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Background. Cities around the world have converged on structural and environmental characteristics

that exert similar eco-evolutionary pressures on local communities. However, evaluating how urban

biodiversity responds to urban intensification remains poorly understood because of the challenges in

capturing the diversity of a range of taxa within and across multiple cities from different types of

urbanization.

Methods. Here we utilize a growing resource4citizen science data. We analyzed 66,209 observations

representing 5,209 species generated by the City Nature Challenge project on the iNaturalist platform, in

conjunction with remote sensing (NLCD2011) environmental data, to test for urban homogenization at

increasing levels of urban intensity across 14 metropolitan cities in the United States.

Results. Based on community composition analyses, we found that while urban homogenization occurs

to an extent, urban biodiversity is often much more a reflection of the regional specificity of taxa. On the

other hand, we also found that the most commonly observed species are often shared between cities and

are non-endemic and/or have a distribution facilitated by humans. This study highlights the value of

citizen science data in answering questions in urban ecology.
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17 Abstract

18 Background. Cities around the world have converged on structural and environmental 

19 characteristics that exert similar eco-evolutionary pressures on local communities. However, 

20 evaluating how urban biodiversity responds to urban intensification remains poorly understood 

21 because of the challenges in capturing the diversity of a range of taxa within and across multiple 

22 cities from different types of urbanization. 

23 Methods. Here we utilize a growing resource4citizen science data. We analyzed 66,209 

24 observations representing 5,209 species generated by the City Nature Challenge project on the 

25 iNaturalist platform, in conjunction with remote sensing (NLCD2011) environmental data, to test 

26 for urban homogenization at increasing levels of urban intensity across 14 metropolitan cities in 

27 the United States. 

28 Results. Based on community composition analyses, we found that while urban homogenization 

29 occurs to an extent, urban biodiversity is often much more a reflection of the regional specificity 

30 of taxa. On the other hand, we also found that the most commonly observed species are often 

31 shared between cities and are non-endemic and/or have a distribution facilitated by humans. This 

32 study highlights the value of citizen science data in answering questions in urban ecology.

33
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34 Introduction

35 Cities around the world exist in a range of environmental contexts, yet because of the 

36 requirements and preferences of their human inhabitants, they share commonalities such as 

37 landscape fragmentation, altered water and resource availability, and high densities of fabricated 

38 structures and impervious surfaces that alter climate (Rebele, 1994). With this ecological 

39 homogenization (Groffman et al., 2014) come potential consequences on the biodiversity of the 

40 organisms that live in and around cities. Plants have been found to bloom earlier in city centers 

41 due to the urban heat island effect (Mimet et al., 2009), bird migratory patterns have shifted to 

42 take advantage of resource availability (Tryjanowski et al., 2013), and invasive species can be 

43 more prominent because of increased rates of species introductions (Tsutsui et al., 2000). While 

44 such modifications are still relatively recent on an evolutionary time scale, phenotypic changes 

45 have been observed across taxa on a global scale as eco-evolutionary consequences of 

46 urbanization (Alberti, 2015). Understanding such changes can help us to better plan for future 

47 ecological dynamics in cities, such as predicting population vulnerability to invasive species or 

48 minimizing human-wildlife conflicts, such as property damage or health hazards (ex. disease 

49 vectors). 

50 Common ecological metrics such as species richness and abundance have shown mixed 

51 results in urban environments. A review of 105 studies on species richness along urban to rural 

52 gradients demonstrated inconsistent patterns, with some studies finding that species richness 

53 decreases with higher urban intensification, while other studies found the opposite (McKinney, 

54 2008). Often, this greater than expected species richness can be largely attributed to non-native 

55 species (McKinney, 2008), highlighting the importance of additionally considering shifts in 

56 community composition. The commonality and spread of urban specialists has led to concerns of 

57 urban biotic homogenization, the idea that on a global scale, the biodiversity of cities show 

58 convergence and the cascading impacts this could have for conservation through reducing beta 

59 diversity (Clavel, Julliard & Devictor, 2011; Pearse et al., 2018). 

