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Sparse coding aims to find a parsimonious representation of an example given an

observation matrix or dictionary. In this regard, Orthogonal Matching Pursuit (OMP)

provides an intuitive, simple and fast approximation of the optimal solution. However, its

main building block is anchored on the minimization of the Mean Squared Error cost

function (MSE). This approach is only optimal if the errors are distributed according to a

Gaussian distribution without samples that strongly deviate from the main mode, i.e.

outliers. If such assumption is violated, the sparse code will likely be biased and

performance will degrade accordingly. In this paper, we introduce five robust variants of

OMP (RobOMP) fully based on the theory of M-Estimators under a linear model. The

proposed framework exploits efficient Iteratively Reweighted Least Squares (IRLS)

techniques to mitigate the effect of outliers and emphasize the samples corresponding to

the main mode of the data. This is done adaptively via a learned weight vector that models

the distribution of the data in a robust manner. Experiments on synthetic data under

several noise distributions and image recognition under different combinations of occlusion

and missing pixels thoroughly detail the superiority of RobOMP over MSE-based

approaches and similar robust alternatives. We also introduce a denoising framework

based on robust, sparse and redundant representations that open the door to potential

further applications of the proposed techniques. The five different variants of RobOMP do

not require parameter tuning from the user and, hence, constitute principled alternatives

to OMP.
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ABSTRACT9

Sparse coding aims to find a parsimonious representation of an example given an observation matrix

or dictionary. In this regard, Orthogonal Matching Pursuit (OMP) provides an intuitive, simple and fast

approximation of the optimal solution. However, its main building block is anchored on the minimization of

the Mean Squared Error cost function (MSE). This approach is only optimal if the errors are distributed

according to a Gaussian distribution without samples that strongly deviate from the main mode, i.e.

outliers. If such assumption is violated, the sparse code will likely be biased and performance will

degrade accordingly. In this paper, we introduce five robust variants of OMP (RobOMP) fully based on

the theory of M–Estimators under a linear model. The proposed framework exploits efficient Iteratively

Reweighted Least Squares (IRLS) techniques to mitigate the effect of outliers and emphasize the samples

corresponding to the main mode of the data. This is done adaptively via a learned weight vector that

models the distribution of the data in a robust manner. Experiments on synthetic data under several

noise distributions and image recognition under different combinations of occlusion and missing pixels

thoroughly detail the superiority of RobOMP over MSE–based approaches and similar robust alternatives.

We also introduce a denoising framework based on robust, sparse and redundant representations that

open the door to potential further applications of the proposed techniques. The five different variants of

RobOMP do not require parameter tuning from the user and, hence, constitute principled alternatives to

OMP.
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INTRODUCTION27

Sparse modeling is a learning framework with relevant applications in areas where parsimonious represen-28

tations are considered advantageous, such as signal processing, machine learning, and computer vision.29

Dictionary learning, image denoising, image super–resolution, visual tracking and image classification30

constitute some of the most celebrated applications of sparse modeling (Aharon et al., 2006; Elad and31

Aharon, 2006; Mallat, 2008; Wright et al., 2009; Elad et al., 2010; Xu et al., 2011). Strictly speaking,32

sparse modeling refers to the entire process of designing and learning a model, while sparse coding, sparse33

representation, or sparse decomposition is an inference process—estimation of the latent variables of such34

model. The latter formally emerged as a machine learning adaptation of the sparse coding scheme found35

in the mammalian primary visual cortex (Olshausen and Field, 1996).36

The sparse coding problem is inherently combinatorial and, therefore, intractable in practice. Thus,37

classic solutions involve either greedy approximations or relaxations of the original 30-pseudonorm.38

Examples of the former family of algorithms include Matching Pursuit (MP) and all of its variants (Mallat39

and Zhang, 1993), while Basis Pursuit (Chen et al., 2001) and Lasso (Tibshirani, 1996) are the archetypes40

of the latter techniques. Particularly, Orthogonal Matching Pursuit (OMP) is usually regarded as more41

appealing due to its efficiency, convergence properties, and simple, intuitive implementation based on42

iterative selection of the most correlated predictor to the current residual and batch update of the entire43

active set (Tropp and Gilbert, 2007).44

The success of OMP is confirmed by the many variants proposed in the literature. Wang et al. (2012)45

introduced Generalized OMP (GOMP) where more than one predictor or atom (i.e. columns of the46
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measurement matrix or dictionary) are selected per iteration. Regularized OMP (ROMP) exploits a47

predefined regularization rule (Needell and Vershynin, 2010), while CoSaMP incorporates additional48

pruning steps to refine the estimate recursively (Needell and Tropp, 2009). The implicit foundation of the49

aforementioned variants—and, hence, of the original OMP—is optimization based on Ordinary Least50

Squares (OLS), which is optimal under a Mean Squared Error (MSE) cost function or, equivalently, a51

Gaussian distribution of the errors. Any deviation from such assumptions, e.g. outliers, impulsive noise or52

non–Gaussian additive noise, would result in biased estimations and performance degradation in general.53

Wang et al. (2017) proposed Correntropy Matching Pursuit (CMP) to mitigate the detrimental effect54

of outliers in the sparse coding process. Basically, the Correntropy Induced Metric replaces the MSE55

as the cost function of the iterative active set update of OMP. Consequently, the framework becomes56

robust to outliers and impulsive noise by weighing the input samples according to a Gaussian kernel. The57

resulting non–convex performance surface is optimized via the Half–Quadratic (HQ) technique to yield58

fast, iterative approximations of local optima (Geman and Yang, 1995; Nikolova and Ng, 2005). Even59

though the algorithm is successful in alleviating the effect of outliers in practical applications, the main60

hyperparameter—the Gaussian kernel bandwidth—is chosen empirically with no theoretical validation.61

With this mind, we propose a generalization of CMP by reformulating the active set update under the lens62

of robust linear regression; specifically, we exploit the well known and developed theory of M–Estimators63

(Andersen, 2008; Huber, 2011) to devise five different robust variants of OMP: RobOMP. Each one64

utilizes validated hyperparameters that guarantee robustness up to theoretical limits. In addition, the HQ65

optimization technique is reduced to the Iteratively Reweighted Least Squares (IRLS) algorithm in order66

to provide an intuitive and effective implementation while still enjoying the weighing nature introduced in67

CMP.68

For instance, Fig. 1 illustrates the estimated error in a 50–dimensional observation vector with a 10%69

rate of missing samples (set equal to zero). While Tukey–Estimator–based–OMP practically collapses70

the error distribution after 10 decompositions, the OMP counterpart still leaves a remnant that derives in71

suboptimal sparse coding. Moreover, RobOMP provides an additional output that effectively weighs the72

components of the input space in a [0,1] scale. In particular, the missing samples are indeed assigned73

weights close to zero in order to alleviate their effect in the estimation of the sparse decomposition. In74

terms of computer vision, Fig. 2 compares denoising mechanisms based on sparse representations. Only75

