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Abstract 12 

Trait-based approaches are an alternative to species-based approaches for functionally linking individual 13 

organisms with community structure and dynamics. In the trait-based approach, the focus is on the traits, 14 

the physiological, morphological, or life-history characteristics, of organisms rather than their species. 15 

Although used in ecological research for several decades, this approach only emerged in ecological 16 

modelling about twenty years ago. We review this rise of trait-based models and trace the occasional 17 

transfer of trait-based modelling concepts between terrestrial plant ecology, animal and microbial ecology, 18 

and aquatic ecology. Trait-based models have a variety of purposes, such as predicting changes in species 19 

distribution patterns under climate and land-use change, planning and assessing conservation 20 

management, or studying invasion processes. In modelling, trait-based approaches can reduce technical 21 

challenges such as computational limitations, scaling problems, and data scarcity. However, we note 22 

inconsistencies in the current usage of terms in trait-based approaches and these inconsistencies must be 23 

resolved if trait-based concepts are to be easily exchanged between disciplines. Specifically, future trait-24 

based models may further benefit from incorporating intraspecific trait variability and addressing more 25 

complex species interactions. We also recommend expanding the combination of trait-based approaches 26 

with individual-based modelling to simplify the parameterization of models, to capture plant-plant 27 

interactions at the individual level, and to explain community dynamics under global change. 28 

  29 
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Introduction 30 

Understanding community structure and dynamics is a key element of modern ecology, 31 

especially in the light of global change (Harte and Shaw, 1995; Knapp, 2002). This 32 

understanding was traditionally mediated by species-based approaches. More recently, such 33 

approaches were complemented by approaches based on traits. Trait-based approaches are 34 

popular, because they allow the direct connection of organism performance to its functions and to 35 

the functions of higher levels of organization such as populations, communities and ecosystems. 36 

While trait-based approaches are now firmly established in empirical research (Violle et al., 37 

2007; Suding and Goldstein, 2008), they were only introduced to modelling about twenty years 38 

ago. Given that modelling is important for understanding community structure and dynamics, 39 

trait-based modelling can reduce some of the challenges faced by species-based modelling. For 40 

example, species-based models are usually complex, difficult to parameterize and often produce 41 

outcomes that cannot be generalized to other species. Trait-based models often require less 42 

parameterization effort than species-based models, facilitate scaling-up, and produce more 43 

generalizable results. Here, we review the rise of trait-based models over the past twenty years, 44 

highlight their main fields of application and point out avenues for future trait-based modelling.  45 

 46 

Traits arose from the concept of plant functional groups and these groups were the first published 47 

classification of organisms according to function instead of taxonomy (Raunkiaer, 1934; Grime, 48 

1974). The next wave of interest into functional groups was led by the desire to predict 49 

community and ecosystem responses to environmental change (Diaz and Cabido, 1997; Lavorel 50 

et al., 1997; Chapin et al., 2000). The focus then shifted from functional groups to functional 51 

traits and thus from species grouped because they use similar strategies to the similar 52 

characteristics underlying those strategies (Yanzheng Yang et al., 2015). Distinct aspects of 53 

strategies were reflected in sets of correlated traits that were defined as trait dimensions (Westoby 54 

et al., 2002). This shift from a species-based approach to a trait-based approach is described as 55 

the ‘Holy Grail of Ecology’ (Lavorel and Garnier, 2002). This approach involves the use of plant 56 
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functional traits, rather than species identities, to generalize complex community dynamics and to 57 

predict the effects of environmental changes (Suding and Goldstein, 2008).  58 

 59 

Functional traits not only help derive individual strategies (Wright et al., 2004), but also to 60 

connect them to functions at organizational levels higher than those of the species such as the 61 

community or ecosystem level. There are four requirements for a trait (Lavorel et al. 2007). It 62 

should be connected with a function. It should be relatively easy to observe and quantify. It 63 

should be possible to measure it in a standardized way across a wide range of species and 64 

environmental settings. And it should have a consistent ranking. Trait-based ecology is further 65 

based on the assumption that trade-offs and constraints have shaped phenotypic variation in 66 

different trait dimensions (Messier et al., 2017).  67 

 68 

Sets of plant traits that reliably represent the processes of growth, survival, and reproduction 69 

(Violle et al., 2007) make it possible to facilitate and generalize empirical and modelling studies. 70 

Therefore, researchers attempted to define a universal set of traits. Pachepsky et al. (2001) 71 

identified twelve critical traits that affected resource uptake, the area over which resource is 72 

captured, the internal allocation of resources between structure, storage and reproduction, time of 73 

reproduction, number of progeny produced, dispersal of progeny, and survival. Other researchers 74 

used smaller numbers of traits. The leaf economics spectrum, for example contains only six 75 

(Wright et al., 2004). Díaz et al. (2015) also used six traits but not those of the leaf economics 76 

spectrum, and several researchers even used a set with as few as three traits (Westoby, 1998; 77 

Westoby et al., 2002; Wright et al., 2004; Chave et al., 2009; Garnier and Navas, 2012). Thus, 78 

rather than applying a universal trait set, modern use of the concept implies a selection of a small 79 

set of critical functional traits specific to the needs of a specific study and dependent on the 80 

specific organisms for which strategies are being described.  81 

 82 

Using trait-based approaches overcomes some of the well-known problems of species-based 83 

approaches. In trait-based approaches, for example, it is possible to directly connect community 84 

functions such as production to environmental changes via functional traits. Moreover, the trait-85 

based approach is an intuitive approach for addressing evolutionary processes because evolution 86 

selects organisms in a community according to their function and not their taxonomy. Trait-based 87 
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approaches are, furthermore, more suitable than species-based approaches for generalizations 88 

across species as they are not tied to taxonomy. In addition, trait data are, in most cases, more 89 

readily available than species data due to the rapid expansion of trait databases. Trait databases 90 

are especially well developed for plants (Kleyer et al., 2008; Kattge et al., 2011).  91 

 92 

Although current trait-based approaches have several benefits, they also have some shortcomings 93 

not present in species-based approaches. One of these is the choice of appropriate functional traits 94 

and their trade-offs with other traits given that a great diversity of traits are available (Funk et al., 95 

2017). Furthermore, traits differ intraspecifically but these differences are often neglected (Violle 96 

et al., 2012; Bolnick et al., 2011). Existing trait databases are usually of limited use when it 97 

comes to species interactions, intraspecific trait variation and variable environmental settings 98 

(Funk et al., 2017). In addition, the theoretical assumptions of trait-based studies are not always 99 

supported by experimental data (Suding and Goldstein, 2008). These shortcomings can be 100 

overcome by closer cooperation between empirical and theoretical researchers and by the 101 

development of standards for trait data collection (e.g. Garnier and Shipley, 2001; Pérez-102 

Harguindeguy et al., 2013).  103 

 104 

In the most recent 20 years trait-based approaches have entered ecological modelling. The main 105 

advantage of modelling over empirical approaches is that it allows the comparison of several 106 

scenarios with different sets of assumptions, so conducting virtual experiments. This makes 107 

possible the systematic exploration of the outcomes under each set of assumptions and the 108 

elucidation of the mechanisms underlying the patterns observed. Using models therefore avoids 109 

the costs and risks of real-world experiments. In principal, trait-based models consist of 110 

combinations of functional traits that respond to environmental changes (response traits) and 111 

affect community and ecosystem properties (effect traits) (Fig. 1). Implementing trait-based 112 

approaches for modelling may also help overcome the high data demand of species-based models 113 

(Garrard et al., 2013; Weiss et al., 2014), simply due to the fact that traits usually represent more 114 

than one species. For the same reason, trait-based modelling may also reduce computing times. 115 

Moreover, using traits in modelling can facilitate scaling of physiological processes to global 116 
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scales (Shipley, Vile, & Garnier, 2006; Lamarque et al., 2014) because traits can function as a 117 

common currency across scales in these models.  118 

 

 

Fig. 1. Conceptual overview of trait-based models compared to species-based models. Functional response and 

effect traits (rounded rectangles) are performance indicators that are related to organismal functions (a). Trait-

based models represent community (circle) assembly by interacting functional response and effect traits (b). 

Species-based models represent community assembly by interacting species that may implicitly contain traits (c). 

Trait-based models can be divided into models that use functional traits only as static inputs (white elements in d) 

that affect community and ecosystem properties and models that use functional traits both as inputs and dynamic 

outputs (white and grey elements in d). Response traits change dynamically depending on changing environmental 

conditions.  