60 A challenging aspect to measuring urban homogenization is gathering sufficient data to 

61 cover the variation in ecological communities within and between cities. Within city biodiversity 

62 levels can vary greatly by neighborhood (Sushinsky et al., 2013). To address this, cities have 

63 frequently been examined along rural to urban gradients, although this method has been 

64 criticized for its oversimplification of features and the vagueness of definitions that makes 

65 comparisons between cities difficult (McDonnell & Hahs, 2008). Broad terminology like 

66 <urban= can refer to dense downtown built-up environments, residential neighborhoods, 

67 industrial areas, or parks. Even within a single type, such as residential neighborhoods, factors 

68 such as socioeconomic demographics or landscape legacy can contribute to even more local 

69 habitat heterogeneity (Leong, Dunn & Trautwein, 2018).

70 One solution to capturing all this variation and exploring patterns of biodiversity across 

71 geographically disparate cities is to utilize data generated through public engagement. Broadly 

72 referred to as citizen science (although we emphasize that one need not be a citizen of any 

73 nationality to participate), this process involves public collaboration with professional scientists 
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74 in ways that help our understanding of the natural world (Ballard et al., 2017). Citizen science 

75 data collection overcomes the challenges of accessing private land and can be scaled up to cover 

76 multiple cities with relative ease (Spear, Pauly & Kaiser, 2017). There are obvious challenges 

77 such as collection biases and identification quality that need to be accounted for (Isaac et al., 

78 2014), but citizen science is a potentially valuable tool that can be used far beyond science 

79 engagement or exploring expanding species distributions. 

80 Here we examine patterns in urban biodiversity across 14 metropolitan areas in the 

81 United States using data generated by the general public. We take a multi-scale approach to 

82 examine urban biotic homogenization both between and within cities. Specifically, we ask 1) 

83 how biodiversity is shared across cities in different regions; and 2) whether the effect of biotic 

84 homogenization gets stronger as urbanization intensifies.

85

86 Materials & Methods

87 The City Nature Challenge is a citizen science initiative started by the California 

88 Academy of Sciences and the Los Angeles Museum of Natural History that utilizes the 

89 iNaturalist platform to encourage users to photograph urban nature during a bioblitz in late April. 

90 For the 16 cities that participated in 2017 (San Francisco CA, Los Angeles CA, Seattle WA, Salt 

91 Lake City UT, Austin TX, Houston TX, Dallas TX, Duluth, MN, Minneapolis MN, Chicago IL, 

92 Nashville TN, Miami FL, Raleigh NC, Washington DC, New York NY, and Boston MS) we 

93 accessed all available City Nature Challenge data from for all years available. Next, we filtered 

94 all observations to include <Research Grade= only, which is defined by the iNaturalist platform 

95 as being verifiable with a photograph and having reached a species identification consensus by at 

96 least 2 users in the iNaturalist community (more details available at inaturalist.org). We further 

97 filtered these observations to only include those observations that had open and un-obscured 

98 geocoordinates (geoprivacy both by user choice and for species with a conservation status are 

99 maintained on the iNaturalist platform). Because this reduced the number of available 

100 observations, we excluded the cities of Duluth and Nashville from further analyses. The 14 

101 included metropolitan areas (Figure 1) cover a range of geographic and environmental diversity. 

102 There were a range of number of observations between cities, highlighting the disproportionate 

103 sampling effort, with Miami having the fewest observations at 1,011 and the San Francisco Bay 

104 Area having the most at 15,733. The average number of observations of the 14 cities was 5,077 

105 +/-3817. Differences in collecting effort are addressed in our analyses.

106 All data and scripts used for the following analyses can be found at 

107 https://github.com/mishoptera/cnc.

108

109 Biotic homogenization across cities

110 We identified which species were found in the majority of the cities to see how this 

111 widespread group compared with the total pool of observations. We also divided the dataset by 

112 major taxa: 4 plant groups (monocots, dicots, ferns, and conifers), 6 animal groups (birds, 
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113 insects, reptiles, amphibians, mammals, and gastropods), and an <other= category to allow for 

114 better comparisons between similar taxa. 