CMP and the proposed methods are able to not only retrieve high–fidelity reconstructions, but also provide76

a weight vector that explicitly discriminates between pixels from the original, uncorrupted image and77

outliers (image occlusion in this case). Though the results are visually similar, the residual errors differ78

significantly in terms of dynamic range and 32–norm; this idea is further exploited for image recognition79

in the sections to come.80

We present three different sets of results to validate the proposed robust, sparse inference framework.81

First, synthetic data with access to ground truth (support of the representation) highlights the robustness82

of the estimators under several types of noise, such as additive non–Gaussian densities and instance–based83

degradation (e.g. missing samples and impulsive noise). Then, a robust sparse representation–based84

classifier (RSRC) is developed for image recognition under missing pixels and occlusion scenarios. The85

results outperform the OMP–based variants and the CMP–based classifier (CMPC) for several cases.86

Lastly, preliminary results on image denoising via sparse and redundant representations over overcomplete87

dictionaries are presented with the hope of exploiting RobOMP in the future for image denoising under88

non–Gaussian additive noise. The rest of the paper is organized as follows: Section 2 details the state89

of the art and related work concerning greedy approximations to the sparse coding problem. Section 390

introduces the theory, rationale, and algorithms regarding M–estimation–based Robust OMP: RobOMP.91

Section 4 details the results using synthetic data and popular digital image databases, while Section 592

discusses more in–depth technical concepts, analyzes the implications of the proposed framework, and93

offers potential further work. Lastly, Section 6 concludes the paper.94

STATE OF THE ART AND RELATED WORK95

Let y * IRm be a measurement vector with an ideal, noiseless, sparse representation, x0 * IRn, with respect

to the measurement matrix (also known as dictionary), D * IRm×n. The matrix D is usually overcomplete,

i.e. m < n, to promote sparse decompositions. In practice, y is affected by a noise component, n * IRm.
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Figure 1. Illustration of the robustness of the proposed method. y * IR50 constitutes an observation

vector with 5 missing samples (set to zero, marked in red). eOMP1 and eOMP10 are the resulting errors

after the first and tenth iteration of OMP (with corresponding box plots as insets), respectively. xOMP10

is the final estimated sparse decomposition after 10 OMP iterations. Their RobOMP counterparts (Tukey

estimator) reduce more aggressively the dynamic range of the errors until almost collapsing to a delta

distribution; this results in optimal sparse coding. wTukey is the learned weight vector that assigns values

close to one to values around the main mode of the data and small weights to potential outliers (red

marks). K = 10.

This results in the following constrained, linear, additive model:

y = Dx0 +n s.t. ||x0||0 = K0 (1)

where K0 indicates the support of the sparse decomposition and || · ||0 represents the 30–pseudonorm,96

i.e. number of non–zero components in x0. The sparse coding framework aims to estimate x0 given the97

measurement vector and matrix plus a sparsity constraint.98

MSE–based OMP99

Orthogonal Matching Pursuit (Tropp and Gilbert, 2007) attempts to find the locally optimal solution by

iteratively estimating the most correlated atom in D to the current residual. In particular, OMP initializes

the residual r0 = y, the set containing the indices of the atoms that are part of the decomposition (an active

set) Λ0 = /0, and the iteration k = 1. In the kth iteration, the algorithm finds the predictor most correlated

to the current residual:

λk = argmax
i*Ω

|�rk21,di�| (2)

where �·, ·� denotes the inner product operator, di represents the ith column of D, and Ω = {1,2, · · · ,n}.
The resulting atom is added to the active set via Λ, i.e.:

Λk = Λk21*{λk} (3)

The next step is the major refinement of the original Matching Pursuit algorithm (Mallat and Zhang,

1993)—instead of updating the sparse decomposition one component at the time, OMP updates all the

coefficients corresponding to the active set at once according to a MSE criterion

xk = argmin
x*IRn,supp(x)¢Λk

||y2Dx||2 (4)
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Figure 2. Image reconstruction (denoising) based on sparse decompositions. First row shows the

original and corrupted (image occlusion) images. Second row depicts the reconstructions corresponding

to OMP, GOMP, CMP and the five variants of RobOMP introduced in this work. Third row details the

weight maps from CMP and RobOMP according to the resulting weight vector in the scale [0,1] where

small values are assigned to occlusion pixels and large weights correspond to elements from the

uncorrupted image.

where supp(x) is the support set of vector x. Equation (4) can be readily solved via OLS or Linear100

Regression where the predictors are the columns of D indexed by Λk and the response is the measurement101

vector y. Stopping criterion for OMP typically include a set number of iterations or compliance with a set102

minimum error of the residue. In the end, the estimated sparse code, x, is set as the last xk obtained.103

One of the major advantages of OMP over MP is the guarantee of convergence after K0 iterations. In104

practice, however, the true sparsity pattern is unknown and the total number of iterations, K, is treated105

as a hyperparameter. For a detailed analysis regarding convergence and recovery error bounds of OMP,106

see Donoho et al. (2006). A potential drawback of OMP is the extra computational complexity added by107

the OLS solver. Specifically, each incremental update of the active set affects the time complexity of the108

algorithm in a polynomial fashion: O(k2n+ k3) where k is the current iteration.109

Generalized Orthogonal Matching Pursuit (Wang et al., 2012) refines OMP by selecting N0 atoms per

iteration. If the indices of the active set columns in the kth iteration are denoted as Jk[1],Jk[2], . . . ,Jk[N0],
then Jk[ j] can be defined recursively:

Jk[ j] = argmax
i*Ω\{Jk[1],...,Jk[ j21]}

|�rk21,di�|, 1f j f N0 (5)

The index set {Jk[ j]}N0
j=1 is then added to Λk and, likewise OMP, GOMP exploits an OLS solver to update110

the current active set. Both OMP and GOMP obtain locally optimal solutions under the assumption111

of Gaussianity (or Normality) of the errors. Yet, if such restriction is violated (e.g. by the presence of112

outliers), the estimated sparse code, x, will most likely be biased.113

CMP114

The main drawback of MSE–based cost functions is its weighing nature in terms of influence and115

importance assigned to the available samples. In particular, MSE considers every sample as equally116

important and assigns a constant weight equal to one to all the inputs. Wang et al. (2017) proposed117

exploiting Correntropy (Liu et al., 2007) instead of MSE as an alternative cost function in the greedy118

sparse coding framework. Basically, the novel loss function utilizes the Correntropy Induced Metric (CIM)119

to weigh samples according to a Gaussian kernel gσ (t) = exp
�

2t2/2σ2
�

, where σ , the kernel bandwidth,120

modulates the norm the CIM will mimic, e.g. for small σ , the CIM behaves similar to the 30-pseudonorm121