 119 

Given the advantages of trait-based approaches, it is still surprising that their incorporation into 120 

the tool-kit of ecological modelling has been slow and that they are applied in proportionally 121 

fewer cases of modelling than of empirical work. In this paper, our aim is to systematically 122 
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review applications of trait-based models in ecology. More specifically, we 1) discuss definitions 123 

and terminology of trait-based approaches, 2) evaluate how trait-based models are used in 124 

different disciplines, and 3) identify avenues for the future implementation of trait-based models, 125 

including cross-discipline exchange. The trait-based modelling applications in this review 126 

contribute to identifying principles that underlie spatiotemporal community dynamics, exploring 127 

species distributions, investigating species interactions, scaling ecosystem processes from 128 

individual traits to ecosystem functioning, explaining the consequences of climate and land-use 129 

changes for community dynamics, and also supporting conservation and invasion studies.  130 

 131 

Methods 132 

This paper is based on a systematic literature review. We searched for papers using a topic search 133 

on the “Web of Science Core collection”. We first used the search term “trait-base*” AND 134 

model* and in a second search “traitbase*” AND model*. The first search yielded 772 papers all 135 

of which turned out to postdate 1978. The second search added 4 papers, which were from the 136 

period 2010-2018. We excluded all papers from obviously irrelevant fields, such as psychology, 137 

medicine, engineering, business, management, history, industrial relations, linguistics, education, 138 

nutrition, and biotechnology (Supplementary Material. Tab. 2). After this filtering of both 139 

searches, we retained 623 papers that focused on ecology and related biological sciences. These 140 

ecological and biological publications were the most recent among all the papers we found (Fig. 141 

2). In addition to the publications found during this systematic literature search, we also included 142 

papers discovered by the snowball principle, i.e. the papers cited in papers already selected. We 143 

also included additional publications recommended by experts in the field. We finalized our 144 

research by selecting only those papers from our compilation that directly addressed concrete 145 

trait-based models. We excluded pure genetics, toxicology, climate and evolution studies, 146 

because we wanted to focus on ecological studies. We did not consider studies that focused on 147 

statistical analysis of empirical data, but we did include statistical models if the focus was on the 148 

model such as in species distribution modelling. Our focus was on primary modelling papers, so 149 

that we only referred to secondary modelling papers that discuss, use, extend or review 150 

previously published models when they introduce a new trait-based perspective. We did not 151 

consider editorial material or technical software descriptions. This procedure yielded 188 papers 152 

(Supplementary Material. Tab. 1, Fig. 2). 153 
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 154 

Fig 2. Papers on trait-based models included in the final list of the reviewed model (Supplementary Material. Tab. 

1). 

 

Glossary 155 

 156 

Functional traits well-defined morpho-physio-phenological characteristics of individual organisms that relate to the 157 

patterns of growth, reproduction, and survival of the species (McGill et al., 2006; Violle et al., 2007), and that 158 

evolved in response to abiotic environmental conditions and interactions with other species (Reich et al., 2003; Clark 159 

et al., 2012). 160 

Hard traits those directly related to important physiological processes that define the growth, reproduction and 161 

survival of an organism. Hard traits are usually hard to measure, and therefore in practice they are identified and 162 

measured on the basis of surrogate soft traits (Hodgson et al., 1999) that are correlated with hard traits but are more 163 

easily or cheaply measured.  164 

Response traits determine how a species reacts to a disturbance or a change in abiotic or biotic processes in its 165 

environment (Lavorel et al., 1997; Lavorel and Garnier, 2002).  166 

Effect traits determine how a species influences ecosystem properties (Lavorel et al., 1997; Lavorel and Garnier, 167 

2002). Effect traits alter abiotic and biotic processes corresponding to a wide range of ecosystem functions (Eviner 168 

and Chapin III, 2003).  169 

Plant functional types (PFT) Groups of species with presumably similar roles in ecosystem functioning (Lavorel et 170 
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al., 1997). They are considered as an important ecological framework for describing the mechanisms underlying 171 

vegetation responses (McIntyre et al., 1995; Pausas, 1999). 172 

Community-weighted mean (CWM) traits Quantification and use of aggregated trait attributes of the community 173 

as a measure of diversity that does not take species into account. To calculate a community aggregated trait value, 174 

relative abundances of species and their trait values are used (Violle et al., 2007; Funk et al., 2016).  175 

Intraspecific trait variability (variation) is the difference in the values of functional traits within one species that 176 

results from the development and adaptation of species to environmental change (Albert et al., 2011; Schirpke et al., 177 

2017). There are two sources for this variation. One is heritable differences between individuals and the other 178 

phenotypic plasticity in trait values across different environmental conditions (Moran et al., 2016).  179 

Conceptual models models that are not implemented in equations or programming code. In practice, they are 180 

usually a graphical representation of causal relationships (or flows) between factors or processes. 181 

Statistical models descriptive mathematical models of relationships between variables based on assumptions about 182 

the data sampled. They represent a set of probability distributions on the sample space (Cox et al., 1979). 183 

Equation-based models mathematical models that are formulated as a set of ordinary differential equations, partial 184 

differential equations, or integro-differential equations. They can be solved analytically or numerically. These 185 

models are sometimes also called mechanistic models, physiological models or process-based models, although 186 

each of these terms is also used for non-equation-based models. For instance, process-based models are based on a 187 

theoretical understanding of the relevant ecological processes. They are built on explicit assumptions about how a 188 

system works, and these models are especially well-designed to predict the effects of global change (Cuddington et 189 

al., 2013). Dynamic Global Vegetation Models (DGVMs) and Earth System Models (ESM) also fall in this 190 

category.  191 

Individual-based models (or agent-based models) explicitly consider individual organisms as objects with 192 

characteristics (traits) that influence interactions with other individuals and the environment (Grimm and Railsback, 193 

2005). They adopt a bottom-up approach where population-level behavior emerges from these individual interactions 194 

(DeAngelis and Grimm, 2014). Individual-based models are usually not based on equations, but on rules 195 

implemented in programming code. Individual-based models are highly suitable for spatially explicit 196 

implementations (Grimm et al., 2005), often combined with a grid-based modelling approach. 197 

 198 

Types and scales of trait-based models  199 

We classified the papers discovered in our systematic search according to model type and target 200 

scale. For model type, we distinguished between conceptual models, statistical models, equation-201 

based models, individual-based models, and their combinations (see Glossary and Supplementary 202 

Material. Tab. 1). Statistical models occurred in 26% of the reviewed papers and equation-based 203 

models in 60-61%. Together they were the most common types in trait-based modelling. 204 

Conceptual models are probably more common than was reflected in the papers we examined 205 
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(5% of the reviewed papers) because they often precede a mathematical or code-based model 206 

formulation. Individual-based models represented 16% of the reviewed papers.  207 

 208 

Trait-based models address questions at local to landscape and global scales (Supplementary 209 

Material. Tab. 1) and at the organizational level of individuals, species, populations, 210 

communities, and ecosystems. Where the models targeted the ecosystem level, they were 211 

implemented as equation-based models. This is probably due to the fact that ecosystem-level 212 

models focus on matter or energy fluxes and individual-based models are not suitable for 213 

modelling fluxes. However, models at the species, population or community level do not usually 214 

consider fluxes but use organisms as their inputs. This is typical of individual-based models but 215 

all other model types are also used at species, population, and community levels. Models of 216 

processes at the level of individual organisms or their organs were either implemented as 217 

statistical models of plant growth or, when emphasizing physiological mechanisms, as equation-218 

based models.  219 

 220 

Overall, different model types benefit in different ways from the integration of traits depending 221 

on the target scale of the question addressed by the model. In the following sections, we present 222 

studies that illustrate the potential benefits of using trait-based modelling for various scales and 223 

model types to study plants and animals in terrestrial and aquatic ecosystems, microbial 224 

organisms, and soil decomposers.  225 

 226 

1. Trait-based modelling of plants in terrestrial ecosystems 227 

Trait-based approaches were originally developed and discussed for plants in terrestrial 228 

ecosystems. This focus on plant sciences was mirrored in the trait-based modelling studies. Fifty 229 

percent of all studies in this review addressed terrestrial vegetation (note that we discuss the two 230 

studies on fungi in our review as part of this section). The aims of trait-based vegetation models 231 

were diverse. They covered investigations of plant growth and interactions, species distributions, 232 

plant invasiveness, community assembly and dynamics, biodiversity hypotheses, ecosystem 233 

services, and global vegetation patterns and dynamics (Fig. 3).  234 

 235 
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Fig. 3. Overview of the models of plants in terrestrial ecosystems based on their main purposes and research 

questions (rectangles with blue edges). Large circles represent community development in space and time (see Fig. 

1 for further explanation). 