115

116 Biotic homogenization with increasing urban intensification

117 After seeing how biodiversity was shared between cities, we asked whether the biotic 

118 homogenization effect was stronger with increasing urbanization intensity. Based on geographic 

119 coordinates, we linked all observations with a NLCD2011 land cover classification from the 

120 Multi-Resolution Land Characteristics Consortium (MRLC). Assessed nationwide at a 30 x 30m 

121 resolution, every pixel is assigned one of 16 land cover classifications, four of which are forms 

122 of developed land with increasing urbanization intensity (developed-open space, developed-low 

123 intensity, developed-medium intensity, developed-high intensity; further details in Table 1). We 

124 collapsed the remaining land cover classifications into <water=, <agricultural=, and <natural=. As 

125 we were only interested in comparing increasing levels of urbanization against the natural land 

126 use type, we excluded any observations that were classified as having occurred within 

127 agricultural or water pixels. 

128 We then analyzed the relative influence of level of urban intensification and city on 

129 community composition. We built Bray-Curtis dissimilarity matrices comparing the species 

130 composition of each level of urbanization within each city and conducted PERMANOVA 

131 (Permutational Multivariate Analysis of Variance) analyses with 999 iterations nested by city 

132 (and then also city nested by level of urbanization) (R package vegan, (Oksanen et al., 2015)). 

133 We visualized community composition using NMDS (Non-Metric multi-Dimensional Scaling) 

134 with 100 restarts. We applied a stress cut-off of 0.20; if stress was >0.20, we considered the 

135 NMDS plot to be unreliable.

136 Next, we approached biotic homogenization from an individual species level to explore 

137 whether any species benefitted from increasing urban intensity. We focused on species that had 

138 over 100 observations to prevent potential biases associated with rarity, and created two different 

139 but complementary metrics--a <City Accumulation Metric= and an <Averaged Ranking Metric=. 

140 The City Accumulation Metric (CAM) quantified the number of cities a species was found in for 

141 each of the 5 levels of increasing urbanization intensity, with the assumption that the urban 

142 specialists should accumulate a higher city count in higher intensity land cover types than the 

143 more natural land cover types which would vary greatly based on local environmental 

144 conditions. The Averaged Ranking Metric (ARM) was a way to compare species relative to 

145 similar taxa based on rank rather than using absolute number of observation comparisons to help 

146 mitigate potential biases of different levels of collecting effort between cities and between land 

147 use types. We calculated the rank of a species within its taxa group for each land cover type for 

148 each city, then all rankings within each land cover type were averaged across cities. Here, urban 

149 specialists would be expected to have a higher averaged rank in the high intensity land cover 

150 types because they should make up a larger proportion of the population than in the more 

151 surrounding natural areas. Based on these metric values, we calculated a linear model slope for 

152 each species9 City Accumulation and Averaged Ranking metrics. A positive slope for the City 
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153 Accumulation Metric indicated species were found in more cities as urban intensity increased. 

154 Similarly, the slope for the Average Ranking Metric tracks higher-placed rankings with higher 

155 urban intensity. More details for these metrics can be found in Supplementary Materials. 

156

157 Results and Discussion

158

159 Biotic homogenization across cities

160 We analyzed 66,209 citizen science research grade iNaturalist observations across 14 US 

161 metropolitan areas. Overall, dicots, the largest plant group, were overwhelmingly the most 

162 observed (59.6%) and had the most species (52.4%). The next most observed groups were birds 

163 (12.8%), monocots (8.7%), and insects (8%). However, despite making up only 8% of the 

164 observations, insects actually made up 18.4% of the total species diversity. Birds, on the other 

165 hand, made up only 7.8% of the diversity, meaning they have a higher proportion of number of 

166 observations per species. 

167 Of the 5,209 observed species, 100 were found in the majority (8 or more) of the cities, 

168 (Table 2) and were primarily birds and dicots (36 each), and a few mammals (7), insects (7), and 

169 reptiles (4). There was only one widespread species each for amphibians, monocots, and 

170 conifers, and no representative species for gastropods or ferns. Although only 1.9% of the total 

171 species diversity, these cosmopolitan species made up 21.4% of the total observations. Two 

172 birds, the rock dove and American crow, were the only species observed in each of the 14 cities. 