(aggressive non–linear weighing), if σ increases, CIM will mimic the 31–norm (moderate linear weighing),122
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and, lastly, for large σ , the resulting cost function defaults to MSE, i.e. constant weighing for all inputs.123

The main conclusion here is that the CIM, unlike MSE, is robust to outliers for a principled choice of σ .124

This outcome easily generalizes for non–Gaussian environments with long–tailed distributions on the125

errors.126

Correntropy Matching Pursuit (CMP) exploits the CIM robustness to update the active set in the sparse

coding solver. The algorithm begins in a similar fashion as OMP, i.e. r0 = y, Λ0 = /0, and k = 1. Then,

instead of the MSE–based update of Equation (4), CMP proceeds to minimize the following CIM–based

expression:

xk = argmin
x*IRn,supp(x)¢Λk

Lσ (y2Dx) (6)

where Lσ (e) =
1
m ∑

m
i=1 σ2(12gσ (e[i])) is the simplified version (without constant terms independent of

e) of the CIM loss function and e[i] is the ith entry of the vector e. The Half–Quadratic (HQ) technique

is utilized to efficiently optimize the invex CIM cost function (Geman and Yang, 1995; Nikolova and

Ng, 2005). The result is a local minimum of Equation (6) alongside a weight vector w that indicates the

importance of the components of the observation vector y:

w(t+1)[i] = gσ

�

y[i]2
�

Dx(t)
�

[i]
�

, i = 1,2, . . . ,m (7)

where t is the iteration in the HQ subroutine. In short, the HQ optimization performs block coordinate

descent to separately optimize the sparse code, x, and the weight vector, w, in order to find local optima.

The hyperparameter σ is iteratively updated without manual selection according to the following heuristic:

σ (t+1) =

�

1

2m

�

�

�

�

�

�
y2Dx(t+1)

�

�

�

�

�

�

2

2

�
1
2

(8)

In Wang et al. (2017), the authors throughly illustrate the advantage of CMP over many MSE–based127

variants of OMP when dealing with non-Gaussian error distributions and outliers in computer vision128

applications. And even though they mention the improved performance of the algorithm when σ is129

iteratively updated versus manual selection scenarios, they fail to explain the particular heuristic behind130

Equation (8) or its statistical validity. In addition, the HQ optimization technique is succinctly reduced to131

a weighted Least Squares problem than can be solved explicitly. Therefore, more principled techniques132

that exploit weighted Least Squares and robust estimators for linear regression can easily provide the133

needed statistical validity, while at the same time, generalize the concepts of CMP under the umbrella of134

M–estimators.135

ROBUST ORTHOGONAL MATCHING PURSUIT136

MSE–based OMP appeals to OLS solvers to optimize Equation (4). In particular, let Φ* IRm×k correspond

to the active atoms in the dictionary D at iteration k, i.e. Φ = [dΛk[1],dΛk[2], · · · ,dΛk[k]], and β * IRk be the

vector corresponding to the coefficients that solve the following regression problem:

y = Φβ + e (9)

where e is an error vector with independent components identically distributed according to a zero–mean

Normal density (e[i] >N (0,σ2)). Then, the least squares regression estimator, β̂ , is the maximum

likelihood estimator for β under a Gaussian density prior, i.e.:

β̂ = argmax
β

m

∏
i=1

1:
2πσ2

exp

�

2 e[i]2

2σ2

�

= argmax
β

m

∏
i=1

1:
2πσ2

exp

�

2 (y[i]2 (Φβ )[i])2

2σ2

�

(10)

which is equivalent to maximizing the logarithm of (10) over β :

β̂ = argmax
β

m

∑
i=1

�

2 1

2
ln
�

2πσ2
�

2 e[i]2

2σ2

�

= argmin
β

m

∑
i=1

�

e[i]2

2

�

(11)
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Since σ is assumed as constant, β̂ is the estimator that minimizes the sum of squares of the errors, or

residuals. Hence, the optimal solution is derived by classic optimization theory giving rise to the well

known normal equations and OLS estimator:

m

∑
i=1

e[i]2 = eT e

= (y2Φβ )T (y2Φβ )

= yT y2yT Φβ 2β T ΦT y+β T ΦT Φβ

At the minimum:

∂

∂β

m

∑
i=1

e[i]2 = 0 =
∂

∂β
(yT y2yT Φβ 2β T ΦT y+β T ΦT Φβ )

= 02ΦT y2ΦT y+2
�

ΦT Φ
�

β

Consequently when ΦT Φ is non–singular, the optimal estimated coefficients vector has a closed–form

solution equal to:

β̂OLS = β̂ = (ΦT Φ)21ΦT y (12)

which is optimal under a Gaussian distribution of the errors. If such assumption is no longer valid due to137

outliers or non–Gaussian environments, M–Estimators provide a suitable alternative to the estimation138

problem.139

M–Estimators140

If the errors are not normally distributed, the estimator of (12) will be suboptimal. Hence, a different

function is utilized to model the statistical properties of the errors. Following the same premises of

independence and equivalence of the optimum under the log–transform, the following estimator arises:

β̂M–Est = argmin
β

m

∑
i=1

ρ

�

e[i]

s

�

= argmin
β

m

∑
i=1

ρ

�

(y[i]2 (Φβ )[i])

s

�

(13)

where ρ(e) is a continuous, symmetric function (also known as the objective function) with a unique

minimum at e = 0 (Andersen, 2008). Clearly, ρ(e) reduces to half the sum of squared errors for the

Gaussian case. s is an estimate of the scale of the errors in order to guarantee scale–invariance of the

solution. The usual standard deviation cannot be used for s due to its non–robustness; thus, a suitable

alternative is usually the “re–scaled MAD”:

s = 1.4826×MAD (14)

where the MAD (median absolute deviation) is highly resistant to outliers with a breakdown point (BDP)

of 50%, as it is based on the median of the errors (ẽ) rather than their mean (Andersen, 2008):

MAD = median|e[i]2 ẽ| (15)

The re–scaling factor of 1.4826 guarantees that, for large sample sizes and e[i]>N (0,σ2), s reduces

to the population standard deviation (Hogg, 1979). M–Estimation then, likewise OLS, finds the optimal

coefficients vector via partial differentiation of (13) with respect to each of the k parameters in question,

resulting in a system of k equations:

m

∑
i=1

Φi jψ

�

y[i]2φ T
i β

s

�

=
m

∑
i=1

Φi jψ

�

e[i]

s

�

= 0, j = 1,2, . . . ,k (16)

where φi represents the ith row of the matrix Φ while Φi j accesses the jth component of the ith row of Φ.