 236 

1.1.Trait-based models on plant growth, population dynamics, and interactions  237 

Plant growth, population dynamics, and interactions were modelled with a range of model types, 238 

including statistical, equation-based and individual-based models (Supplementary Material. Tab. 239 

1). The influence of traits on the growth of individual plants or plant organs was most commonly 240 

addressed using statistical models. These statistical models were either non-linear regression 241 

models (Chavana-Bryant et al., 2017), Bayesian approaches, or both (Hérault et al., 2011; Aubry-242 

Kientz et al., 2015; Thomas and Vesk, 2017a; Thomas and Vesk, 2017b). Equation-based 243 

approaches focused on mechanisms such as carbon and biomass fluxes within and across plants 244 

(Enquist et al., 2007; Sterck and Schieving, 2011), water uptake (Fort et al., 2017) or on the 245 

physiological processes producing salt tolerance (Paleari et al., 2017).  246 

 247 

Both models on plant population dynamics in our review were equation-based models. One study 248 

investigated the influence of considering whole life cycles in fitness assessments (Adler et al., 249 

2014), and the other one studied the population dynamics and viability of a primrose (and a lizard) 250 

population (Jaffré and Le Galliard, 2016). Comparing the results from the equation-based integral 251 

projection model with those from an analogous individual-based model, Jaffré and Le Galliard 252 

(2016) highlighted the importance of constructing individual-based models when very small 253 
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populations are investigated. Our review confirms the conclusion of Salguero-Gómez et al. (2018) 254 

that trait-based approaches are still underrepresented in studies of population dynamics. However, 255 

note that such combinations of trait-based and demographic approaches are more common for 256 

aquatic organisms (Vindenes et al., 2014; O’Farrell et al., 2015) or terrestrial mammals (Santini et 257 

al., 2016; Jaffré and Le Galliard, 2016; van Benthem et al., 2017) than for plants. 258 

 259 

Interactions such as competition have mainly been studied with equation- and individual-based 260 

models or their combination. Using dynamic process-based models, Ali et al. (2013) and Ali et 261 

al. (2015) contrasted two alternative competition theories and demonstrated how elevated carbon 262 

dioxide concentration influences plant competition and, consequently, community composition in 263 

an ecosystem. In a combined equation- and individual-based approach, Fyllas et al. (2014) 264 

simulated ecosystem fluxes based on two axes: the leaf economics spectrum (Wright et al., 2004) 265 

and tree architecture spectrums (Chave et al., 2005; Mori et al., 2010). Individual-based models 266 

are particularly useful for representing plant interactions because it is the individual level at 267 

which interactions are initiated. For example, Taubert et al. (2012) used them to investigate 268 

biofuel production in grasslands of temperate regions. In this model, above- and below-ground 269 

plant functional traits were used to characterize how successful plants were in taking up resources 270 

and competing with neighbors.  271 

 272 

Based on these examples and the nature of the models, we suggest that different kinds of models 273 

have different efficiencies in the sense of producing good results without requiring large amounts 274 

of data. Statistical models are most efficient for describing the relationship between traits and 275 

plant growth but equation-based models are most efficient for describing mechanisms, simple 276 

interactions, or ecosystem fluxes. Individual-based models are the best choice, however, for 277 

complex trait-based interactions. This is because individuals are the nexus of trait-based 278 

interactions. 279 

 280 

1.2.Trait-based models on species distributions 281 

Although trait-based modelling was often applied as an alternative to species-based approaches, a 282 

number of trait-based modelling papers were devoted to questions related to species distribution. 283 

For example, a combination of species distribution models and trait-based approaches was 284 
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explicitly recommended to estimate the impact of climate change on species (Willis et al., 2015).  285 

 286 

The great majority of the studies on species distribution modelling combined a trait-based 287 

approach with statistical modelling, often by using a Bayesian approach (Supplementary 288 

Material. Tab. 1). For example, Powney et al. (2014) showed that predictions of trait-based 289 

species distribution models were best for broad-scale changes in regions with similar land-cover 290 

composition. In another example, a new application of time-to-detection modelling was able to 291 

detect multiple species as a function of plant morphological and phenological traits (Garrard et 292 

al., 2013). The model by Rosenfield and Müller (2017) estimated the relative abundances of 293 

species that meet the values of functional traits found in a target ecosystem.  294 

 295 

Trait-based models provide some advantages when predicting local community assembly, 296 

especially where environmental filtering and niche differentiation shape communities. Among the 297 

algorithms used in the papers on trait-based models, Maxent (e.g. Shipley et al., 2011; Sonnier et 298 

al., 2010) and the Traitspace model (e.g. Laughlin et al., 2012; Laughlin et al., 2015; Laughlin 299 

and Joshi, 2015) were used for trait-based environmental filtering. These algorithms predict low 300 

probabilities for any species whose trait distribution fails to pass through the environmental filter 301 

(Laughlin and Laughlin, 2013). The Maxent model and the Traitspace model differ in their ability 302 

to predict the relative abundance of species from a regional species pool (Laughlin and Laughlin, 303 

2013). Maxent predictions are degraded when high intraspecific variability is included (Merow et 304 

al., 2011). The importance of intraspecific variation in functional traits was underlined by Violle 305 

et al. (2012); Read et al. (2017) who found that intraspecific variability compensated for the 306 

effects of interspecific variation along a climatic gradient. Moreover, trait-based models are not 307 

only inaccurate when intraspecific variability is ignored but also when environmental changes are 308 

rapid. Therefore, when the environment changes rapidly, trait-based models become inaccurate 309 

because the traits measured were selected for by a previous, different, environment (Welsh et al., 310 

2016). A statistical approach uniting trait-based and species distribution models was also applied 311 

to model the distribution of wood-inhabiting fungi (Abrego et al., 2017).Finally, the only 312 

equation-based model in this section was a model that incorporated plant physiology to predict 313 

tree distributions along resource gradients (Sterck et al., 2014).  314 

 315 
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Thus, trait-based approaches are useful for modelling species distributions. Current efforts in 316 

trait-based species distribution modelling focus on moving from mean trait values to intraspecific 317 

trait variability, e.g. by implementing a Bayesian framework (Laughlin et al., 2012).  318 

 319 

1.3.Trait-based models of community assembly 320 

Community assembly results from species sorting by environmental filters and biotic 321 

interactions. Until now, trait-based models of community assembly used mainly statistical 322 

modelling and equation-based approaches to capture this process (Supplementary Material. Table 323 

1). We further found one individual-based model [(Pachepsky et al., 2007) based on a model by 324 

Bown et al. (2007) mentioned in section 1.1. Trait-based models on plant growth, population 325 

dynamics, and interactions], and three conceptual models (Bhaskar et al., 2014; Crowther et al., 326 

2014; Losapio and Schöb, 2017), including one on fungal community assembly (Crowther et al., 327 

2014). The group of models of community assembly partially overlapped with models of species 328 

distribution and was thus already partly discussed in section 1.2.Trait-based models on species 329 

distributions. Three groups of studies emerged: First, a large group of publications where the 330 

intention was to identify traits that affect community assembly; second, a group of four papers 331 

studying intraspecific trait variability (Pachepsky et al., 2007; Laughlin et al., 2012; Yang et al., 332 

2015; Schliep et al., 2018) ; and, third, another group of three papers where traits were used as 333 

response traits to distinguish between biotic and abiotic filtering (Bhaskar et al., 2014; Chauvet et 334 

al., 2017) and to assess effects of environmental change (Losapio and Schöb, 2017). 335 

 336 

The majority of the models reviewed in the current section were in the first group that aimed to 337 

distinguish traits that influence species abundance, richness and functional diversity. One case 338 

study, for instance, indicated that seed production and dispersion traits are important for regional 339 

species abundance (Marteinsdóttir, 2014). In another case study, a trait-based model incorporated 340 

both neutral theory and niche theory to identify whether, and which, plant traits determine 341 

community assembly and biodiversity patterns, including plant species richness and abundance, 342 

across environments (Shipley et al., 2006). To unify classic coexistence theory and evolutionary 343 

biology with recent trait-based approaches, Laughlin et al. (2012) incorporated intraspecific trait 344 

variation into a set of trait-based community assembly models. These models generate species 345 

abundances to test theories about which traits, which trait values, and which species assemblages 346 
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are most effective for achieving a specified functional diversity. Larson and Funk (2016) 347 

advocated for including regeneration traits in a model of community assembly.  348 

A few statistical trait-based models in the first group aimed at quantifying the relationship 349 

between environmental gradients and individual-level traits or community-weighted mean traits 350 

to describe environmental filters (Laughlin et al. 2015). The common assumption of such models 351 

was that traits are unimodally distributed and centered on an optimal trait value in any given 352 

environment. In contrast, an extended Traitspace model (Laughlin et al., 2015) adopting a 353 

hierarchical Bayesian approach (Laughlin et al., 2012) captured multimodal trait distributions. 354 

Improving the Traitspace model in this way increases the power of trait-based predictions of 355 

species abundances. The power increase arises because the prediction of species abundance 356 

distributions then reflects the true functional diversity of a community. These community 357 

assembly models were also used to test the mass ratio hypothesis (Laughlin, 2011; Laughlin, 358 

2014) and to refine restoration objectives, either by manipulating abundances of species already 359 

existing in the system or by adding species from warmer climates to the local species pool 360 

(Laughlin et al., 2017). Similar to models on species distribution, the MaxEnt algorithm is also 361 

used for models of community assembly to predict the effect of trait-based environmental 362 

filtering on the species pool, for example, in forest community assembly (Laughlin et al., 2011) 363 

or using the community assembly via trait selection approach (CATS) (Laliberté et al., 2012; 364 

Frenette-Dussault et al., 2013). 365 

 366 

Equation-based models in the first group tended more towards theoretical questions: For 367 

example, they investigated the multidimensional nature of species coexistence based on traits 368 

