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ABSTRACT

Identifying protein-phenotype relations is of paramount importance for applications such as uncovering

rare and complex diseases. One of the best resources that captures the protein-phenotype relationships is

the biomedical literature. In this work, we introduce ProPheno, a comprehensive online dataset composed

of human protein/phenotype mentions extracted from the complete corpora of Medline and PubMed

Central Open Access. Moreover, it includes co-occurrences of protein-phenotype pairs within different

spans of text such as sentences and paragraphs. We use ProPheno for completely characterizing the

human protein-phenotype landscape in biomedical literature. ProPheno, the reported findings and the

gained insight has implications for (1) biocurators for expediting their curation efforts, (2) researches for

quickly finding relevant articles, and (3) text mining tool developers for training their predictive models.

The RESTful API of ProPheno is freely available at http://propheno.cs.montana.edu.

INTRODUCTION

Proteins are the workhorses of life, and they perform a wide range of operations in cells. Thousands

of proteins work together to provide the functionality of cells. However, when a gene is mutated, a

malfunction of protein may occur which can lead to a genetic disorder (NIH, 2018).

The observation of phenotypes is important in studying genetic disorders. In the medical context, a

phenotype can be characterized as a deviation from normal morphology or behavior (Robinson, 2012).

The study of phenotypes in medicine consists of detailed understanding of the phenotypic abnormalities

associated with each disease (Robinson, 2012). Variations of genes and proteins cause functional changes

and identifying the effects of their mutations is necessary for understanding the resulting phenotype,

i.e. the observed disease state (Baker and Rebholz-Schuhmann, 2009). Furthermore, many patients

suffer from rare diseases caused by genomic variants, i.e. diseases caused by disruptions in regular gene

expression. However, many variants are quite rare, making genotype-phenotype correlations dubious and

clinical interpretations difficult (Firth et al., 2009). One way to increase certainty would be identifying

patients who share the same or overlapping gene variants and phenotypic characteristics (Firth et al., 2009).

Therefore, finding relations between proteins and phenotypes can be considered vital for applications

such as finding treatments and cures for rare diseases.

Since biologists, researchers, and scientists report their findings and observations from wet-lab

experiments and clinical studies in biomedical literature, it can be considered one of the most valuable

resources for extracting protein-phenotype relations. Therefore, exploring the feasibility of extracting

relations between proteins and phenotypes mentioned in biomedical literature through text mining and

machine learning has recently gained significant attention (Singhal et al., 2016; Korbel et al., 2005; Goh

et al., 2006; Khordad and Mercer, 2017). However, the first main hurdle in developing text mining models

is the absence of a gold-standard dataset of bio-entity mentions, i.e. proteins and phenotypes, which

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27479v2 | CC BY 4.0 Open Access | rec: 2 May 2019, publ: 2 May 2019



encompasses the complete corpora of published biomedical articles. In this work, we attempt to resolve

this issue by developing such a comprehensive dataset.

Human Phenotype Ontology (HPO) is a standardized vocabulary which covers a wide range of

phenotype abnormalities observed in human diseases (Köhler et al., 2013). HPO is composed of five

sub-ontologies among which Phenotypic abnormality is the main sub-ontology which describes clinical

abnormalities. Each sub-ontology is organized in a hierarchical structure where more general terms are

close to the top while more specific terms are closer to the bottom. Each pair of terms in the hierarchy are

linked with a is-a relationship. In this paper, we use phenotypes and HPO terms, interchangeably.

HPO website1 provides gold-standard annotations for a large collection of human proteins. However,

currently, only a small portion of known human proteins have HPO annotations (Köhler et al., 2013). But,

it is believed that there are many other human proteins which are associated with diseases and hence should

be annotated with HPO terms (Peter Robinson, personal communication, 2015). Biocuration, which is the

process of extracting knowledge from unstructured text and storing the data in knowledge bases, is the

primary technique for expanding the biological knowledge bases such as the HPO database. Biocuration

is usually performed manually with the help of computational tools (International Society for Biocuration,

2018). This process is considered tedious and the computational tools are also evolving in terms of

efficiency and accuracy. One of the the first steps in bicuration of human protein-phenotype information

is identifying and extracting protein and phenotype names from biomedical literature. Currently, there

is no publicly available dataset of proteins and phenotype names that covers the majority of the entire

biomedical literature corpora.