ψ
�

e[i]
s

�

= ∂ρ

∂
e[i]
s

is known as the score function while the weight function is derived from it as:

w[i] = w

�

e[i]

s

�

=
ψ
�

e[i]
s

�

e[i]
s

(17)
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Substituting Equation (17) into (16) results in:

m

∑
i=1

Φi jw[i]
e[i]

s
=

m

∑
i=1

Φi jw[i](y[i]2φ T
i β )

1

s
= 0 j = 1,2, . . . ,k

m

∑
i=1

Φi jw[i](y[i]2φ T
i β ) = 0 j = 1,2, . . . ,k

m

∑
i=1

Φi jw[i]φiβ =
m

∑
i=1

Φi jw[i]y[i] j = 1,2, . . . ,k (18)

which can be succinctly reduced in matrix form as:

ΦT WΦβ = ΦT Wy (19)

by defining the weight matrix, W, as a square diagonal matrix with non–zero elements equal to the entries

in w, i.e.: W = diag({w[i] : i = 1,2, . . . ,m}). Lastly, if ΦT WΦ is well-conditioned, the closed form

solution of the robust M–Estimator is equal to:

β̂M–Est = (ΦT WΦ)21ΦT Wy (20)

Equation (20) resembles its OLS counterpart (Equation (12)), except for the the addition of the matrix141

W that weights the entries of the observation vector and mitigates the effect of outliers according to a142

linear fit. A wide variety of objective functions (and in turn, weight functions) have been proposed in the143

literature (for a through review, see Zhang (1997)). For the present study, we will focus on five different144

variants that are detailed in Table 1. Every M–Estimator weighs its entries according to a symmetric,145

decaying function that assigns large weights to errors in the vicinity of zero and small coefficients to gross146

contributions. Consequently, the estimators downplay the effect of outliers and samples, in general, that147

deviate from the main mode of the residuals.148

Solving the M-Estimation problem is not as straightforward as the OLS counterpart. In particular,149

Equation (20) assumes the optimal W is readily available, which, in turn, depends on the residuals, which,150

again, depend on the coefficient vector. In short, the optimization problem for M–Estimators can be posed151

as finding both β̂M–Est and ŵM–Est that minimize Equation (13). Likewise HQ, the common approach is152

to perform block coordinate descent on the cost function with respect to each variable individually until153

local optima are found. In the robust regression literature, this optimization procedure is the well known154

Iteratively Reweighted Least Squares or IRLS (Andersen, 2008). The procedure is detailed in Algorithm155

1. In particular, the routine runs for either a fixed number of iterations or until the estimates change by156

less than a selected threshold between iterations. The main hyperparameter is the choice of the robust157

M–Estimator alongside its corresponding parameter c. However, it is conventional to select the value that158

provides a 95% asymptotic efficiency on the standard Normal distribution (Zhang, 1997). Throughout159

this work, we exploit such optimal values to avoid parameter tuning by the user (see Table 2). In this way,160

the influence of outliers and non-Gaussian errors are expected to be diminished in the OMP update stage161

of the coefficients corresponding to the active set.162

M–Estimators–based OMP163

Here, we combine the ideas behind greedy approximations to the sparse coding problem and robust164

M–Estimators; the result is RobOMP or Robust Orthogonal Matching Pursuit. We propose five variants165

based on five different M–Estimators (Table 1). We refer to each RobOMP alternative according to its166

underlaying M–Estimator; for instance, Fair–Estimator–based–OMP is simply referred to as Fair. As with167

OMP, the only hyperparameter is the stopping criterion: either K as the maximum number of iterations168

(i.e. sparseness of the solution), or ε , defined as a threshold on the error norm.169

For completeness, Algorithm 2 details the RobOMP routine for the case of set maximum number of170

iterations (the case involving ε is straightforward). Three major differences are noted:171

1. The robust M–Estimator–based update stage of the active set is performed via IRLS,172

2. The updated residuals are computed considering the weight vector ŵk from IRLS, and173

3. The weight vector constitutes an additional output of RobOMP.174
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Table 1. Comparison between OLS estimator and M–Estimators. Objective ρ(e) and weight w(e)
functions of OLS solution and 5 different M–Estimators. For M–Estimators, error entries are

standardized, i.e. divided by the scale estimator, s. Each robust variant comes with a hyperparameter c.

Exemplary plots in the last column utilize the optimal hyperparameters detailed in Table 2

Cauchy Fair Huber Tukey Welsch

2.385 1.4 1.345 4.685 2.985

Table 2. Optimal hyperparameter c of M–Estimators according to a 95% asymptotic efficiency on the

standard Normal distribution.

The last two differences are key for convergence and interpretability, respectively. The former guarantees175

shrinkage of the weighted error in its first and second moments, while the latter provides an intuitive,176

bounded, m–dimensional vector capable of discriminating between samples from the main mode and177

potential outliers at the tails of the density.178

RESULTS179

This section evaluates the performance of the proposed methods in three different settings. First, sparse180

coding on synthetic data is evaluated under different noise scenarios. Then, we present an image181

recognition framework fully–based on sparse decompositions using a well known digital image database.182

Lastly, a denoising mechanism that exploits local sparse coding highlights the potential of the proposed183

techniques.184

Sparse Coding with Synthetic Data185

The dictionary or observation matrix, D * IR100×500, is generated with independent entries drawn from a

zero–mean Gaussian random variable with variance equal to one. The ideal sparse code, x0 * IR500, is

generated by randomly selecting ten entries and assigning them independent samples from a zero–mean,
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Algorithm 1 IRLS–based M–Estimation

1: function IRLS(y * IRm,Φ * IRm×k,wc(u)) ² Weight function w(u) with hyperparameter c

2: t± 0

3: β (0) = βOLS± (ΦT Φ)21ΦT y ² OLS initialization

4: e(0)± y2Φβ (0)

5: MAD±median|e(0)[i]2 ẽ(0)|
6: s(0)± 1.4826×MAD

7: w(0)[i]± wc

�

e(0)[i]

s(0)

�

i = 1,2, . . . ,m ² Initial weight vector

8: W(0)± diag
�

w(0)
�

9: t± 1

10: while NO CONVERGENCE do

11: β (t)± (ΦT W(t21)Φ)21ΦT W(t21)y ² Block coordinate descent

12: e(t)± y2Φβ (t)

13: MAD±median|e(t)[i]2 ẽ(t)|
14: s(t)± 1.4826×MAD

15: w(t)[i]± wc

�

e(t)[i]

s(t)

�

i = 1,2, . . . ,m ² Block coordinate descent

16: W(t)± diag
�

w(t)
�

17: t± t +1

18: return β̂M–Est± β (t) ŵM–Est± w(t) ² Final estimates

Algorithm 2 RobOMP

1: function ROBOMP(y * IRm,D * IRm×n,wc(u),K)