173 Ten additional species were observed in 13 cities each47 of which were also birds (red-winged 

174 blackbird, mallard, great blue heron, turkey vulture, house sparrow, American robin, and 

175 mourning dove), but also one dicot (common dandelion), one insect (Asian lady beetle), and one 

176 mammal (common raccoon). 

177 Taxa varied in how cosmopolitan they were as a group (here defined as being found in 

178 the majority of our cities). Mammals and birds had the highest proportions of cosmopolitan 

179 species (10.6% and 10.1% respectively). On the opposite end of the spectrum, insects and dicots 

180 had a much smaller proportion of their species observed in the majority of cities (0.83% and 

181 1.5% respectively). Our findings that cities comprise a few cosmopolitan species with a mix of 

182 many local species complement other findings that the majority of urban species are still local 

183 species (Aronson et al., 2014). 

184 However, these cosmopolitan species accounted for the majority of observations for 

185 mammals (55.2%) and birds (64.8%), and even made up a large proportion of observations for 

186 insects (25.3%) and dicots (15.7%). While it is possible that these patterns could also be 

187 explained by cosmopolitan species being more recognizable to people (and therefore more 

188 frequently identified, leading to an inflation in the proportion of observations for these groups), 

189 the substantial proportion of cosmopolitan species could also be indicative of a downward trend 

190 of relative abundance native species populations in cities. Previous multi-city studies of biotic 

191 homogenization have relied on species lists (Aronson et al., 2014), which can not capture shifts 

192 in community composition. With mass species declines in tropical and temperate ecosystems 
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193 (Hallmann et al., 2017; Lister & Garcia, 2018), such findings of cosmopolitan species making up 

194 such a large portion of the community relative to native species merit further investigation.

195

196 Biotic homogenization with increasing urban intensification 

197 We next focused on the varying degrees of urban intensification within cities to explore 

198 whether the effect of biotic homogenization grows stronger the as a landscape becomes more 

199 developed. We found significant differences in community composition with varying levels of 

200 urban intensity land cover types (nested by city; Table 3) in our PERMANOVA analysis. 

201 Community composition was also influenced by city (nested by land cover types; Table 4). 

202 These patterns were consistently found in analyses that included all taxa, plants only, and 

203 animals only. Though communities varied according to land cover type and city, city generally 

204 explained more of the pattern than did land cover type. 

205 These results, which suggest that urban biodiversity is to some degree city specific but 

206 also tied to particular levels of urbanization, become more clear when visualized in the NMDS 

207 plots. All NMDS plots showed overlap between the different levels of urbanization in an ordered 

208 way along the urbanization spectrum, in that more similar levels of urbanization also share more 

209 similar communities (Figure 2a). Plants exhibited a slightly different pattern from animals, with 

210 the plant communities observed in the highest levels of urban intensification having the greatest 

211 differentiation, opposite to the pattern that would be expected if urban homogenization were 

212 occurring (Figure 3). This contrasts with a previous study that found that across cities, cultivated 

213 yards tended to be more similar to one another compared to the similarity of their associated 

214 natural areas across cities (Pearse et al., 2018), which could be due to being unable to 

215 differentiate between cultivated and spontaneous vegetative growth observations. The iNaturalist 

216 platform discourages the recording of cultivated plants and animals, although there is an option 

217 to indicate if an observation contains a captive or cultivated species. However, of all the 

218 observations, only one record had that label--a desert willow plant outside an elementary school 

219 in a Dallas suburb. 

220 We found that communities, regardless of level of urban intensification, within the same 

221 city were found close together on the NMDS plots4a pattern further reinforced by region 

222 (Figure 2b). For example, all three Texan metropolitan cities (Houston, Dallas, and Austin) were 

223 grouped near one another, as were the cities along the Atlantic (Boston, New York City, and 

224 Washington DC) and Pacific Coasts (Seattle, San Francisco, and Los Angeles). Miami, being 

225 more geographically isolated and environmentally distinct than the other cities was relatively far 

226 on the plot from the other cities. Such findings complement what we had found on the between 

227 cities comparison, where urban communities are largely a reflection of the local regional 