In this paper, we introduce ProPheno, which is an online and publicly accessible dataset composed of

proteins, phenotypes (HPO terms), and their co-occurrences (co-mentions) in text which are extracted

from Medline abstracts and PubMed Central (PMC) Open Access full-text articles using a sophisticated

in-house developed text mining pipeline. This dataset covers all terms in the Phenotypic abnormality

sub-ontology. Using the ProPheno data, we also conduct a comprehensive characterization of the protein-

phenotype landscape in biomedical literature. The findings from this characterization has implications for

biocurators and researchers working in related fields as well as practitioners in the area of developing

automated text mining pipelines for biocuration. One direct application of the ProPheno data is the

generation of features for computational models that can predict phenotypes for human proteins; this task

is one of the subtasks in the CAFA (The Critical Assessment of protein Function Annotation algorithms)

competition (Jiang et al., 2016). In a recent study (Pourreza Shahri and Kahanda, 2018), we demonstrated

that co-mentions of proteins and phenotypes (extracted from ProPheno dataset) play an important role in

improving the prediction of HPO terms associated with a given protein. ProPheno is accessible through a

RESTful API, which can be used in many programming language as well as a web interface (online demo

version) for online access.

METHOD

We developed the text mining pipeline2 shown in Figure 1, which is an extension of the pipeline described

elsewhere (Pourreza Shahri and Kahanda, 2018). This pipeline extracts proteins/phenotypes and their co-

mentions by consuming 27,590,898 Medline abstracts (downloaded on 07/01/2017) and 1,873,381 PMC

full-text articles (downloaded on 3/15/2018) as the input. PMC full-text articles were downloaded from

the PubMed website in XML format. A small portion of these full-text articles (140,370) did not contain

any text, so we removed them from consideration. We employed PubMed XML Parser (Achakulvisut and

Acuna, 2015) to extract the paragraphs from the remaining 1,733,012 full-text articles, and stored the

corresponding paragraphs in separate files. It is worth mentioning that to avoid duplicating abstracts, we

do not take the abstract section of full-text articles into account.

We employed NCBO Virtual Appliance (NCBO Annotator) from BioPortal (Jonquet et al., 2009;

Noy et al., 2009) for extracting HPO terms from the literature. Protein mentions were retrieved from the

literature using LingPipe (Carpenter, 2007). We used UniProt (Consortium, 2018) synonyms3 of proteins

to improve the coverage when extracting proteins from literature.

We also considered other alternatives to extract these entities such as OBO annotator (Taboada et al.,

2014) and Bio-Lark CR (Groza et al., 2015a) for extracting phenotype names, and GNormPlus (Wei

1https://hpo.jax.org/app
2Image created using https://www.draw.io
3ftp://ftp.uniprot.org/pub/databases/uniprot/current release/knowledgebase/idmapping/by organism/HUMAN 9606 idmapping.dat.gz
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Figure 1. Overview of the text mining pipeline for extracting protein and phenotype names as well as

their co-occurrences within different spans of text.

et al., 2015) and ABNER (Settles, 2005) for extracting protein names. However, most of these systems

either did not provide desirable results or were difficult to access or use. We selected the list of phenotype

extraction tools from a study by Groza et al. (Groza et al., 2015b).

The introduced dataset comprises UniProt identifiers and HPO identifiers for proteins and phenotypes

extracted from biomedical literature, respectively, which are categorized by the abstracts and full-text

articles. This dataset also provides co-mentions of proteins and phenotypes in different spans of text. We

used three spans: (1) sentence-level co-mentions (SCoM) which occur in a single sentence (2) paragraph-

level co-mentions (PCoM) which occur in a single paragraph (i.e. across multiple sentences), and (3)

document-level co-mentions (DCoM) which occur in a single document (i.e. across multiple paragraphs).

We have previously worked on extracting co-mentions in a limited setting (Pourreza Shahri and

Kahanda, 2018) in which we showed that SCoMs and PCoMs can improve the performance of protein-

phenotype prediction tools. In an effort to primarily make these co-mentions readily available for other

researchers in the filed, ProPheno was born. Figure 2 shows an example of a co-mention of a protein

and a phenotype in a sentence (i.e. a sentence-level co-mention). Figure 3 is a screenshot of ProPheno

demo version, which shows the list of first 10 HPO terms extracted from abstracts. In this figure, each

row depicts an occurrence of a phenotype mentioned in text, and ”Start Location” and ”End Location”

indicated the actual location of occurrence.