2: k± 1 ² Initializations

3: r0± y

4: Λ0± /0

5: while k < K do

6: λk = argmaxi*Ω |�rk21,di�| Ω = {1,2, · · · ,n}
7: Λk = Λk21*{λk}
8: Φ = [dΛk[1],dΛk[2], · · · ,dΛk[k]]

9: {β̂M–Est, ŵk}± IRLS(y,Φ,wc(u)) ² Robust linear fit

10: xk[Λk[i]]± β̂M–Est[i] i = 1,2, . . . ,k ² Update active set

11: rk[i]± ŵk[i]× (y[i]2 (Dxk)[i]) i = 1,2, . . . ,m ² Update residual

12: k± k+1

13: return xRobOMP± xK ,w± ŵK ² Final Estimates

unit–variance Gaussian distribution. The rest of the components are set equal to zero, i.e. K0 = 10. The

resulting observation vector y* IR100 is computed as the linear combination of the dictionary with weights

from the ideal sparse code plus a noise component n * IR100:

y = Dx0 +n (21)

The first set of experiments considers different noise distributions. In particular, five noise cases are186

analyzed: Gaussian (N (0,2)), Laplacian with variance equal to 2, Student’s t–distribution with 2 degrees187

of freedom, Chi–squared noise with 1 degree of freedom, and Exponential with parameter λ = 1. Then,188

OMP, GOMP, CMP, and the 5 variants of RobOMP estimate the sparse code with parameter K = 10. For189

the active set update stage of CMP and RobOMP, the maximum allowed number of HQ/IRLS iterations is190

set to 100. For GOMP, N0 * {2,3,4,5} where the best results are presented.191

The performance measure is defined as the normalized 32–norm of the difference between the ground192

truth sparse code, x0, and its estimate. The average results for 100 independent runs are summarized in193

Table 3. As expected, most of the algorithms perform similar under Gaussian noise, which highlights194

the adaptive nature of CMP and RobOMP. For the non–Gaussian cases, CMP and Tukey are major195

improvements over ordinary OMP. The rest of the RobOMP flavors consistently outperform the state196
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Noise Gaussian Laplacian Student Chi–squared Exponential

OMP 5.92 5.69 7.14 5.22 4.43

GOMP 7.66 7.27 9.37 6.71 5.65

CMP 5.57 4.40 3.87 3.08 3.49

Cauchy 5.88 5.21 4.43 3.95 4.06

Fair 5.92 5.34 5.05 4.45 4.13

Huber 5.80 5.04 4.57 3.92 3.89

Tukey 5.85 4.78 3.80 3.05 3.64

Welsch 5.82 4.84 3.90 3.20 3.70

Table 3. Average norm of sparse code errors of MSE–based OMPs and robust alternatives for different

types of noise. Best results are marked bold. K = K0 = 10.
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Figure 3. Average normalized norm of sparse code error of MSE–based OMPs and robust alternatives

for several rates of missing entries in the observation vector. All algorithms use the ground truth sparsity

parameter K = K0 = 10.

of the art OMP and GOMP techniques. This confirms the optimality of MSE–based greedy sparse197

decompositions when the errors are Normally distributed; yet, they degrade their performance when such198

assumption is violated.199

The second set of results deals with non–linear additive noise or instance–based degradation. Once200

again, D and x0 are generated following the same procedure of the previous set of results (K0 = 10). Yet201

now, noise is introduced by means of zeroing randomly selected entries in y. The number of missing202

samples is modulated by a rate parameter ranging from 0 to 0.5. Fig. 3 summarizes the average results203

for K = 10 and 100 independent runs. As expected, the performance degrades when the rate of missing204

entries increases. However, the five variants of RobOMP are consistently superior than OMP and GOMP205

until the 0.4–mark. Beyond that point, some variants degrade at a faster rate. Also, CMP achieves small206

sparse code error norms for low missing entries rate; however, beyond the 0.25–mark, CMP seems to207

perform worse than OMP and even GOMP. This experiment highlights the superiority of RobOMP over208

MSE–based and Correntropy–based methods.209

Now, the effect of the hyperparameter K is studied. Once again, 100 independent runs are averaged to210

estimate the performance measure. The rate of missing entries is fixed to 0.2 while K is the free variable.211

Fig. 4 shows how the average error norm is a non–increasing function of K for the non–MSE–based212

variants of OMP (slight deviation in some cases beyond K = 8 might be due to estimation uncertainty213

and restricted sample size). On the other hand, both OMP and GOMP seem to stabilize after a certain214

number of iterations, resulting in redundant runs of the algorithm. These outcomes imply that RobOMP215

is not only a robust sparse code estimator, but also a statistically efficient one that exploits the available216
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Figure 4. Average normalized norm of sparse code error of MSE–based OMPs and robust alternatives

over K (number of iterations) for a 0.2 rate of missing entries in the observation vector. K0 = 10.

information in the data in a principled manner. It is also worth noting that CMP underperforms when217

compared to most flavors of RobOMP.218

Impulsive noise is the other extreme of instance–based contamination. Namely, a rate of entries in y219

are affected by aggressive high–variance noise while the rest of the elements are left intact. The average220

performance measure of 100 independent runs is reported for K = K0 = 10. Fig. 5a details the results221

for varying rates of entries affected by -20 dB impulsive noise. Again, RobOMP and CMP outperform222

OMP and GOMP throughout the entire experiment. Tukey and Welsch seem to handle this type of noise223

more effectively; specifically, the error associated to the algorithms in question seem to be logarithmic224

or radical for OMP and GOMP, linear for Fair, Cauchy, Huber and CMP, and polynomial for Tukey and225

Welsch with respect to the percentage of noisy samples. On the other hand, Fig. 5b reflects the result of226

fixing the rate of affected entries to 0.10 and modulating the variance of the impulsive noise in the range227

[-25,0]. RobOMP and CMP again outperform MSE–based methods (effect visually diminished due to228

log–transform of the performance measure for plotting purposes). For this case, CMP is only superior to229

the Fair version of RobOMP.230

In summary, the experiments concerning sparse coding with synthetic data confirm the robustness231

of the proposed RobOMP algorithms. Non–Gaussian errors, missing samples and impulsive noise are232

handled in a principled scheme by all the RobOMP variants and, for most cases, the results outperform233

the Correntropy–based CMP. Tukey seems to be the more robust alternative that is able to deal with a234

wide spectrum of outliers in a consistent, efficient manner.235
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Figure 5. Average normalized norm of sparse code error of MSE–based OMPs and robust alternatives

for 2 cases involving impulsive noise in the observation vector. All algorithms use the ground truth

sparsity parameter K = K0 = 10.
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Algorithm 3 RSRC