228 community, with a few cosmopolitan species. This regional clustering was found for both plants 

229 and animals. Animal communities overall were more similar between cities than plant 

230 communities, perhaps because of their mobility and ability to respond relatively quickly to land 

231 cover changes. 
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232 Because of the regional patterns we observed, we reran the community composition 

233 analyses for all taxa in a series of city triads of increasing distance. Specifically we focused on 

234 the Texas group (Houston, Dallas, and Austin), Atlantic Coast group (New York City, Boston, 

235 and Washington DC), Pacific Coast group (Seattle, Los Angeles, and San Francisco), and a fairly 

236 widespread Central United States group (Salt Lake City, Minneapolis, and Chicago). 

237 Unsurprisingly, the PERMANOVA tests showed that as environmental region became less of an 

238 explanatory factor, and importance of land cover type increased (Table 3 & Table 4). Further, the 

239 triads that covered a smaller geographic area (Texas and Atlantic coast groupings) had greater R2 

240 values than the more geographically spread out triads (Pacific Coast and Central United States 

241 groupings), indicating that as environmental and geographic context becomes more similar, the 

242 role of urban intensification becomes more prominent. 

243 The communities of each level of urban intensification appeared to be ordered along 

244 increasing levels of urbanization, but the highest levels of urbanization were more distinct from 

245 the other land cover types in these regional triad-based NMDS plots (Figure 4) than was found 

246 previously. For the Atlantic and Pacific Coast cities, there appeared to be a longitudinal gradient, 

247 with the cities falling in the geographic middle (New York City and San Francisco respectively) 

248 having all of their land cover community compositions falling between the community 

249 compositions of cities that were more north and south. Further supporting our findings from the 

250 PERMANOVA analyses, the distinctness of communities from each land cover type were more 

251 evident in those triads that have cities that are geographically closer to one another. In other 

252 words, as environmental context becomes less variable, levels of urbanization become more 

253 important in defining the community composition.

254 We looked deeper into these patterns at the individual species level, finding that the 

255 directionality and magnitude of species9 slopes for the City Aggregation and Averaged Ranking 

256 metrics generally supported one another4in that species that accumulated more cities in the 

257 higher intensity urban land cover types also tended to have higher averaged rankings in the 

258 higher intensity urban land cover types. Many species demonstrated a preferential association for 

259 either natural or high-intensity urban areas across all the cities they were found in. In general, we 

260 found that those species that favored higher intensity urban land cover tended to be non-natives, 

261 having origins in Europe, North Africa, and South Africa (ex. common dandelion, white clover, 

262 common ivy, house sparrow, rock dove, common starling). Conversely (and expectedly), those 

263 that were found to favor more natural sites are native to North America (ex. poison ivy, Virginia 

264 creeper, northern cardinal).

265 Among the widespread cosmopolitan species we identified in the between cities 

266 comparison, we expected there to be a preferential association for the higher intensity land use 

267 types. There were in fact several species that showed this pattern3such as the house sparrow and 

268 rock dove. However, just as many widespread species leaned toward the less disturbed natural 

269 land cover types 3 such as the white tail deer (Figure 5). Rather it seems there are multiple 

270 human-associated mechanisms that act at different scales. Human transportation networks, as 

271 well as agriculture and other human directed habitat shifts have facilitated species introductions 
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272 and expanded species ranges, while urbanization has created unique habitats that allow particular 

273 species to thrive. While humans are a common denominator, species that benefit from range 

274 expansions do not necessarily also benefit from urbanization.

275 The western honey bee is an example of a species that varied greatly in which land cover 

276 type it <favored=4it was most frequently observed in the highest intensity urban land cover 

277 types in Washington DC and Los Angeles, the natural land cover types for Austin, and 

278 somewhere along the urbanization spectrum for everywhere else. The honey bee was found in 

279 every city except Minneapolis and Seattle, and was most frequently observed in the Texan and 

280 Californian cities. Pollinators, and honey bees in particular, have been shown to be sensitive to 

281 climatic differences (Gordo & Sanz, 2006; Bartomeus et al., 2011), and the varying 

282 environmental conditions between cities in April could explain why the honey bee was not found 

283 in the two northernmost cities and most abundant in the more southern ones. Further, the 

284 <snapshot= approach of the City Nature Challenge captures cities at different points in their 

285 seasonal progression, as bee abundance phenology is known to vary between land cover types 

286 (Leong et al., 2016). 