(Kraft et al., 2015), they implemented biophysical principles to test niche vs neutral processes 369 

(Sterck et al., 2011); or they showed that self-limitation promotes rarity (Yenni et al., 2012). 370 

 371 

Thus, it is possible to use trait-based community assembly models for tackling questions of 372 

fundamental and applied ecology. To be optimally effective, more of such models should 373 

incorporate multimodal trait distributions and intraspecific trait variability.  374 

 375 

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27484v1 | CC BY 4.0 Open Access | rec: 14 Jan 2019, publ: 14 Jan 2019



1.4.Trait-based models of community dynamics 376 

Trait-based modelling can be helpful for explaining not only static community assembly but also 377 

the temporal and spatial dynamics of communities. We found twice as many equation-based 378 

models of community dynamics as individual-based models (Supplementary Material. Tab. 1). 379 

The equation-based approaches included basic and applied research. Among the basic research, 380 

two studies investigated vegetation dynamics at the landscape level (Falster et al., 2011; Quétier 381 

et al., 2011), one study quantified environmental filtering and immigration rates of new species 382 

(Jabot, 2010), and one study assessed plant community stability considering litter decomposition 383 

(Miki and Kondoh, 2002). Among the more applied research, three studies included the effect of 384 

environmental change: Moor (2017) studied the relationship between dispersal and species 385 

diversity along a climate warming gradient; Savage et al. (2007) investigated overyielding and 386 

other responses to environmental change; and Tanaka (2012) advanced Savage et al.’s (2007) 387 

study by considering interspecific competition and trait covariance structure. One further 388 

equation-based model with an applied question was developed to compare the effect of different 389 

cropping systems on weed traits (Colbach et al., 2014).  390 

 391 

The individual-based models in this section targeted effects of regional processes on grasslands 392 

(Weiss et al., 2014), as well as the processes of grazing and disturbances. The effects of grazing 393 

on a grassland community were investigated in two individual- and trait-based models (May et 394 

al., 2009; Weiss and Jeltsch, 2015). The results of these models indicated that trait size symmetry 395 

of competition is central for community dynamics. This indication arose from the model only 396 

generating the patterns predicted by the grazing reversal hypothesis under specific conditions. 397 

These conditions were the explicit inclusion in the model of shoot and root competition, and the 398 

assumptions that plants with larger aboveground parts were superior competitors and 399 

belowground competition was consistently symmetrical. A similar functional group scheme 400 

based on four key traits representing typical species responses to disturbance was used in an 401 

individual-based model that led to the conclusion that the competition-colonization trade-off is 402 

insufficient to predict community dynamics (Seifan et al., 2012; Seifan et al., 2013). Thus, trait-403 

based approaches have great potential in community dynamics modelling. This is especially true 404 

where it is important to include spatial interactions because these are often mediated by traits. 405 

 406 
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1.5.Trait-based dynamic global vegetation models (DGVMs) 407 

Beyond the community and ecosystem levels mentioned in previous sections, global vegetation 408 

classification is possible with DGVMs. More specifically, DGVMS advance understanding of the 409 

distribution of plant functional types across spatial scales (Prentice et al., 2004). DGVMs are 410 

used as precursors of, or parts of, earth system models in which they represent energy, carbon and 411 

water fluxes (Scheiter et al., 2013; Drewniak and Gonzalez-Meler, 2017). Dynamic vegetation 412 

classification is enabled by calculating separately ecosystem fluxes and plant functional type 413 

occurrences both of which can be based on traits. DGVMs are mainly or entirely equation-based 414 

models because this form allows them to adequately represent ecophysiological processes 415 

(Supplementary Material. Tab. 1). More recent DGVMs have added individual-based 416 

components to account for individual variation (Scheiter et al., 2013). 417 

 418 

Most DGVMs were used to investigate vegetation responses to current climate and climate 419 

change (e.g. Verheijen et al., 2013; Sakschewski et al., 2015). Walker et al. (2017) applied the 420 

Sheffield DGVM (Woodward and Lomas 2004) to compare the predictive power of four trait-421 

scaling hypotheses on the distribution of global maximum rate of carboxylation. The four 422 

hypotheses used were those on plant functional type, nutrient limitation, environmental filtering, 423 

and plant plasticity. The result of this comparison showed that nutrient limitation was the most 424 

probable driver of global maximum rate of carboxylation distributions. DGVMs are criticized for 425 

being insufficient realistic. This insufficiency arises because they use plant functional types with 426 

constant attributes and do not represent competitive interactions (Scheiter et al., 2013). This 427 

criticism led to a stronger focus on traits and to the addition of individual-based modules (Harper 428 

et al., 2016). The Jena Diversity-DGVM incorporates 15 traits with several functional trade-offs 429 

that defined plant growth strategies (Pavlick et al., 2012). These functional properties of the 430 

vegetation were derived, unlike in standard DGVMs, from mechanistic trait filtering via 431 

environmental selection. The Jena Diversity-DGVM also demonstrated its advantages over 432 

bioclimatic approaches (Reu et al., 2010; Reu et al., 2011). Instead of plant functional types, the 433 

adaptive DGVM of Scheiter and Higgins (2009) and Scheiter et al. (2013) was based on traits. 434 

The novelty of this adaptive DGVM lay in the process-based and adaptive modules for 435 

phenology, carbon allocation and fire within an individual-based framework. This allowed the 436 

vegetation component in the model to adapt to changing environmental conditions and 437 
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disturbances. Such adaption is not possible in models based on static functional types.  438 

 439 

As our review demonstrates, DGVMs provide a good example of the shift from plant functional 440 

types towards functional traits (Yang et al., 2015) (e.g. compare Smith et al. (2001) and 441 

Holzwarth et al. (2015)). Moreover, individual-based modelling is increasingly applied to 442 

represent individual interactions and foster the dynamic nature of DGVMs. 443 

 444 

1.6.Trait-based models of plant invasions 445 

Trait-based modelling was frequently used to study invasion (Supplementary Material. Tab. 1). 446 

The frequency of this use probably arises because it is a common goal of invasion biology to 447 

identify traits that can be used to predict future invaders. This goal was particularly common 448 

among statistical models (Otfinowski et al., 2007; Herron et al., 2007; Küster et al., 2008). The 449 

individual-based models of plant invasion focused on understanding the invasion process 450 

incorporating, for instance, disturbance (Higgins and Richardson, 1998), or herbivory (Radny and 451 

Meyer, 2018). These models have different regional and taxonomic foci including pine trees in 452 

the southern hemisphere (Higgins and Richardson, 1998), exotic plants in North America 453 

(Otfinowski et al., 2007; Herron et al., 2007), invasion success in Germany (Küster et al., 2008), 454 

and establishment success as the combined effect of functional traits and biotic pressures (Radny 455 

and Meyer, 2018).  456 

 457 

However, these models have yet to yield a universal set of traits that characterize potentially 458 

invasive species. Future trait-based invasion models should address all the processes and 459 

interactions relevant to the system being studied. This might be facilitated by individual-based 460 

modelling approaches. 461 

 462 

1.7.Trait-based models of ecosystem services 463 

Ecosystem service models are usually built with a management goal. Thus, they benefit from 464 

including plant functional traits because functional traits are aggregate measures that can more 465 

easily be targeted by ecosystem management than species. Most models in this section were 466 

statistical models (Supplementary Material. Tab. 1), often in the form of generalized linear 467 
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models (Diaz et al., 2007; Lavorel et al., 2011), whereas three models were equation-based. 468 

According to Lavorel et al. (2011), ecosystem properties were better captured by models 469 

including spatial variation in environmental variables and plant traits than by land-use models. 470 

Variation across the landscape in the community-weighted mean of four traits and their 471 

functional divergence were modelled with generalized linear models (Lavorel et al., 2011). 472 

Compared to remote sensing, this trait-based statistical modelling approach better reflected the 473 

process of land use that underlay ecosystem properties (Homolova et al., 2014). Another model 474 

investigated the influence of plant and microbial functional traits on grassland ecosystem services 475 

(Grigulis et al., 2013). Based on Lavorel et al. (2011) and Grigulis et al. (2013), future ecosystem 476 

services were estimated for three socio-economic scenarios (Schirpke et al., 2017). The approach 477 

demonstrated that ecosystem services were potentially highly resilient. In two other 478 

semimechanistic models, functional traits facilitated the scaling-up of well-understood functional 479 

trade-offs from the organismal to the ecosystem level (Lamarque et al., 2014).  480 

 481 

Equation-based models of ecosystem services ranged from assessing the sensitivity of ecosystem 482 

services to land-use change (Quétier et al., 2007), determining the vulnerability of pollination 483 

services (Astegiano et al., 2015), and evaluating the management of mown subalpine grasslands 484 

(Lochon et al., 2018).  485 

 486 

Based on the examples in this section, trait-based models demonstrate great potential for solving 487 

applied questions in ecosystem studies as well as for those involving scaling. 488 