Inputs: Normalized matrix of training samples A = [A1,A2, . . . ,AN ] * IRm×n

Test Example, y * IRm

M–Estimator weight function, wc(u)
Stopping criterion for RobOMP, K

Output: class(y)

1: (xRobOMP,w)± RobOMP(y,A,wc(u),K) ² Compute robust sparse code and weight vector

2: ri(y) = ||diag(w)(y2Aiδi(xRobOMP))||2, i * N ² Calculate norm of class–dependent residuals

3: class(y)± argmini*N ri(y) ² Predict label

RobOMP–based Classifier236

We introduce a novel robust variant for sparse representation–based classifiers (SRC) fully based on237

RobOMP. Let Ai = [ai
1,a

i
2, . . . ,a

i
ni
] * IRm×ni be a matrix with ni examples from the ith class for i =238

1,2, . . . ,N. Then, denote the set N = {1,2, . . . ,N} and the dictionary matrix of all training samples239

A = [A1,A2, . . . ,AN ] * IRm×n where n = ∑
N
i=1 ni is the number of training examples from all N classes.240

Lastly, for each class i, the characteristic function δi : IRn³ IRn extracts the coefficients associated with241

the ith label. The goal of the proposed classifier is to assign a class to a novel test sample y * IRm given242

the generative “labeled” dictionary A.243

The classification scheme proceeds as follows: N different sparse codes are estimated via Algorithm 2244

given the subdictionaries Ai for i = 1,2, . . . ,N. The class–dependent residuals, ri(y) are computed and245

the test example is assigned to the class with minimal residual norm. To avoid biased solutions based246

on the scale of the data, the columns of A are set to have unit–32–norm. The result is a robust sparse247

representation–based classifier or RSRC, which is detailed in Algorithm 3.248

Similar algorithms can be deployed for OMP, GOMP and CMP (Wang et al., 2017). In particular, the249

original SRC (Wright et al., 2009) exploits a 31–minimization approach to the sparse coding problem;250

however the fidelity term is still MSE, which is sensitive to outliers. In this section we opt for greedy251

approaches to estimate the sparse representation. Moreover for RobOMP, the major difference is the252

computation of the residual—we utilize the weight vector to downplay the influence of potential outlier253

components and, hence, reduce the norm of the errors under the proper dictionary. CMP utilizes a similar254

approach, but the weight matrix is further modified due to the HQ implementation (see Wang et al. (2017)255

for details). We compare the 7 SRC variants under two different types of noise on the Extended Yale B256

Database.257

Extended Yale B Database258

This dataset contains over 2000 facial images of 38 subjects under different lighting settings (Lee et al.,259

2005). For each subject, a maximum of 64 frontal–face images are provided alongside light source angles.260

The original dimensionality of the images is 192×168 or 32256 in vector form. Fig. 2 illustrates one261

sample image from the database.262

Due to the difference in lighting conditions, the database is usually segmented into 5 subsets (Wright263

et al., 2009). Let θ =
:

A2 +E2 where A and E are the azimuth and elevation angles of the single light264

source, respectively. The first subset comprises the interval 0 f θ f 12, the second one, 13 f θ f 25,265

the third one, 26f θ f 54, the fourth one, 55f θ f 83, and lastly, the fifth subset includes images with266

θ g 84. In this way, the subsets increase in complexity and variability, making the classifier job more267

challenging, e.g. subset one includes the cleanest possible examples, while the fifth dataset presents268

aggressive occlusions in the form of shadows. The cardinality of the 5 subsets are (per subject): 7, 12, 12,269

14, and 19 images. For all the following experiments, the dictionary matrix A is built from the samples270

corresponding to subsets 1 and 2, while the test examples belong to the third subset. This latter collection271

is further affected by two kinds of non–linearly additive noise.272

Occlusions and Missing Pixels273

Two different types of noise are simulated: blocks of salt and pepper noise, i.e. occlusions, and random274

missing pixels. In all the following experiments, the sparsity parameter for learning the sparse code is set275

to K = 5 (for GOMP, N0 * {2,3} and the best results are presented). Also, 10 different independent runs276

are simulated for each noise scenario.277
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Figure 6. Average classification accuracy on the Extended Yale B Database over occlusion rate of

blocks of salt and pepper noise. Feature dimension = 2058. K = 5.

For the occlusion blocks, a rate of affected pixels is selected beforehand in the range [0, 0.5]. Then, as278

in the original SRC (Wright et al., 2009), we downsampled the inputs mainly for computational reasons.279

In particular, we utilized factors of 1/2, 1/4, 1/8, and 1/16 resulting in feature dimensions of 8232, 2058,280

514, and 128, respectively. Next, every test example is affected by blocks of salt and pepper noise (random281

pixels set to either 0 or 255). The location of the block is random and its size is determined by the282

rate parameter. Every sample is assigned a label according to SRC variants based on OMP and GOMP,283

CMP–based classifier (coined as CMPC by Wang et al. (2017)), and our proposed RSRC. For simplicity,284

we use the same terminology as before when it comes to the different classifiers. The performance metric285

is the average classification accuracy in the range [0,1]. Fig. 6 highlights the superiority of RSRC over286

OMP and GOMP. Particularly, Huber, Tukey and Welsch are consistently better than CMP while Fair and287

Cauchy seem to plateau after the 0.3–mark.288

Next, the effects of the feature dimension and the sparsity parameter are investigated. Fig. 7 confirms289

the robustness of the proposed discriminative framework. As expected, when the feature dimension290

increases, the classification accuracy increases accordingly. However, the baselines set by OMP and291

GOMP are extremely low for some cases. On the other hand, CMP and RSRC outperform both MSE–based292

approaches, and even more, the novel M–Estimator–based classifiers surpass their Correntropy–based293

counterpart. When it comes to the sparsity parameter, K, it is remarkable how OMP and GOMP do not294

improve their measures after the first iteration. This is expected due to the lack of principled schemes to295

deal with outliers. In contrast, RSCR shows a non–decreasing relation between classification accuracy296

and K, which implies progressive refinement of the sparse code over iterations. To make these last two297

findings more evident, Table 4 illustrates the classification accuracy for a very extreme case: 0.3 rate of298

occlusion and feature dimension equal to 128, i.e. each input image is roughly 12×11 pixels in size (the299

downsampling operator introduces rounding errors in the final dimensionality). This scenario is very300

challenging and, yet, most of RSRC variants achieve stability and high classification after only 4 iterations.301

On the other hand, OMP and GOMP degrade their performance over iterations. This confirms the robust302

and sparse nature of the proposed framework.303

For the missing pixels case, a rate of affected pixels is selected beforehand in the range [0, 1]. Then,304

every test example is affected by randomly selected missing pixels—the chosen elements are replaced305

by samples drawn from a uniform distribution over the range [0,ymax] where ymax is the largest possible306

intensity of the image in question. Figures 8 and 9 summarize similar experiments as in the occlusion307

case. Again, the RSRC are superior than MSE–based methods and consistently increase the performance308

measure as the sparsity parameter grows. The extreme case here involves a rate of 0.4 affected pixels by309

distorted inputs and a feature dimension of 128. Table 5 reinforces the notion that robust methods achieve310

higher classification accuracy even in challenging scenarios.311
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(b) Classification accuracy over sparsity parameter.