287 Many frequently observed species are also invasive species4such as garlic mustard. 

288 While originally introduced to North America from Europe, it thrives in the forest understory 

289 (Stinson et al., 2006). It was particularly abundant in Boston, New York, and Washington D.C., 

290 where it was found across all land cover types. Because there are many ongoing efforts to control 

291 this species (Nuzzo, 1999; Blossey et al., 2001), it will be important for land managers to 

292 consider that urban landscapes could also act as reservoirs maintaining sizeable populations of 

293 this species.

294 Our methodology utilizes within city and land cover type community composition and 

295 ranking metrics to avoid biases based on <collecting effort.= However, there remain other 

296 challenges in teasing apart patterns reflecting ecological dynamics and natural history versus 

297 artifacts associated with data collected opportunistically by members of the public that currently 

298 limit ways in which we can interpret our findings. For example, species with the most 

299 observations are often not truly the most abundant species in cities, rather they are the easiest to 

300 photograph and identify (hence, the <overrepresentation= of bird taxa). Insects and other small 

301 taxa that are more difficult to photograph and identify are almost certainly under recorded. Many 

302 species were rarely observed42435 of the 5,209 total species included in the dataset were 

303 singleton/doubletons, meaning they were only observed once or twice. Although we can assume 

304 that most species should be relatively equally photographable and identifiable across land cover 

305 types, we recommend using multiple approaches to make comparisons <within the biases=, such 

306 as focusing on community composition and nonparametric statistical methods as we have done 

307 here.

308

309

310 Conclusions
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311 Our findings provide some support for biotic homogenization, although no single species 

312 was recorded in the highest level of urbanization across all cities. While we find that community 

313 composition is significantly impacted by degree of urban intensification, the role of geographic 

314 and environmental region seems to have a much larger role in determining communities. Urban 

315 biodiversity is a mix of local natural biodiversity and introduced species that are closely 

316 associated with humans. These novel <hybrid ecosystems,= with both local regional filters and 

317 the human influences of dispersal and resources are a growing reality in many parts of the world, 

318 and are continually changing with species adapting to exploit them (Kowarik, 2011). It has been 

319 suggested that cities can act as reservoirs for native biodiversity (Pearse et al., 2018). 

320 Conversely, natural areas can also be impacted by the diversity of species in the cities that they 

321 border. 

322 Despite the complexity of urban biodiversity dynamics, this work demonstrates the power 

323 of using citizen science data in urban landscapes. The data from the City Nature Challenge 

324 provide an opportunity to look at diverse species occurrences across many cities during the same 

325 snapshot of time in a manner that has not been possible before. The opportunistic nature of 

326 citizen science data is comparable to natural history collections in many ways (Spear, Pauly & 

327 Kaiser, 2017), yet with an additional factor of being focused in urban landscapes. Further, citizen 

328 science data makes up a large proportion of GBIF data and is continuing to grow at a fast rate. 

329 There are many potential future questions to explore with this data, particularly as this dataset 

330 continues to grow and in conjunction with other large environmental datasets. 

331 While we focused our efforts using a subset of available iNaturalist observation data from 

332 the City Nature Challenge and the levels of urbanization from the National Land Cover 

333 Database, there are many more environmental and geopolitical datasets available that can be 

334 used to explore patterns in urban biodiversity. Expanding our scope to include all iNaturalist 

335 observations and museum collection specimen data could help untangle some of the complexity 

336 that we observed. Future work can also pursue broader ecological questions such as the role of 

337 climate change on urban biodiversity, phenological shifts, city connectedness, links with 

338 socioeconomics, the historical legacies of cities, and how these patterns change over time. 