Figure 2. An example of a sentence-level protein-phenotype co-mention which is extracted from the

article PMID: 10855734. The corresponding UniProt ID and HPO ID for the protein and the phenotype

are P01308 and HP:0000822, respectively.
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Figure 3. The list of first 10 HPO terms mentioned in the first abstracts ordered by PubMedID shown in

the online demo version. Each row shows an occurrence of an HPO term in an abstract. ”Start Location”

and ”End Location” show the position of the matched phenotype in text, e.g. Start Location = 98 and End

Location = 103 show that the phenotype has been mentioned in text starting from index 98 and ends at

index 103.

RESULTS

In this section we present detailed statistics and analysis on the mentions of proteins and phenotypes in

different spans of text.

Proteins and Phenotypes

Table 1 shows the total number of the unique and all proteins and phenotypes in abstracts and full-text

articles. Since full-text articles include more details about proteins and phenotypes, intuitively, we expect

more terms in full-text articles. The average number of proteins and phenotypes in abstracts and full-text

articles supports this claim. By looking at the unique number of proteins and phenotypes in abstracts

versus full-text articles, we observe that there are a few proteins and phenotypes which were extracted

only from either abstracts or full-text articles. In this study, we consider various combination of words

which are detected by NCBO Annotator that are matched with a term in the HPO database. For instance,

NCBO Annotator returns ”prostate cancer”, i.e. HP:0012125, and ”cancer”, i.e. HP:0002664, from ”...

prostate cancer ...”, and both words can be matched with corresponding HPO terms in the HPO database.

This can be attributed as the main reason for having a large number of extracted phenotypes. However, the

number of unique phenotype names is relatively low in comparison with the total number of phenotypes

in the HPO dataset. The main reason for this discrepancy is that we chose to work with the phenotypes

for which there are 10 or more annotations in the HPO database.

Table 1. Stats of Protein/Phenotype Mentions in Biomedical Literature

Abstracts Full-texts Total

Unique proteins 2,178 2,389 2,512

All proteins 1,807,246 2,173,695 3,980,941

Avg. number of proteins 2.11 4.63 -

Unique phenotypes 2,224 2,227 2,277

All phenotypes 30,954,930 32,639,095 63,594,025

Avg. number of phenotypes 3.58 24.8 -

Figures 4 and 5 show the distribution of unique proteins and phenotypes in abstracts and full-text
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articles, respectively4. As mentioned before, there are a few proteins and phenotypes which were extracted

from either abstracts or full-text articles. We also observe that our pipeline can detect 74% of the proteins

and 92% of the phenotypes curated in the HPO database.

Figure 4. The Distribution of Unique Proteins in Abstracts and Full-texts

Figure 5. The Distribution of Unique Phenotypes in Abstracts and Full-texts

4Diagrams generated by https://github.com/tctianchi/pyvenn
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Figure 6. The Distribution of Unique Pairs of Co-mentions in SCoMs, PCoMs, DCoMs, and

protein-HPO annotations curated in the HPO database. Each of the ovals shows the number of common

unique co-mentions between the four data sources.

Co-mention of Proteins and Phenotypes in Text

As mentioned in the previous section, co-mentions are defined as the co-occurrences of proteins and

phenotypes within a certain span of text extracted from our text mining pipeline. Statistics on these

co-mentions in various spans of text, i.e. sentences, paragraphs, and full-text documents, are given

in Table 2. The distribution of unique pairs of proteins and phenotypes in SCoMs, PCoMs, DCoMs,

and the HPO gold standard are shown in Figure 6. We observe that 75,268 unique pairs in the HPO

gold standard were not extracted by our pipeline. There are two possible reasons that can prevent the

pipeline to extract these pairs. First, either LingPipe or NCBO Annotator may have failed to extract the

corresponding proteins or phenotypes, respectively. Second, they may have been either not co-occurred in

at least a document or one entity is mentioned in the abstract while the other entity is in the body of the

article. Besides, there are 10,812 unique pairs in PCoMs (2,427 in common with SCoMs) which are not

recognized by the DCoMs. This is because we treat the abstracts as paragraphs, and since we only have

one copy of the abstracts, DCoMs do not contain those unique pairs.