 489 

1.8.Trait-based models on interactions between plants and other organisms 490 

A few trait-based models did not focus purely on vegetation and interactions among plants but 491 

also included the interactions of plants with other groups of organisms. These models were partly 492 

conceptual and partly equation-based (Supplementary Material. Tab. 1). For example, the effects 493 

of biodiversity on multispecies interactions and cross-trophic functions were described in a trait-494 

based bottom-up framework (Lavorel et al., 2013). This conceptual model was linked to a 495 

statistical structural equation model which demonstrated that high functional and interaction 496 

diversity of animal mutualists promoted the provisioning and stability of ecosystem functions. In 497 
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another case study, avian body size was identified as an important response trait related to the 498 

susceptibility of avian seed dispersers to disturbance by humans (Schleuning et al., 2015). A 499 

conceptual model (Pöyry et al. 2017) reconstructed how the effects of soil eutrophication cascade 500 

to higher trophic levels across a range of plant-herbivore interactions. The model was evaluated 501 

based on butterfly and moth data. The authors suggested that a major future trend will be the 502 

increased dominance of insect species that are large, dispersive dietary generalists over those 503 

preferring oligotrophic environments. These conceptual models await further testing by being 504 

converted into equation- or code-based models and the empirical testing of the predictions of 505 

these models. 506 

 507 

There were also four equation-based models in this section addressing nutrient competition in an 508 

earth system model (Zhu et al., 2016), trade-offs of defensive plant traits in plant-herbivore 509 

interactions (Mortensen et al., 2018), plant-soil feedback mediated by litter and microorganisms 510 

(Ke et al., 2015), and three-way interactions between a plant, a herbivore and a beneficial 511 

microbe in the context of biological invasions (Jack et al., 2017). 512 

 513 

2. Trait-based modelling of animals in terrestrial ecosystems 514 

Animals are underrepresented among papers on the trait-based modelling of terrestrial 515 

ecosystems, whereas trait-based models of marine ecosystems which included animals abounded. 516 

There are about three times as many marine as terrestrial papers including animals in our review 517 

(see section 3. Trait-based modelling in aquatic ecosystems). The reason for the imbalance may 518 

lie in there being many different behaviours, feeding strategies and morphologies among 519 

terrestrial animals (Scherer et al., 2016), making it hard to define common functional traits. 520 

Nevertheless, 23 papers covered trait-based modelling of animals in terrestrial ecosystems. There 521 

were twice as many equation-based models as individual-based models and almost as many 522 

statistical models as equation-based ones (Supplementary Material. Tab. 1). As the following 523 

studies show, these models cover a broad range of topics, including population dynamics and 524 
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survival analysis, predator-prey and host-pathogen interactions, species distributions, and 525 

community assembly.  526 

 527 

Population dynamics was more frequently investigated in trait-based modelling studies of 528 

animals than plants in terrestrial ecosystems. We included here pure population dynamics studies, 529 

but also other studies at the population level, namely time-to-detection studies, survival analysis, 530 

vulnerability analysis, home range determination, and a study of eco-evolutionary dynamics. For 531 

example, the effect of functional traits on the population dynamics of mites was studied with 532 

equation-based integral projection models (Smallegange and Ens, 2018), drawing on the dynamic 533 

energy budget theory better known from aquatic studies (see section 3. Trait-based modelling in 534 

aquatic ecosystems). According to an individual-based model, the population dynamics of 535 

meerkats depend on intraspecific variation in body mass (Ozgul et al., 2014). In a similar but 536 

equation-based model trait-demography relationships were studied to identify the mechanism 537 

underlying population fluctuations (van Benthem et al., 2017). Trait-based models of population 538 

dynamics investigated the responses of populations to environmental changes (Santini et al., 539 

2016) and to perturbations (Ozgul et al., 2012). Using an approach similar to that of the time-to-540 

detection studies mentioned in section 1.2 (Trait-based models of species distributions), 541 

Schlossberg et al. (2018) modelled detectability for ten mammal species. This model was based 542 

on species traits such as body mass, mean herd size and color and employed a statistical approach 543 

based on conditional likelihoods. An example of a trait-based survival model was the prediction 544 

of bat survival based on reproductive, feeding, and demographic traits such as age, sex, and type 545 

of foraging (Lentini et al., 2015). A trait-based vulnerability index was applied to subarctic and 546 

arctic breeding birds in a statistical model constructed around MaxEnt and CATs (Hof et al., 547 

2017). We found three further individual-based models: Scherer et al. (2016) explored the 548 

response of bird functional types to climate and land-use change; Buchmann et al. (2011) used 549 

the methodology to predict the home range and the spatial body mass distribution of species in 550 

terrestrial mammal communities in fragmented landscapes; And, for a theoretical study of eco-551 

evolutionary dynamics, Pontarp and Wiens (2017) simulated the evolutionary radiation of a clade 552 

across several habitats with differing environmental conditions.  553 

 554 

Predator-prey interactions were considered from a functional perspective relatively early on in 555 
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the history of trait-based approaches, i.e. when generalist and specialist functional types were 556 

introduced into modelling (Hanski et al., 1991). Functional traits are a much more recent 557 

characteristic of predator-prey modelling studies, e.g. in a general additive model of beetle 558 

predation with eight predator traits and four prey traits (Brousseau et al., 2018).The novelty of 559 

these models is that the combination of functional traits and phylogeny overcome the limitations 560 

of purely descriptive approaches. Where predator-prey interactions are combined into a food web 561 

model, body size is often the central trait. This was the case in an allometric trophic network 562 

model that explicitly featured intra- and interspecific interference including predator-prey 563 

interactions in beetles and spiders (Laubmeier et al., 2018). Pathogen-host interactions resemble 564 

predator-prey interactions in many ways as demonstrated by the interactions of amphibian 565 

species and their fungal pathogens. In this case, the interactions were modelled with a statistical 566 

approach investigating the predictive power of traits related to phylogenetic history, habitat use, 567 

and life history traits (Gervasi et al., 2017). Individual- and trait-based movement models are 568 

very powerful when it comes to scaling-up across several levels of organization. This feature was 569 

exploited in an individual-based model that scaled up from individual movement and behavior to 570 

metacommunity structure (Hirt et al., 2018).  571 

 572 

Species distributions and species niches were modelled for the cane toad with a statistical 573 

approach (Kearney et al., 2008; Kolbe et al., 2010) and for endotherms (Porter and Kearney, 574 

2009) and ants (Diamond et al., 2012) with an equation-based approach. For the endotherms and 575 

the ants, biophysical principles were used to link variation in functional traits with environmental 576 

data to predict thermal niches (Porter and Kearney, 2009; Diamond et al., 2012).  577 

 578 

Community assembly and dynamics were studied with equation-based models which, for 579 

example, accounted for spatial variation in community structure with a multi-region multi-species 580 

occupancy model (Tenan et al., 2017), investigated irreversible changes in community structure 581 

in a consumer-resource model (Haney and Siepielski, 2018); and used trait-mediated interactions 582 

to analyze invasiveness and invasibility of ecological networks (Hui et al., 2016). The need to 583 

include such process-based components in community assembly models was emphasized by 584 

Pontarp and Petchey (2016).  585 
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 586 

The models in this section show a great diversity of applications for the trait-based modelling of 587 

animals in terrestrial ecosystems. However, each topic is represented by one or very few studies. 588 

This indicates that there is scope for more applications in these and related fields, regardless of 589 

model type. 590 

 591 

3. Trait-based modelling of aquatic ecosystems 592 

According to Litchman and Klausmeier (2008), the trait-based approach was first used for 593 

modelling aquatic ecosystems in a model of a phytoplankton community by Ramon Margalef 594 

(Margalef, 1978). Nevertheless, Follows and Dutkiewicz (2011), in their analysis of the state of 595 

the art of marine ecosystems, concluded that trait-based approaches were just then (i.e. in 2011) 596 

starting to be used in marine ecosystem models. The conflict between these two statements 597 

demonstrates different understandings of what a trait-based model is.  598 

 599 

In addition to the research papers, we also found that reviews on trait-based approaches for 600 

studying aquatic ecosystems are not uncommon. Therefore, we shortly summarize the most 601 

important reviews here. Litchman et al. (2010) reviewed trait-based approaches applied to 602 

phytoplankton and revealed a new trend – to look at a trait and the phylogenetic structure of 603 

communities simultaneously. This trend, in combination with adaptive trait models, makes it 604 

possible to predict trait evolution. In another review on trait-based approaches for studying 605 

phytoplankton, Bonachela et al. (2016) showed that it is also possible to successfully use trait-606 

based models to identify and compare possible survival strategies described by a set of functional 607 

traits. These models typically include trade-offs between traits such as cell-size and resource 608 

allocation.  609 

 610 

In the following sections, we first review aquatic trait-based models including those for fish and 611 

then those focusing on plankton. There are few trait-based modelling studies of other aquatic 612 

realms, which are briefly covered in this paragraph, e.g. studies of bivalve species distribution 613 

models (Montalto et al., 2015), inland freshwater communities (Gardner et al., 2014), coral reefs 614 