339 Finally, beyond the value that citizen science data can provide in allowing us to ask 

340 questions that would have been impossible to previously explore, the collection of these data 

341 engages the broader public in the ecological and environmental world around them in a 

342 meaningful way. An engaged network of citizen scientists is a built-in audience for science 

343 communication, making citizen science a valuable tool to increase the relevancy of 

344 environmental research. The <mundane everyday biodiversity= in cities is now known to be an 

345 important contributor to city resident well-being and health. Concerns about the growing 

346 disconnect between city residents and nature can be combated (Schuttler et al., 2018) with 

347 increased awareness and participation in decision-making to build healthier and happier cities. 

348
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Figure 1

Map of included City Nature Challenge cities.

The 14 cities are color grouped into five major regions: East, Midwest, South, Southwest, and

West. The size of the circle markers represent the relative number of observations coming

from each city. Miami had the fewest observations (1,011) and the San Francisco Bay Area

had the most (15,733). The average number of observations of the 14 cities was 5,077 +/-

3,817.
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Figure 2

Community composition NMDS plots with all taxa included.

Built from a Bray-Curtis dissimilarity matrix, each point represents the community

composition of a unique combination of one of the five urbanization intensity levels in one of

the 14 cities. NMDS 2-D stress = 0.176. The two plots below are the same except different

grouping visualizations are emphasized: in (A) points are grouped together by land cover

type; in (B) points are grouped together based on city.
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Figure 3

Community composition NMDS plots for plants only.

Built from a Bray-Curtis dissimilarity matrix, each point represents the community

composition of a unique combination of one of the five urbanization intensity levels in one of

the 14 cities. NMDS 2-D stress = 0.145. The two plots below are the same except different

grouping visualizations are emphasized: in (A) points are grouped together by land cover

type; in (B) points are grouped together based on city.
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Figure 4

Community composition NMDS plots for each regional triad with all taxa included.

Built from Bray-Curtis dissimilarity matrices, each plot represents the community

composition of a unique combination of one of the five urbanization intensity levels for one of

the 3 focal cities for each region. Plots are in order of increasing geographic distance

between cities (Texan cities are ~300 km apart, whereas the Central US cities are ~1500 km

apart), and are grouped to highlight land cover type. (A) Texas (Austin, Dallas, and Houston);

NMDS 2-D stress = 0.111. (B) Atlantic Coast (Boston, New York City, and Washington DC);

NMDS 2-D stress = 0.0887. (C) Pacific Coast (Los Angeles, San Francisco, and Seattle); NMDS

2-D stress = 0.0367. (D) Central US (Chicago, Minneapolis, and Salt Lake City); NMDS 2-D

stress = 0.0664.
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Figure 5

Comparison of slopes based on number of cities a species was found in.

For all species with a minimum of 100 observations, City Accumulation and Averaged

Ranking metrics were calculated for each of the 5 levels of urban intensification. From these

values, a linear model slope was calculated to assess the directionality and magnitude of

whether a species more favored more urbanized or more natural areas. More details on the

calculation of these metrics can be found in the supplementary materials. (A) City

Accumulation Metric; (B) Averaged Ranking Metric. Axis is inverted to allow better

comparison with (A).
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Table 1(on next page)

Urban land cover definitions table.

Descriptions of urbanization are based on MRLC9s NLCD2011 definitions

(https://www.mrlc.gov/nlcd11_leg.php).

PeerJ Preprints | https://doi.org/10.7287/peerj.preprints.27472v1 | CC BY 4.0 Open Access | rec: 9 Jan 2019, publ: 9 Jan 2019



1 Table 1.  Urban land cover definitions table.  Descriptions of urbanization are based on 

2 MRLC9s NLCD2011 definitions (https://www.mrlc.gov/nlcd11_leg.php).

3

4

Code Land Cover Type Description

n natural all areas not classified as developed, agricultural, or water

d1 developed - open 

space

areas with a mixture of some constructed materials, but 

mostly vegetation in the form of lawn grasses. Impervious 

surfaces account for less than 20% of total cover. These 

areas most commonly include large-lot single-family 

housing units, parks, golf courses, and vegetation planted 

in developed settings for recreation, erosion control, or 

aesthetic purposes.

d2 developed - low 

intensity

areas with a mixture of constructed materials and 

vegetation. Impervious surfaces account for 20% to 49% 

percent of total cover. These areas most commonly 

include single-family housing units.

d3 developed - 

medium intensity

areas with a mixture of constructed materials and 

vegetation. Impervious surfaces account for 50% to 79% of 

the total cover. These areas most commonly include 

single-family housing units.

d4 developed - high 

intensity

highly developed areas where people reside or work in 

high numbers. Examples include apartment complexes, 

row houses and commercial/industrial. Impervious 

surfaces account for 80% to 100% of the total cover.