Analysis of Protein and Phenotype Named Entities

Figure 7 shows the distribution of protein names in SCoMs, PCoMs, and DCoMs. The number of less

frequent proteins in SCoMs is more than proteins with high frequency, and the number of proteins in for

each frequency in SCoMs is higher than corresponding number in PCoMs and DCoMs. This observation

suggests that the larger spans of text are able to identify more proteins.
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Table 2. Statistics of Co-mentions Extracted from both Medline and PMC. We consider abstracts as

paragraphs, so we do not have Document-level information for the abstracts.

Full-text articles

Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 1,845 1,498 49,686 693,005

Paragraph-level 2,185 1,896 122,522 4,323,395

Document-level 2,362 2,126 463,719 99,818,140

Abstracts

Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 1,684 1,461 42,774 496,969

Paragraph-level 1,975 1,827 102,881 4,116,999

Document-level - - - -

All

Span Unique proteins Unique HPO terms Unique co-mentions Total co-mentions

Sentence-level 1,998 1,623 69,120 1,189,974

Paragraph-level 2,313 1,976 225,403 8,440,394

Document-level 2,362 2,126 436,719 99,818,140

Figure 7. The Distribution of Protein Mentions
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Figure 8. The Distribution of HPO-term Mentions

Figure 9. The Distribution of the Unique pair mentions

The same can be observed in Figure 8 which shows distribution of HPO terms in SCoMs, PCoMs,

and DCoMs. However, in Figure 9 which shows the distribution of unique protein and HPO-term pairs,

occurrences of unique pairs for each frequency in DCoMs is higher than corresponding values in SCoMs

and PCoMs. One of the reasons of this observation can be that many of the unique pairs occur in sentences

and do not occur more in larger spans of text. Therefore, larger spans of text have more occurrences of

unique pairs for every frequency.

Figure 10 shows the distribution of the depths (with respect to the hierarchy) of all HPO terms

recognized in the literature. This plot conveys that more specific HPO terms are less frequent in the

literature. One of the reasons of this observation can be that there are less number of mentions of more

specific terms in the literature. Figure 11 demonstrates the distribution of unique HPO terms detected in

the literature and HPO terms from the HPO gold standard. We observe that our pipeline is able to detect

the majority of HPO terms from the HPO gold standard.

In addition, the evolution of the protein-phenotype landscape in biomedical literature is shown in

Figure 12. We observe a slight increase in the number of unique proteins, and a relatively higher increase

in the number of unique HPO terms between 2009 and 2018.
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Figure 12. The evolution of the protein-phenotype landscape in Biomedical Literature

CONCLUSIONS AND FUTURE WORK

In this paper we presented a dataset of proteins and phenotypes (HPO labels) in the entire biomedical

corpora derived from Medline abstracts and PubMed Open Access full-text articles. This dataset was

generated using an expanded text mining pipeline from one of our previous work (Pourreza Shahri and

Kahanda, 2018).

We also reported detailed analysis and statistics on the mentions of proteins and phenotypes in the

entire corpora along with co-mentions of these entities in various spans of biomedical text. Additionally,

we presented the evolution of biomedical literature over the period of 2009-2018.

In this study, we used bio-entity recognizers which had shown good performance in identifying bio-

entities in biomedical text. However, bio-entity recognition is still a challenging problem. Consequently,

advances in the performance of bio-entity recognizers would enhance the ability of our pipeline for
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correctly detecting more proteins and phenotypes in text.

Despite detecting millions of proteins and phenotypes in text, it is understood that a portion of the co-

mentions are false positives (the mere occurrence of two entities within a certain span does not constitute a

valid relationship). Therefore, the next step would be developing a context-sensitive co-mention classifier

or a filter to remove these false positives. The various sections in a published article include different types

of information (e.g. information contained in the introduction versus results sections); this high-level

location information about co-mentions could be beneficial for biocuration. Therefore, a future step is to

include the section labels for each entity pair. This will provide the capability of listing the co-mentions

in a ranked order according to the confidence scores predicted by the classifier. In this study, we limit

the scope to the Phenotypic Abnormality sub-ontology. In the future, we plan to include the other

sub-ontologies of HPO. Moreover, in this study we considered all the phenotypes extracted using NCBO

annotator (which have 10 or more annotations in the HPO database). This includes both abstract (i.e.

general) terms and specific terms. In the future, we will filter out the more abstract terms and keep the

more specific terms.

Since the biomedical literature is expanding exponentially, we plan to develop an automated online

tool to extract all types of co-mentions on demand, and remove the need to update the dataset regularly.
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