Feature dimension = 2058.

Figure 7. Average classification accuracy on the Extended Yale B Database for two cases concerning

blocks of salt and pepper noise at a fixed rate of 0.5.

K OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

1 0.38 0.36 0.59 0.53 0.55 0.53 0.51 0.51

2 0.39 0.34 0.90 0.81 0.83 0.87 0.86 0.87

3 0.39 0.30 0.97 0.88 0.88 0.98 0.98 0.98

4 0.37 0.28 0.97 0.88 0.89 0.99 0.99 0.99

5 0.36 0.28 0.97 0.88 0.88 0.99 0.99 0.99

6 0.34 0.28 0.97 0.88 0.88 0.99 0.99 0.99

7 0.34 0.28 0.97 0.88 0.88 0.98 0.99 0.99

8 0.33 0.28 0.97 0.88 0.88 0.98 0.99 0.99

9 0.32 0.28 0.97 0.88 0.88 0.98 0.99 0.99

10 0.31 0.28 0.97 0.88 0.88 0.98 0.99 0.98

Table 4. Average classification accuracy on the Extended Yale B Database over K for a fixed rate of 0.3

pixels affected by blocks of salt and pepper noise. Best result for each classifier is marked bold. Feature

dimension = 128.

Lastly, it is worth noting that CMP performs better in the missing pixels case; yet, it fails to surpass312

the Welsch variant of RSRC which is its equivalent in terms of weight function of errors. Once again,313

Tukey is the algorithm with overall best results that is able to handle both kinds of noise distributions in a314

more principled manner.315

Image Denoising via Robust, Sparse and Redundant Representations316

The last set of results introduces a preliminary analysis of image denoising exploiting sparse and redundant

representations over overcomplete dictionaries. The approach is based on the seminal paper by Elad and

Aharon (2006). Essentially, zero–mean white and homogeneous Gaussian additive noise with variance

σ2 is removed from a given image via sparse modeling. A global image prior that imposes sparsity

over patches in every location of the image simplifies the sparse modeling framework and facilitates

its implementation via parallel processing. In particular, if the unknown image Z can be devised as the

spatial (and possibly overlapping) superposition of patches that can be effectively sparsely represented

given a dictionary D, then, the optimal sparse code, x̂i j, and estimated denoised image, Ẑ, are equal to:

{x̂i j, Ẑ}= argmin
xi j ,Z

λ ||Z2Y||22 +∑
i j

µi j||xi j||0 +∑
i j

||Dxi j2Ri jZ||22 (22)

where the first term is the log–likelihood component that enforces close resemblance (or proximity in317

an 32 sense) between the measured noisy image, Y, and its denoised (and unknown) counterpart Z. The318

second and third terms are image priors that enforce that every patch, zi j = Ri jZ, of size
:

n×:n in319

every location of the constructed image Z has a sparse representation with bounded error. λ and µi j are320

regularization parameters than can easily be reformulated as constraints.321

Block coordinate descent is exploited to solve (22). In particular, x̂i j is estimated via greedy approxi-

mations of the sparse code of each local block or patch. The authors suggest OMP with stopping criterion

set by ||Dxi j2Ri jZ||22 f (Cσ)2 for all {i j} combinations (sequential sweep of the image to extract all
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Figure 8. Average classification accuracy on the Extended Yale B Database over missing pixels rate.

Feature dimension = 2058. K = 5.
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Feature dimension = 2058.

Figure 9. Average classification accuracy on the Extended Yale B Database for two cases concerning

missing pixels at a fixed rate of 0.7.

possible
:

n×:n blocks). Then, the estimated denoised image has the following closed form solution:

Ẑ =

�

λ I +∑
i j

RT
i jRi j

�21�

λY+∑
i j

RT
i jDxi j

�

(23)

where I is the identity matrix. The authors go one step further and propose learning the dictionary, D,322

as well; this is accomplished either from a corpus of high–quality images or the corrupted image itself.323

The latter alternative results in a fully generative sparse modeling scheme. For more details regarding the324

denoising mechanisms, refer to Elad and Aharon (2006).325

For our case, we focus on the sparse coding subproblem alone and utilize an overcomplete Discrete326

Cosine Transform (DCT) dictionary, D * IR64×256, and overlapping blocks of size 8× 8. The rest of327

the free parameters are set according to the heuristics presented in the original work: λ = 30/σ and328

C = 1.15. Our major contribution is the robust estimation of the sparse codes via RobOMP in order to329

handle potential outliers in a principled manner. Two types of zero–mean, homogeneous, additive noise330

(Gaussian and Laplacian) are simulated with different variance levels on 10 independent runs. Each run331

comprises of separate contaminations of 4 well known images (Lena, Barbara, Boats and House) followed332

by the 7 different denoising frameworks, each one based on a distinct variant of OMP. As before, every333

algorithm is referred to as the estimator exploited in the active set update stage.334

Tables 6 and 7 summarize the average performance measures (PSNR in dB) for 5 different variance335

levels of each noise distribution. As expected, OMP is roughly the best denoising framework for additive336

Gaussian noise. However in the Laplacian case, Cauchy achieves higher PSNR levels throughout the337
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K OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

1 0.51 0.54 0.57 0.61 0.62 0.56 0.54 0.54

2 0.54 0.52 0.89 0.87 0.86 0.88 0.88 0.88

3 0.57 0.48 0.95 0.91 0.90 0.93 0.94 0.94

4 0.56 0.45 0.95 0.92 0.90 0.94 0.96 0.95

5 0.55 0.45 0.95 0.92 0.89 0.94 0.96 0.96

6 0.54 0.45 0.95 0.91 0.89 0.94 0.97 0.96

7 0.53 0.45 0.94 0.91 0.89 0.94 0.97 0.96

8 0.52 0.45 0.94 0.91 0.89 0.94 0.96 0.96

9 0.51 0.45 0.94 0.91 0.89 0.94 0.96 0.95

10 0.50 0.45 0.94 0.91 0.89 0.93 0.96 0.95

Table 5. Average classification accuracy on the Extended Yale B Database over K for a fixed rate of 0.4

missing pixels. Best result for each classifier is marked bold. Feature dimension = 128.

