to determine how multi-scale infectious disease models are used when208

they directly incorporate data. We focused on which species are modeled, which pathogens are modeled,209

which types of models are used, how the within-host and between-host dynamics are linked, and at what210

level data has been used. We found that it was most common for these models to describe a human211

population, to model a viral disease, to use a deterministic model at either level, to link the pathogen212

load at the within-host level, to link the transmission rate at the between-host level, and to use data at the213

within-host level. It was least common for these models to describe a plant, fish, reptile, or amphibian214

population, to model a bacterial, macroparasite, or fungal infection, to use a stochastic model at either215

level, to link host symptoms at the within-host level, to link the host recovery rate at the between-host216

level, and to use data at the between-host level.217

We speculate on the reasons for these outcomes. As human disease has tangible consequences directly218

impacting the wider population, it is unsurprising that the primary host species to examine these multi-219

scale interactions was found to be humans. However, the importance of other species both economically220

and ecologically leaves the door open for further study of these interactions. The dominance of viral221

disease as the focal pathogen likely results from the rich history of mathematical modeling in viral222

disease as well as their prominence in the human community. In choosing which type of model to use,223

deterministic models do not include the mathematical and computational complication of randomness224

as stochastic models do, making them often easier to simulate and analyze. Linking the within-host and225

between-host scales is challenging. Many studies, thus, defaulted to the standard assumption that a higher226

pathogen load often correlates with a higher chance of disease transmission, making pathogen load the227

simplest way to link the within-host and between-host scales. Other linking mechanisms are often difficult228

to model because there may not be an obvious relationship in how two elements at different scales affect229

one another. The incorporation of data was primarily at the within-host level, perhaps stemming from230

the fact that some of these relationships can be obtained through laboratory based research. In contrast,231

between-host data may often require large-scale resources and monitoring.232

We were quite surprised that our search yielded only nineteen papers that included both the across-233

scale modeling and substantial use of data. It is possible that our particular search terms may have been234

overly restrictive. For instance, the search term “pathogen” may be less likely to be used to describe235

infectious macro-parasites (e.g., worms). None the less, our relatively small included set indicates that236

there is considerable scope for further work to be done in the area of data-driven multi-scale modeling237

of infectious diseases. Given the specific results of our review, we propose that future research could238

productively focus on i) exploring alternative linking mechanisms and ii) incorporating more and varied239

data at all scales.240

Most studies we reviewed appeared to use the simplest assumption to link the within-host and between-241

host scales, namely, linking the pathogen load at the within-host level to the transmission rate at the242

between-host level. While this assumption may be appropriate for some diseases, there are other potential243

mechanisms that could be used to provide links between scales, perhaps along with pathogen load. For244

example, these could include how host immunity affects the transmission rate or how pathogen load245

affects the pathogen virulence among the population. Within-host data of antibodies, when available,246

could be used as a measure of host immunity. Accounting for these interactions could produce models247

that make complementary or potentially divergent predictions of transmission outcomes, and in turn be248

used to elucidate the effects different treatments have on disease spread.249

The lack of data was the major reason that our search only uncovered nineteen papers (Fig. 2C). Thus,250
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a major gap in bridging within-host infection dynamics and between-host transmission is the existence251

and incorporation of data. This appears not to have improved significantly since a similar observation in252

2015 (Handel and Rohani, 2015). Although there are cases where appropriate data for a model does not253

currently exist and must be collected in a new experiment, a greater effort should be put forth to work254

with and incorporate existing data sets. This is especially true at the population level, where data are255

particularly difficult and expensive to collect. In addition, far more of the papers we examined included256

data at the within-host level (Fig. 6A), likely due to the accessibility and scale of data that can be collected257

in a lab setting. Along with more data overall, the incorporation of more varied data at a variety of scales258

will enhance the utility of multi-scale disease modeling.259

In summary, important results about disease spread can be gleaned from modeling the interactions at260

both the within-host and between-host scales. While current research has mainly focused on simplistic261

assumptions, we believe that including additional complexities in future models may help to better explain262

observations from the field. Multi-scale modeling provides a great opportunity for empiricists and theorists263

to work together, and to contribute to the understanding of the drivers, treatments, and control of infectious264

disease.265
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Figure S1. Journals where included papers appeared. (A) Counts of included papers from different

journals. (B) Counts of different journal types. General audience journals included Philosophical

Transactions of the Royal Society B: Biological Sciences, PLOS One, and Proceedings of the Royal

Society of London B: Biological Sciences. Primarily mathematical and computational journals included

American Naturalist, PLOS Computational Biology, and Journal of Theoretical Biology. Specialized

journals included Molecular Biology and Evolution and Preventive Veterinary Medicine. Sub-discipline

journals included Ecology, Ecological Mono Graphs, Evolution, and Journal of Virology. All journals of

the 19 included papers are included.
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Figure S2. Reason for exclusion of papers by host species. The reason for exclusion was categorized

as no between-host component (gray), no data (orange), no model (blue), or no within-host component

(green). All other reasons were included under other (yellow).
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