(Edmunds et al., 2014; Madin et al., 2014), a pelagic microbial mixotrophic food web (Castellani 615 

et al., 2013), marine benthic communities (Alexandridis et al., 2017), diatoms in peatlands 616 
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(Hagerthey et al., 2012) or trace metal concentrations in invertebrates (Hug Peter et al., 2018). 617 

Traits were usually the inputs for models but in one case were outputs (Rinaldi et al. 2014). In 618 

that paper, mechanistic functional trait models were used to predict life history traits such as body 619 

size and fecundity of shellfish in lagoons. The fact that traits were used both as inputs and outputs 620 

for models emphasizes the difference between effect traits and response traits (Fig. 1), two 621 

concepts introduced earlier to terrestrial ecological theory (Lavorel and Garnier, 2002).  622 

 623 

3.1.Trait-based models including fish 624 

Trait-based modelling is widely applied to modelling fish communities. Of those models, the 625 

overwhelming majority were equation-based models (Supplementary Material. Tab. 1). There 626 

were only four individual-based models (Brochier et al., 2013; Houle et al., 2013; O’Farrell et al., 627 

2015; Huebert et al., 2018), one statistical model (Howeth et al., 2016) and one statistical and 628 

conceptual model (Bennett et al., 2016) that generalized the trilateral life history model by 629 

Winemiller and Rose (1992). This prevalence of equation-based models may be due to the fact 630 

that aquatic ecosystems are more homogeneous than terrestrial ecosystems and therefore lend 631 

themselves more naturally to the continuous character of most equation-based models. 632 

 633 

Size appears to be the main structuring trait in aquatic ecosystems because size influences the 634 

most important organism processes, such as foraging, growth, and reproduction. For example, 635 

fish fall into different trophic levels when young than when old. Because size usually correlates 636 

with age, trophic level in fish is linked to body size. Size structure prevails up to the community 637 

level in marine ecosystems. This fact prompted the formulation of the community size spectrum 638 

(Guiet et al., 2016b). The regularity of the community size-spectrum is expressed in the 639 

constancy of total ecosystem biomass within “logarithmically equal body size intervals” (Guiet et 640 

al., 2016b). Thus, community size-spectrum models represent the ecosystem using two 641 

parameters – the slope and the intercept of the community size-spectrum. This type of model 642 

mechanistically addresses the role of species diversity via the introduction of the trait size 643 

(Hartvig et al., 2011; Maury and Poggiale, 2013; Guiet et al., 2016a). In these models, 644 

community dynamics emerge from individual interactions. Trait-based size-spectrum models 645 

were developed with a range of goals, including to study the benefit to fish of the reproductive 646 
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strategy of producing many small eggs or to analyze coexistence between species and link it to 647 

maturation sizes and predator-prey size ratios (Hartvig and Andersen, 2013). Trait-based size-648 

spectrum models also demonstrate the impact of fishing on species composition (Shephard et al., 649 

2012), i.e. that fishing out larger individuals shifts the size spectrum towards the dominance of 650 

smaller species.  651 

 652 

Originally, Andersen and Beyer (2006) introduced a size- and trait-based model to estimate 653 

fishing effects at the ecosystem level. In this model, every individual was characterized by two 654 

features: body size and asymptotic body size. This model was later expanded (Houle et al., 2013; 655 

Zhang et al., 2013; Jacobsen et al., 2014; Jennings and Collingridge, 2015).The asymptotic body 656 

size was defined as a main trait because it is the basis for applying life history theory to estimate 657 

size at maturity and reproductive output (Jennings and Collingridge, 2015). The indirect 658 

influence of fishing on community structure was revealed by an extended version of the initial 659 

model considering entire life histories and individual energy budgets (Kolding et al., 2016). 660 

Another size- and trait-based model included individual interactions in the form of competition 661 

and predation and individual processes such as encounters, growth, mortality and reproduction 662 

(Jacobsen et al., 2014). A similar model was developed by Andersen and Pedersen (2010) and 663 

Andersen and Rice (2010). In this model, all basic processes at the community level emerged 664 

directly or indirectly from individual-level processes. To answer the question how to maximize 665 

fishing yield under a certain conservation constraint, Andersen et al. (2015) suggested a 666 

conceptual size- and trait-based model. An adaptation and a dynamic version of the model of a 667 

theoretical ‘fish community’ (Pope et al., 2006), based on classical multi-species fishery models 668 

and community size spectrum models, was reconsidered by Andersen and Pedersen (2010) and 669 

Andersen et al. (2015) in the framework of a trait-based approach. A similar model to describe 670 

population structure based on the size of the organisms was presented by Hartvig et al. (2011) 671 

and Hartvig and Andersen (2013). This model was a product of the synthesis between traditional 672 

unstructured food webs, allometric body size scaling, trait-based modelling, and physiologically 673 

structured modelling (Hartvig et al., 2011). These approaches were further developed into more 674 

complex food web models that showed that climate change effects are highly unpredictable 675 

(Zhang et al., 2014; Zhang et al., 2017). Using Approximate Bayesian Computation in their food 676 

web model, Melián et al. 2014 highlighted the importance of accounting for intraspecific 677 
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variability when investigating species coexistence. Such combinations of traditional approaches 678 

with novel modelling techniques provides a promising new approach to the study of size-679 

structured food webs.  680 

 681 

Other examples, which we briefly describe in this section, covered the topics of marine 682 

biodiversity exploitation, marine community modelling including seal species (Houle et al., 683 

2016), adaptive behavioral responses, fish-mesozooplankton interactions, fish-jellyfish 684 

interactions and freshwater fish modelling. Marine biodiversity exploitation was studied with an 685 

object-oriented individual-based model (Brochier et al., 2013). This model incorporated four 686 

main categories of life history depending on which part of the life cycle fish spent in the estuary 687 

studied. To reduce the computing power needed, Brochier et al. (2013) used a super-individual 688 

approach (Scheffer et al., 1995) with one individual representing a fish school. They also created 689 

15 groups of ecologically similar model species, each representing a group of real species 690 

(Ecoutin et al., 2010). Each group contained one or more super-individuals with similar trophic 691 

position and ecological traits. Persistent spatial interactions and cascading behavioral interactions 692 

were revealed in a marine ecosystem model with detailed size structure and life cycles of 693 

mesozooplankton and fish (Castellani et al., 2013). This model became a step towards a 694 

mechanistic and adaptive representation of the upper trophic levels in ecosystem models. In this 695 

model the main trait was size at maturation. Based on a traditional ocean ecosystem model 696 

including chemistry, phytoplankton, micro- and mesozooplankton (Schrum et al., 2006), a new 697 

model version replaced the compound group of mesozooplankton by a developmental stage- and 698 

species-specific matrix and introduced fish feeding on mesozooplankton (Castellani et al., 2013). 699 

A general mechanistic food web model of fish-jellyfish competitive interactions was based on the 700 

feeding traits of fish and jellyfish populations (Schnedler-Meyer et al., 2016). The model also 701 

incorporated, in addition to feeding traits, elemental composition, allometric scaling of vital rates, 702 

locomotion, and life-history traits. The model predicted fish dominance at low primary 703 

production and a shift towards jellyfish with increasing productivity, turbidity and fishing.  704 

 705 

A few freshwater studies included one on the simulation and screening of freshwater fish 706 

invasion which were tackled with the help of trait-based statistical models that used classification 707 

trees (Howeth et al. 2016). Another example investigated temperature-dependent colonization 708 
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and extinction rates of darter fish in a body size-centered dynamic occupancy model (Shea et al., 709 

2015). Stochastic integral projection models were not only used for plants and terrestrial animals, 710 

but also in a trait-based modelling study of pike in a freshwater ecosystem (Vindenes et al., 711 

2014). 712 

 713 

On the basis of these publications, we believe there is no question that the long and successful 714 

history of trait-based modelling including fish centered on size spectrums will continue. Future 715 

applications are likely to further improve model predictions by following the increasing number 716 

of examples where traits other than size are also included in the models.  717 

 718 

3.2.Trait-based models focusing on plankton 719 

As with fish, it is also possible to explicitly model plankton in a trait-based way (Follows et al., 720 

2007; Litchman et al., 2007; Bruggeman and Kooijman, 2007; Kiørboe, 2011). The models used 721 

are predominantly equation-based models, as they were for those including fish discussed in the 722 

previous section (Supplementary Material. Tab. 1). Similarly, the models considered size as the 723 

main functional trait. Only two models were supplemented with individual-based modules (Clark 724 

et al., 2013; Pastor et al., 2018), two adopted a statistical approach (Litchman et al., 2007; 725 