σ OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

5 36.33 36.31 35.62 36.56 36.55 36.52 36.20 36.29

10 32.38 32.36 31.01 32.44 32.22 32.39 32.17 32.17

15 30.35 30.33 28.95 30.25 29.88 30.21 30.01 29.97

20 28.97 28.96 27.85 28.78 28.40 28.76 28.58 28.53

25 27.93 27.92 27.12 27.70 27.39 27.70 27.55 27.51

Table 6. Grand average PSNR (dB) of estimated denoised images under zero–mean additive Gaussian

noise exploiting patch–based sparse and redundant representations.

entire experiment. This suggests the Cauchy M–Estimator is more suitable for this type of non–Gaussian338

environment (see Fig. 10 for an example). It is worth noting though that the averaging performed in (23)339

could easily blur the impact of the sparse code solvers for this particular joint optimization. Also, no340

attempt was made to search over the hyperparameter space of λ and C, which we suspect have different341

empirical optima depending on the noise distribution and sparse code estimator. These results are simply342

preliminary and highlight the potential of robust denoising frameworks based on sparse and redundant343

representations.344

DISCUSSION345

An example is considered a univariate outlier if it deviates from the rest of the distribution for a particular346

variable or component (Andersen, 2008). A multivariate outlier extends this definition to more than one347

dimension. However, a regression outlier is a very distinctive type of outlier—it is a point that deviates348

from the linear relation followed by most of the data given a set of predictors or explanatory variables. In349

this regard, the current work focuses on regression outliers alone. The active set update stage of OMP350

explicitly models the interactions between the observation vector and the active atoms of the dictionary as351

purely linear. This relation is the main rationale behind RobOMP: regression outliers can be detected352

and weighted when M–Estimators replace the pervasive OLS solver. If the inference process in sparse353

σ OMP GOMP CMP Cauchy Fair Huber Tukey Welsch

5 36.27 36.25 35.64 36.59 36.56 36.56 36.21 36.30

10 32.22 32.19 31.03 32.44 32.20 32.38 32.15 32.15

15 30.09 30.05 28.97 30.20 29.83 30.15 29.95 29.90

20 28.63 28.58 27.88 28.70 28.33 28.66 28.50 28.45

25 27.51 27.45 27.14 27.60 27.30 27.58 27.45 27.41

Table 7. Grand average PSNR (dB) of estimated denoised images under zero–mean additive Laplacian

noise exploiting patch–based sparse and redundant representations.
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Original Image

Noisy Image

PSNR = 20.1725 dB (  = 25)

Denoised Image Using OMP

PSNR = 27.0709 dB

Denoised Image Using RobOMP (Cauchy)

PSNR = 27.1476 dB

Figure 10. Example of the denoising results for the image “Boats” under Laplacian noise with σ = 25.

Original, noisy, and two denoised results based on OMP and RobOMP (Cauchy variant).

modeling incorporates higher–order interactions (as in Vincent and Bengio (2002)), linear regression354

outliers become meaningless and other techniques are needed to downplay their influence. The relation355

between outliers in the observation vector and regression outliers is highly complex due to the mixing of356

sources during the generative step and demands for further research.357

Even though other OMP variants are utilized in practice for different purposes, e.g. GOMP, ROMP358

and CoSaMP, we decided to disregard the last two flavors mainly due to three factors: space limitations,359

inherent MSE cost functions, and most importantly, they both have been outperformed by CMP in similar360

experiments as the ones simulated here (Wang et al., 2017). The algorithm to beat was CMP due to361

its resemblance to an M–Estimator–based OMP. We believe we have provided sufficient evidence to362

deem RobOMP (and specifically the Tukey variant) as superior than CMP in a wide variety of tasks,363

performance measures and datasets. In this regard, it is worth noting that CMP reduces to the Welsch364

algorithm with the 32–norm of the errors as the estimated scale parameter (s = ||e||2), and hyperparameter365

c =
:

m. The main drawback of such heuristic is the use of a non–robust estimator of the scale, which in366

turn, will bias the sparse code. The CMP authors introduce a data–dependent parameter of the exponential367

weight function (Gaussian kernel of Correntropy) that relies on the dimensionality of the input, m. The368

rationale behind such add–hoc choice is not fully justified, while in contrast, we provide statistically369

sound arguments for our choice of the weight function hyperparameter, i.e. 95% asymptotic efficiency370

on the standard Normal distribution. We believe this is the underlying reason behind the superiority of371

Welsch over CMP on most of the synthetic data experiments and the entirety of the simulations on the372

Extended Yale B Database.373

M–Estimators are not the only alternative to robust linear regression. S–Estimators (Rousseeuw and374

Yohai, 1984) are based on the residual scale of M–Estimators. Namely, S–estimation exploits the residual375

standard deviation of the errors to overcome the weakness of the re–scaled MAD. Another option is376

the so–called MM–Estimators (Yohai, 1987) which fuse S–Estimation and M–Estimation to achieve377

high BDP and better efficiency. Optimization for both S–Estimators and MM–Estimators is usually378

performed via IRLS. Another common approach is the Least Median of Squares method (Rousseeuw,379

1984) where the optimal parameters solve a non–linear minimization problem involving the median of380

squared residuals. Advantages include robustness to false matches and outliers, while the main drawback381

is the need for Monte Carlo sampling techniques to solve the optimization. These three approaches are382
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left for potential further work in order to analyze and compare performances of several types of robust383

estimators applied to sparse coding.384

In terms of image denoising via robust, sparse and redundant representations, future work will involve385

the use of the weight vector in the block coordinate descent minimization in order to mitigate the effect386

of outliers. If sparse modeling is the final goal, K–SVD (Aharon et al., 2006) is usually the preferred387

dictionary learning algorithm. However in the presence of non–Gaussian additive noise, the estimated388

dictionary might be biased as well due to the explicit MSE cost function of the sequential estimation of389

generative atoms. Plausible alternatives include Correntropy–based cost functions (Loza and Principe,390

2016) and 31–norm fidelity terms (Loza, 2018).391

In the spirit of openness and to encourage reproducibility, the MATLAB (Mathworks) code corre-392

sponding to all the proposed methods and experiments of this paper are freely available at https:393

//github.com/carlosloza/RobOMP.394

CONCLUSION395

We proposed a novel, greedy approximation to the sparse coding problem fully based on the theory of396

M–Estimators under a linear model. Unlike the original Orthogonal Matching Pursuit, our framework is397

able to handle outliers and non–Gaussian errors in a principled manner. In addition, we introduce a novel398

robust sparse representation–based classifier that outperform current state of the art and similar robust399

variants. Preliminary results on image denoising confirm the plausibility of the methods and open the door400

to future applications where robustness and sparseness are advantageous. The proposed five algorithms do401

not require parameter tuning from the user and, hence, constitute a suitable alternative to ordinary OMP.402
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