5
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Table 2(on next page)

Taxa-based counts of species found in the majority of cities.
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1 Table 2. Taxa-based counts of species found in the majority of cities.

2

Cosmopolitan Pool Total Pool Proportion Cosmopolitan

Taxon num species observations num species observations num species observations

amphibians 1 81 58 725 1.72% 11.17%

birds 36 5258 355 8115 10.14% 64.79%

conifers 1 124 45 786 2.22% 15.78%

dicots 36 5696 2380 37744 1.51% 15.09%

ferns 0 0 57 869 0.00% 0.00%

gastropods 0 0 113 719 0.00% 0.00%

insects 7 1283 835 5067 0.84% 25.32%

mammals 7 938 66 1698 10.61% 55.24%

monocots 1 33 499 5527 0.20% 0.60%

reptiles 4 334 137 2123 2.92% 15.73%

other 7 430 664 2836 1.05% 15.16%

TOTALS 100 14177 5209 66209 1.92% 21.41%

3
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Table 3(on next page)

Land cover PERMANOVA results.

We built Bray-Curtis dissimilarity matrices then conducted PERMANOVA (Permutational

Multivariate Analysis of Variance) analyses with 999 iterations, nested by city. We ran tests

for the entire dataset, and then for iterative subsets for each region, and for plants only and

animals only.
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1 Table 3. Land cover PERMANOVA results. We built Bray-Curtis dissimilarity matrices then 

2 conducted PERMANOVA (Permutational Multivariate Analysis of Variance) analyses with 999 

3 iterations, nested by city.  We ran tests for the entire dataset, and then for iterative subsets for 

4 each region, and for plants only and animals only.

5

Taxon Region R2 p

all All USA 0.066487768 0.001

all Texas 0.379506898 0.001

all Atlantic 0.31927022 0.003

all Pacific 0.224720519 0.001

all Central 0.249440927 0.002

plants All USA 0.057168419 0.001

plants Texas 0.376422835 0.002

plants Atlantic 0.314924829 0.001

plants Pacific 0.220314541 0.007

plants Central 0.239500705 0.027

animals All USA 0.077114628 0.001

animals Texas 0.381789046 0.001

animals Atlantic 0.317510181 0.006

animals Pacific 0.22008025 0.014

animals Central 0.292432443 0.007

6
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Table 4(on next page)

City PERMANOVA results.

We built Bray-Curtis dissimilarity matrices then conducted PERMANOVA (Permutational

Multivariate Analysis of Variance) analyses with 999 iterations, nested by land cover type. We

ran tests for the entire dataset, and then for iterative subsets for each region, and for plants

only and animals only.
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1 Table 4. City PERMANOVA results. We built Bray-Curtis dissimilarity matrices then 

2 conducted PERMANOVA (Permutational Multivariate Analysis of Variance) analyses with 999 

3 iterations, nested by land cover type.  We ran tests for the entire dataset, and then for iterative 

4 subsets for each region, and for plants only and animals only.

5

Taxon Region R2 p

all All USA 0.536624661 0.001

all Texas 0.29115619 0.001

all Atlantic 0.352870122 0.002

all Pacific 0.428061973 0.001

all Central 0.378168123 0.001

plants All USA 0.536412422 0.001

plants Texas 0.299323329 0.002

plants Atlantic 0.367002976 0.001

plants Pacific 0.415719503 0.002

plants Central 0.387824797 0.002

animals All USA 0.522510275 0.001

animals Texas 0.273142782 0.001

animals Atlantic 0.337557222 0.003

animals Pacific 0.425446902 0.002

animals Central 0.309673791 0.001

6  
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