Terseleer et al., 2014), and one a conceptual approach (Glibert, 2016). The great majority of these 726 

models targeted the ecosystem level. This focus on ecosystems is possibly also one of the reasons 727 

for the domination of equation-based approaches because such approaches are particularly well 728 

suited to capture ecosystem fluxes.  729 

 730 

The marine ecosystem model by Follows et al. (2007) became a starting point for the 731 

development of a number of trait-based models in microbial ecology and plankton research. This 732 

is probably because it successfully reproduced the observed global distributions and community 733 

structure of the phytoplankton. The model included a diverse phytoplankton community that was 734 

described by a set of physiological traits defined by field and laboratory data with related trade-735 

offs.  736 

 737 

Phytoplankton cell size, and especially the drivers of small cell size, were addressed with a trait-738 
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based model of cellular resource allocation (Clark et al., 2013). This model considered a three-739 

way trade-off between cell size, nutrient and light affinity, and growth rate. It was developed as a 740 

combination of a classic nutrient-phytoplankton-zooplankton model and ‘cost-benefit’ models. 741 

The trait-based approach was supported by individual-based modelling such that individual life 742 

histories gave rise to the evolutionary dynamics of the whole system. This bottom-up approach 743 

allowed missing ecosystem processes to be derived from model data. Where many individuals are 744 

similar, as in the general case of plankton and the specific case of this model (Clark et al., 2013), 745 

super-individuals can be created that represent groups of individuals with similar traits. As in 746 

other super-individual applications (e.g. Brochier et al., 2013 in section 3.1. Trait-based models 747 

including fish), this approach reduces computing power requirements. Plankton cell size and the 748 

mechanisms underlying observed biogeographical difference in cell size were also studied by 749 

Acevedo-Trejos et al. (2015) and Acevedo-Trejos et al. (2018). Their models considered trade-750 

offs between cell size and nutrient uptake, zooplankton grazing, and phytoplankton sinking. 751 

Macroscopic system properties such as total biomass, mean trait values, and trait variance were 752 

studied with a continuous trait-based phytoplankton model (Chen and Smith, 2018). This model 753 

was developed as a sub-module of a larger model the goal of which was to simulate ocean 754 

dynamics. The model produced realistic patterns of phytoplankton mean size and size diversity. 755 

Co-evolution of traits with respect to chromatic and temperature adaptation was studied with a 756 

trait-based ecosystem model (Hickman et al., 2010). Trait-based models with adaptive traits were 757 

compared to trait-group resolving models in a study of phytoplankton communities in partially 758 

mixed water columns (Peeters and Straile, 2018). 759 

 760 

Disease transmission in multi-host communities was the focus of a multi-generational plankton-761 

based model that considered epidemiological traits such as foraging or exposure rate, conversion 762 

efficiency, susceptibility, virulence and spore yield (Strauss et al., 2015). This model succeeded 763 

in improving the mechanistic and predictive clarity of the dilution effect by connecting a 764 

reduction in diluter species with the increase in disease risk. The dilution effect probably explains 765 

links between host communities and transmission. In their model of virus infection of plankton 766 

based on life-history traits, Beckett and Weitz (2018) found that lysis rates were driven by the 767 

strains with the fastest replication and not those with the greatest abundance.  768 

 769 
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Compared to models with better resolved species-specific representations of physiological 770 

processes, improved representation of biodiversity was suggested in a biodiversity-based marine 771 

ecosystem model (Bruggeman and Kooijman, 2007). The model was based on a system of 772 

infinite diversity in which species were defined by continuous trait values for light-harvesting 773 

investment and nutrient-harvesting investment. The traits chosen affected all parts of the 774 

metabolism forming a trade-off between harvesting and net growth. Based on this model and a 775 

model by Bruggeman (2009), a trait-based model was developed to include mixotrophy, 776 

succession and evolution of unicellular planktonic organisms and to predict optimum trophic 777 

strategies of species under changing environmental conditions (Berge et al., 2017). This model 778 

contained three key resource-harvesting traits: photosynthesis, phagotrophy and inorganic 779 

nutrient uptake. To distinguish two different mixotrophic strategies, Chakraborty et al. (2017) 780 

extended the model by Berge et al. (2017) by explicitly incorporating cell size and introducing a 781 

pure heterotrophic strategy. 782 

 783 

Different aspects of plankton ecosystems were recently scrutinized at greater detail, including 784 

trait-based ecosystem function predictions for a global lake data set (Zwart et al., 2015), 785 

biological interactions, species extinctions, nutrient uptake kinetics, and some theoretical 786 

properties as well as more applied implications of plankton models. Interactions were 787 

investigated in the form of temperature dependence of competition of phytoplankton species 788 

(Bestion et al., 2018) and of host-pathogen interactions between zooplankton and a fungal 789 

pathogen, which seem to be mediated by host foraging under climate warming (Shocket et al., 790 

2018). Species extinctions strengthen the relationship between biodiversity and resource use 791 

efficiency (Smeti et al., 2018) based on a model studying phytoplankton succession (Roelke and 792 

Spatharis, 2015a) and assemblage characteristics (Roelke and Spatharis, 2015b). Based on 793 

insights from a size-based model on nutrient uptake kinetics of phytoplankton, Smith et al. (2014) 794 

emphasized that plankton ecology benefits from mechanistic trait-based models that account for 795 

physiological trade-offs. In a theoretical exercise, Gaedke and Klauschies (2017) showed that the 796 

knowledge of the shape of observed trait distributions is beneficial for the elegant analysis of 797 

aggregate plankton models, because it allows for data-based moment closure. With a new scale-798 

invariant size-spectrum plankton model, Cuesta et al. (2018) explored the constancy of the 799 

relationship between biomass density and logarithmic body mass across scales. Finally, there 800 
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were examples of trait-based plankton models that explicitly addressed applied questions such as 801 

the management of harmful algal blooms (Glibert, 2016; Follett et al., 2018). 802 

 803 

The vibrant field of trait-based plankton models is a good example of how trait-based approaches 804 

can inspire ecosystem modelling. The relatively homogeneous conditions in aquatic 805 

environments lead to the dominance of one trait – size – over any other trait or any taxonomic 806 

category in explanations of community and ecosystem processes and patterns. Thus, trait-based 807 

approaches are more suitable than species-based approaches to model aquatic communities and 808 

ecosystems. 809 

 810 

4. Trait-based models on microorganisms and soil decomposers 811 

Microorganisms and soil decomposers are relatively new subjects of trait-based modelling and 812 

are still often represented as functional groups or functional types rather than traits. Therefore, 813 

the following seven examples also included classifications into functional groups. As in models 814 

of aquatic ecosystems, the models of microorganisms and soil decomposers were built around the 815 

key trait body size and were predominantly equation-based (Supplementary Material. Tab. 1) 816 

with the exception of one statistical model (Van Bellen et al., 2017). In terms of scale, all but one 817 

model in this section operated at the community level. This one exception targeted continental to 818 

global scales (Wieder et al., 2015). Such scales are surprisingly large for a model including 819 

microbial processes. 820 

 821 

Nitrification by ammonia-oxidizing bacteria, ammonia-oxidizing archaea and nitrite-oxidizing 822 

bacteria was considered in a mechanistic trait-based model (Bouskill et al., 2012). It was based 823 

on traits connected to the enzyme kinetics of nitrite. Another version of this model simulated the 824 

influence of global change on ecological niches of soil nitrite-oxidizing bacteria types (Le Roux 825 

et al., 2016). This trait-based model grouped nitrite-oxidizing bacteria into a few functional 826 

groups. The authors demonstrate that this approach was successful because three main bacteria 827 

functional types expressed contrasting responses to environmental changes. 828 

 829 

Using functional types can be inferior to using functional traits. This was demonstrated by 830 

another microbial model that addressed time lags in the enzymatic response of denitrifying 831 
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microorganisms to changes in substrate concentration, including the interactive dynamics 832 

between enzymes and nutrients (Song et al., 2017). This model linked community traits with 833 

functional enzymes, not species or functional guilds as in previous studies (Taffs et al., 2009; 834 

Bouskill et al., 2012). With organisms whose multiple functions overlapped with one another, the 835 

guild-based (functional type) approach failed to properly represent these organisms. Enzyme- and 836 

thus trait-based implementations therefore provide tools for scaling up biogeochemical functions 837 

to the community level without involving the dynamics of individual species or their guilds.  838 

 839 

A physiological trade-off between the traits of drought tolerance and carbon use efficiency was at 840 

the core of two modelling studies on soil decomposition(Allison, 2012; Allison and Goulden, 841 

2017). In these models, the decomposition submodel of enzymatic traits was derived from the 842 

phytoplankton model by Follows et al. (2007) to predict litter decomposition rates in soil. The 843 

sensitivity of microbial traits, community dynamics, and litter decomposition to variation in 844 

drought tolerance costs was quantified in an updated model (Allison and Goulden, 2017). The 845 

model implied that, for the Mediterranean climate system, seasonal drought was a more important 846 

environmental filter than reduced precipitation during the wet season. These models were 847 

examples of successful exchange between disciplines. 848 

 849 

There were few general trait-based models that are applicable to terrestrial and marine 850 

ecosystems alike. One of the rare cases, Harfoot et al. (2014), was a general ecosystem model 851 

based on eight traits thought to be the most important for determining rates of ecological 852 

processes. These traits were realm, nutrition source, mobility, leaf strategy, feeding mode, 853 

reproductive strategy, thermoregulation mode, and body mass. This model benefited from a 854 

coupled individual- and equation-based approach. The equation-based approach was applied to 855 

autotrophs and the individual-based one to all other organisms. In this way, ecosystem structure 856 

and function emerged from interactions at the individual level. However, the individuals in this 857 

model were in fact groups or cohorts of organisms (the super-individual approach, Scheffer et al., 858 

1995). This model showed that highly complex models require the combination of different 859 

modelling approaches including simplification tools such as the super-individual approach. 860 

 861 

All in all, the variety of models in all sections demonstrates that trait-based modelling approaches 862 
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are useful tools that are able to facilitate modelling and improve the predictive power of model 863 

outcomes across taxa and disciplines. In this variety of models, we nevertheless see a number of 864 

trends. One of these is a shift from functional types to functional traits. There is also a search for 865 

generalizations across organisms with similar functions and a few examples that scale-up 866 

processes from the local to the global level. Techniques that appear to be useful, especially in 867 

individual-based models, are the super-individual approach and the incorporation of intraspecific 868 

trait-variability. Nevertheless, it seems clear from both empirical and modelling studies that the 869 

development of trait-based models did not produce a universal set of traits. Therefore, researchers 870 

should instead select traits according to the research question and strategies of the organisms 871 

under investigation. 872 

 873 

Discussion and Conclusions 874 

Based on our systematic review, it is clear that trait-based approaches are as valuable in 875 

modelling studies as they were earlier in empirical studies. They facilitate parameterization and 876 

scaling-up of models as well as the generalization of their results. Despite some inconsistencies 877 

in the terminology of trait-based studies, trait-based models have been implemented widely for 878 

different groups of organisms and ecosystems, in different model types, and for achieving a broad 879 

range of aims (See Supplement Material. Table 1). We observed productive exchange of trait-880 

based modelling concepts and techniques, especially between vegetation ecology and other 881 

disciplines, and argue that this should be intensified and extended to more disciplines in the 882 

future. 883 

 884 

Inconsistencies in terminology within trait-based approaches mainly originate from the unclear 885 

differentiation between functional types and functional traits as categories for grouping 886 

organisms. For example, Jeltsch et al. (2008) suggested three strategies for applying plant 887 

functional type approaches in modelling, where the “functional trait” strategy was one of them - 888 

together with “functional group” and “functional species” strategies. Jeltsch et al. (2008) also 889 

pointed to the fact that it was not possible to easily separate these strategies from each other. In 890 

any case, none of the modelling papers explicitly use the classification by Jeltsch et al. (2008). If 891 

researchers did so, it would certainly clarify terminology.  892 

 893 
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In our review, we distinguish between models applying functional types and functional traits, 894 

following the shift in the theoretical literature from describing vegetation types to describing 895 

vegetation function (Moore and Noble, 1990; Webb et al., 2010) reflected in the development of 896 

DGVMs (Van Bodegom et al., 2012). The inconsistent use of terminology biases systematic 897 

reviews that use key words in search engines. For example, some papers state that they 898 

implement a novel trait-based modelling approach although in practice they use functional types. 899 

Other papers clearly consider well-developed trait-based models but are not found using that key 900 

word (e.g. Seifan et al., 2012). Some studies develop crucial theoretical frameworks or methods 901 

that are probably useful for future model development and validation but do not themselves use 902 

any model. They advocate, for example, incorporating arbuscular mycorrhizal fungi in trait-based 903 

models (Treseder, 2016), including community trait distributions to overcome the challenge of 904 

estimating single traits (Edwards, 2016), considering intraspecific variability (Burton et al., 905 

2017), or using remotely sensed data to parameterize trait-based models (McDowell and Xu, 906 

2017). Nevertheless, not all facets of trait-based modelling seem to be sufficiently well known in 907 

all fields of ecology to warrant correct attribution of a study to this method. Thus, unambiguous 908 

terminology requires more attention in the future. Adhering to a consistent terminology will also 909 

simplify the exchange of trait-based concepts between different disciplines. 910 

 911 

Exchange of ideas on implementing trait-based models occurred between the fields of vegetation 912 

ecology, marine ecology, limnology, animal ecology and microbial ecology. This exchange 913 

already started with the first trait-based approaches from plant functional ecology (Lavorel & 914 

Garnier, 2002; Wright et al., 2004) being adopted by animal studies of bats (Lentini et al., 2015) 915 

and birds (Scherer et al., 2016). In ecological modelling, ideas were transferred from 916 

phytoplankton research (Follows et al., 2007) to a litter decomposition model (Allison, 2012). 917 

We encourage the expansion of such exchange of trait-based modelling approaches between 918 

disciplines. These exchanges are likely to be most promising for cases where different organisms 919 

have similar functions in their communities.  920 

 921 

Trait-based models have been implemented for answering a number of ecological research 922 

questions from basic and applied ecology. Basic ecological questions that were addressed with 923 

trait-based models included goals such as identifying which mechanisms drive plant growth, how 924 
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populations develop over time and space, how communities assemble and biodiversity can be 925 

explained, as well as which factors influence community dynamics. Applied trait-based 926 

modelling studies investigated biological invasion conditions and consequences, responses of 927 

ecosystems to climate and land-use change, conservation and management planning, as well as 928 

the evaluation of ecosystem services. We see potential for the reinforcement of trait-based 929 

modelling approaches in areas such as the assessment of ecosystem services, invasion prediction 930 

and prevention, biodiversity studies, connection to demographic approaches (Salguero-Gómez, 931 

Violle, Gimenez, & Childs, 2018) and, especially, the prediction of community and ecosystem 932 

responses under climate and land-use changes. 933 

 934 

Many model types were employed to implement trait-based approaches. The greatest proportion 935 

was equation-based models. The next greatest proportion was that of statistical models that 936 

describe patterns and demonstrate correlations between, for example, functional traits and 937 

environmental filters. The combination of trait-based approaches with process-based modelling, 938 

as one subcategory of equation-based modelling, is particularly interesting because the detailed 939 

representation of physiological processes in process-based models may not at first be compatible 940 

with the aggregated approach of trait-based models. However, once united in a model, it is 941 

possibly just these different perspectives on a study system that, by complementing each other, 942 

will overcome the limitations from which the constituent approaches suffer when used in 943 

isolation (Scheiter and Higgins, 2009; Ali et al., 2015; Holzwarth et al., 2015). Combined 944 

process- and trait-based models are also able to capture a broader range of scales than each 945 

approach alone. Trait-based models are challenging to implement at extreme scales because the 946 

trait concept aggregates information too much for very fine-scale models and too little for very 947 

broad-scale models. However, traits are successfully integrated into process-based models that 948 

implement plant physiology at fine scales and into DGVMs and earth system models at global 949 

scales. Furthermore, we see a specific advantage to implementing trait-based approaches in 950 

individual-based models (May et al., 2009; Scheiter et al., 2013; Weiss et al., 2014; Pontarp and 951 

Wiens, 2017). It is possible to link traits directly to environment conditions and they are therefore 952 

considered to be an adequate tool for investigating community responses to environmental 953 

gradients (McGill et al., 2006; Webb et al., 2010). Combined with individual-based models 954 

(Grimm and Railsback, 2005; DeAngelis and Mooij, 2005), trait-based approaches have several 955 
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advantages: They are able to offer sufficient flexibility to simplify the description of individuals, 956 

to capture plant-plant interactions at the individual level and thereby explain local community-957 

level phenomena (Jeltsch et al., 2008), and to facilitate model parameterization based on trait data 958 

that are becoming increasingly available through databases (Weiss et al., 2014; Grimm and 959 

Berger, 2016). Trait databases will become an even richer source for trait-based modelling once 960 

they expand their current focus on plants to other organisms and start collecting and offering 961 

information on abiotic and biotic interactions as well as intraspecific trait variation (Funk et al., 962 

2016). 963 

 964 

We conclude that although trait-based modelling approaches have rapidly increased in ecology 965 

over the past twenty years, the potential advantages of the method have not yet been fully 966 

exploited. Key terms should be uniquely defined and the main concepts of the theoretical 967 

framework should be unambiguously clarified. We recommend developing and applying trait-968 

based models to study community structure and dynamics and to attempt predicting the direction 969 

and intensity of community changes under global climate and land-use change. The complexity 970 

of such community-level studies is outweighed by the usually lower parameterization effort and 971 

more general model outcomes of trait-based modelling approaches. We recommend combining 972 

individual-based with trait-based approaches more frequently to benefit from the enhanced 973 

flexibility. Moreover, trait-based modelling enables the capturing of the feedback from 974 

communities to the environment, as long as the model includes the effects as well as the 975 

responses of ecosystems and traits. Trait-based modelling is therefore able to become an 976 

important contributor to a comprehensive understanding of community structure and dynamics 977 

under global change. 978 
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